AutoEncoder-Driven Multimodal Collaborative Learning for Medical Image Synthesis

Multimodal medical images have been widely applied in various clinical diagnoses and treatments. Due to the practical restrictions, certain modalities may be hard to acquire, resulting in incomplete data. Existing methods attempt to generate the missing data with multiple available modalities. Howev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer vision Jg. 131; H. 8; S. 1995 - 2014
Hauptverfasser: Cao, Bing, Bi, Zhiwei, Hu, Qinghua, Zhang, Han, Wang, Nannan, Gao, Xinbo, Shen, Dinggang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.08.2023
Springer
Springer Nature B.V
Schlagworte:
ISSN:0920-5691, 1573-1405
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Multimodal medical images have been widely applied in various clinical diagnoses and treatments. Due to the practical restrictions, certain modalities may be hard to acquire, resulting in incomplete data. Existing methods attempt to generate the missing data with multiple available modalities. However, the modality differences in tissue contrast and lesion appearance become an obstacle to making a precise estimation. To address this issue, we propose an autoencoder-driven multimodal collaborative learning framework for medical image synthesis. The proposed approach takes an autoencoder to comprehensively supervise the synthesis network using the self-representation of target modality, which provides target-modality-specific prior to guide multimodal image fusion. Furthermore, we endow the autoencoder with adversarial learning capabilities by converting its encoder into a pixel-sensitive discriminator capable of both reconstruction and discrimination. To this end, the generative model is completely supervised by the autoencoder. Considering the efficiency of multimodal generation, we also introduce a modality mask vector as the target modality label to guide the synthesis direction, empowering our method to estimate any missing modality with a single model. Extensive experiments on multiple medical image datasets demonstrate the significant generalization capability as well as the superior synthetic quality of the proposed method, compared with other competing methods. The source code will be available: https://github.com/bcaosudo/AE-GAN .
AbstractList Multimodal medical images have been widely applied in various clinical diagnoses and treatments. Due to the practical restrictions, certain modalities may be hard to acquire, resulting in incomplete data. Existing methods attempt to generate the missing data with multiple available modalities. However, the modality differences in tissue contrast and lesion appearance become an obstacle to making a precise estimation. To address this issue, we propose an autoencoder-driven multimodal collaborative learning framework for medical image synthesis. The proposed approach takes an autoencoder to comprehensively supervise the synthesis network using the self-representation of target modality, which provides target-modality-specific prior to guide multimodal image fusion. Furthermore, we endow the autoencoder with adversarial learning capabilities by converting its encoder into a pixel-sensitive discriminator capable of both reconstruction and discrimination. To this end, the generative model is completely supervised by the autoencoder. Considering the efficiency of multimodal generation, we also introduce a modality mask vector as the target modality label to guide the synthesis direction, empowering our method to estimate any missing modality with a single model. Extensive experiments on multiple medical image datasets demonstrate the significant generalization capability as well as the superior synthetic quality of the proposed method, compared with other competing methods. The source code will be available:
Multimodal medical images have been widely applied in various clinical diagnoses and treatments. Due to the practical restrictions, certain modalities may be hard to acquire, resulting in incomplete data. Existing methods attempt to generate the missing data with multiple available modalities. However, the modality differences in tissue contrast and lesion appearance become an obstacle to making a precise estimation. To address this issue, we propose an autoencoder-driven multimodal collaborative learning framework for medical image synthesis. The proposed approach takes an autoencoder to comprehensively supervise the synthesis network using the self-representation of target modality, which provides target-modality-specific prior to guide multimodal image fusion. Furthermore, we endow the autoencoder with adversarial learning capabilities by converting its encoder into a pixel-sensitive discriminator capable of both reconstruction and discrimination. To this end, the generative model is completely supervised by the autoencoder. Considering the efficiency of multimodal generation, we also introduce a modality mask vector as the target modality label to guide the synthesis direction, empowering our method to estimate any missing modality with a single model. Extensive experiments on multiple medical image datasets demonstrate the significant generalization capability as well as the superior synthetic quality of the proposed method, compared with other competing methods. The source code will be available: https://github.com/bcaosudo/AE-GAN .
Multimodal medical images have been widely applied in various clinical diagnoses and treatments. Due to the practical restrictions, certain modalities may be hard to acquire, resulting in incomplete data. Existing methods attempt to generate the missing data with multiple available modalities. However, the modality differences in tissue contrast and lesion appearance become an obstacle to making a precise estimation. To address this issue, we propose an autoencoder-driven multimodal collaborative learning framework for medical image synthesis. The proposed approach takes an autoencoder to comprehensively supervise the synthesis network using the self-representation of target modality, which provides target-modality-specific prior to guide multimodal image fusion. Furthermore, we endow the autoencoder with adversarial learning capabilities by converting its encoder into a pixel-sensitive discriminator capable of both reconstruction and discrimination. To this end, the generative model is completely supervised by the autoencoder. Considering the efficiency of multimodal generation, we also introduce a modality mask vector as the target modality label to guide the synthesis direction, empowering our method to estimate any missing modality with a single model. Extensive experiments on multiple medical image datasets demonstrate the significant generalization capability as well as the superior synthetic quality of the proposed method, compared with other competing methods. The source code will be available: https://github.com/bcaosudo/AE-GAN.
Audience Academic
Author Bi, Zhiwei
Cao, Bing
Gao, Xinbo
Zhang, Han
Shen, Dinggang
Wang, Nannan
Hu, Qinghua
Author_xml – sequence: 1
  givenname: Bing
  orcidid: 0000-0002-0316-5404
  surname: Cao
  fullname: Cao, Bing
  organization: College of Intelligence and Computing, Tianjin University, State Key Laboratory of Integrated Services Networks, Xidian University
– sequence: 2
  givenname: Zhiwei
  surname: Bi
  fullname: Bi, Zhiwei
  organization: College of Intelligence and Computing, Tianjin University
– sequence: 3
  givenname: Qinghua
  surname: Hu
  fullname: Hu, Qinghua
  email: huqinghua@tju.edu.cn
  organization: College of Intelligence and Computing, Tianjin University
– sequence: 4
  givenname: Han
  surname: Zhang
  fullname: Zhang, Han
  organization: School of Biomedical Engineering, ShanghaiTech University
– sequence: 5
  givenname: Nannan
  surname: Wang
  fullname: Wang, Nannan
  organization: State Key Laboratory of Integrated Services Networks, Xidian University
– sequence: 6
  givenname: Xinbo
  surname: Gao
  fullname: Gao, Xinbo
  organization: Chongqing University of Posts and Telecommunications
– sequence: 7
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
  organization: School of Biomedical Engineering, ShanghaiTech University, Shanghai United Imaging Intelligence Co., Ltd., Shanghai Clinical Research and Trial Center
BookMark eNp9kV1rHCEUhiUkkM3HH8jVQK9ne_yYGb1ctptkYUMLyb24znFjmNFUZwP597HdQmgpi4qgz3PE816Q0xADEnJDYU4Buq-ZUtbyGlhZtFO0hhMyo03HayqgOSUzUAzqplX0nFzk_AIATDI-Iz8W-ymugo09pvpb8m8Yqof9MPkx9maolnEYzDYmM5WbaoMmBR92lYupesDe24KsR7PD6vE9TM-Yfb4iZ84MGa__7Jfk6Xb1tLyvN9_v1svFprZctlPd01YI2gkHoudgQaltmYz2jiNT214JkEKiVMIJMBal3FLk4KhrBSjkl-TLoexrij_3mCf9EvcplBc1k1w2oDpOP6mdGVD74OKUjB19tnrRNV0juehYoeb_ocrocfS2NNr5cv6XIA-CTTHnhE5bP5UWxVBEP2gK-lcq-pCKLqno36loKCr7R31NfjTp_bjED1IucNhh-vzsEesDFJafCg
CitedBy_id crossref_primary_10_1007_s00371_023_03171_8
crossref_primary_10_1007_s00371_024_03377_4
crossref_primary_10_1007_s11263_024_02004_y
crossref_primary_10_1080_00102202_2025_2501695
crossref_primary_10_1109_TCSVT_2025_3528981
crossref_primary_10_1080_01431161_2025_2471595
crossref_primary_10_1007_s00521_023_09283_5
crossref_primary_10_1007_s11263_024_02128_1
crossref_primary_10_1007_s11263_025_02389_4
crossref_primary_10_1117_1_JEI_33_5_053011
crossref_primary_10_1016_j_knosys_2025_114313
crossref_primary_10_1109_TPAMI_2024_3465649
crossref_primary_10_3390_bioengineering11010017
crossref_primary_10_1016_j_eswa_2025_127367
Cites_doi 10.1038/nature08538
10.1090/S0002-9904-1920-03378-1
10.1007/BF00332918
10.2967/jnumed.115.156299
10.1007/s11263-019-01285-y
10.1007/s11263-021-01448-w
10.1109/TMI.2014.2377694
10.1007/s11263-006-6855-7
10.1016/j.media.2020.101944
10.1016/j.media.2016.07.009
10.1007/s11263-019-01284-z
10.1109/TMI.2018.2884053
10.1111/1467-985X.00122
10.2307/1932409
10.1007/s11263-021-01510-7
10.1109/TIP.2003.819861
10.1109/TMI.2022.3167808
10.1002/(SICI)1097-0258(19990330)18:6<681::AID-SIM71>3.0.CO;2-R
10.1109/TMI.2014.2340135
10.1007/s11263-021-01501-8
10.1109/TMI.2017.2781192
10.1016/j.media.2016.08.009
10.1007/s11263-020-01321-2
10.1109/TMI.2020.2975344
10.1126/science.1127647
10.1109/ACCESS.2018.2872025
10.1109/TIP.2011.2109730
10.1007/s11263-017-1015-9
10.1109/TMI.2017.2759102
10.1073/pnas.90.24.11944
10.1109/TMM.2019.2898777
10.1609/aaai.v34i07.6619
10.1007/978-3-030-58545-7_19
10.1146/annurev-bioeng-071516-044442
10.1109/CVPR.2016.265
10.1109/CVPR.2018.00917
10.1007/978-3-030-11726-9_4
10.1109/IWAIT.2018.8369657
10.1109/CVPR.2017.632
10.1109/CVPR.2019.00453
10.1109/CVPR.2019.00726
10.1007/978-3-319-10443-0_39
10.1109/CVPR.2017.19
10.1007/978-3-031-18523-6_8
10.1007/978-3-030-58580-8_13
10.1109/CVPR.2019.00259
10.1109/ISBI.2013.6556484
10.1109/ICCV.2017.244
10.1109/TMI.2023.3290149
10.1109/CVPR.2019.00244
10.1109/WACV51458.2022.00103
10.1007/978-3-319-24574-4_28
10.1109/CVPR.2016.90
10.18653/v1/D16-1139
10.1007/978-3-319-66179-7_48
10.1109/CVPR.2018.00916
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2023 Springer
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2023 Springer
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
DOI 10.1007/s11263-023-01791-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList

ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 2014
ExternalDocumentID A757583472
10_1007_s11263_023_01791_0
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c386t-d1644174f04d30c099b99b21df3e29bd940848e894f40ace88b1e30f1f6409e3
IEDL.DBID M0C
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000981840400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-5691
IngestDate Wed Nov 05 00:43:06 EST 2025
Sat Nov 29 13:58:52 EST 2025
Sat Nov 29 10:28:18 EST 2025
Sat Nov 29 06:42:29 EST 2025
Tue Nov 18 21:53:30 EST 2025
Fri Feb 21 02:41:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Medical image synthesis
Self-representation
Autoencoder
Multimodal collaborative learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-d1644174f04d30c099b99b21df3e29bd940848e894f40ace88b1e30f1f6409e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0316-5404
PQID 2838509731
PQPubID 1456341
PageCount 20
ParticipantIDs proquest_journals_2838509731
gale_infotracmisc_A757583472
gale_infotracacademiconefile_A757583472
crossref_citationtrail_10_1007_s11263_023_01791_0
crossref_primary_10_1007_s11263_023_01791_0
springer_journals_10_1007_s11263_023_01791_0
PublicationCentury 2000
PublicationDate 20230800
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 8
  year: 2023
  text: 20230800
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2023
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Huang, Shao, Frangi (CR18) 2017; 37
Kim, Myung (CR27) 2018; 6
Blumberg (CR1) 1920; 27
CR39
CR38
Dice (CR10) 1945; 26
CR35
Zhou, Fu, Chen, Shen, Shao (CR65) 2020; 39
CR33
Park, Zhu, Wang, Lu, Shechtman, Efros, Zhang (CR45) 2020; 33
CR32
Singh, Raza (CR52) 2021
Burgos, Cardoso, Thielemans, Modat, Pedemonte, Dickson, Barnes, Ahmed, Mahoney, Schott, Duncan, Atkinson, Arridge, Hutton, Ourselin (CR3) 2014; 33
CR30
Sauerbrei, Royston (CR50) 1999; 162
Bourlard, Kamp (CR2) 1988; 59
Zhang, Ma (CR62) 2021; 129
Xu, Keshmiri, Wang (CR60) 2019; 21
Ramirez-Manzanares, Rivera (CR48) 2006; 69
Miller, Christensen, Amit, Grenander (CR37) 1993; 90
CR4
CR5
CR8
CR7
CR49
CR47
CR44
CR43
CR42
CR41
Sun, Dong, Li, Wu, Li, Shi (CR53) 2021; 129
CR19
CR16
CR15
Dalmaz, Yurt, Çukur (CR9) 2022; 41
CR14
CR13
Nie, Shen (CR40) 2020; 128
CR57
CR56
CR11
Jiao, Yang, He, Gu, Zhang, Lau (CR22) 2017; 124
CR51
Wang, Zhou, Yu, Wang, Zu, Lalush, Lin, Wu, Zhou, Shen (CR58) 2018; 38
Maier, Menze, Gablentz, Häni, Heinrich, Liebrand, Winzeck, Basit, Bentley, Chen, Christiaens, Dutil, Egger, Feng, Glocker, Götz, Haeck, Halme, Havaei, Reyes (CR34) 2017; 35
Hinton, Salakhutdinov (CR17) 2006; 313
Georgopoulos, Oldfield, Nicolaou, Panagakis, Pantic (CR12) 2021; 129
Yurt, Dar, Erdem, Erdem, Oguz, Çukur (CR61) 2021; 70
Jog, Carass, Roy, Pham, Prince (CR23) 2017; 35
Costa, Galdran, Meyer, Niemeijer, Abràmoff, Mendonça, Campilho (CR6) 2017; 37
Torrado-Carvajal, Herraiz, Alcain, Montemayor, Garcia-Canamaque, Hernandez-Tamames, Rozenholc, Malpica (CR54) 2016; 57
Zhang, Dong, Hu, Lai, Wang, Yang (CR64) 2020; 128
CR29
CR28
Wang, Bovik, Sheikh, Simoncelli (CR59) 2004; 13
CR26
CR25
Zhang, Zhang, Mou, Zhang (CR63) 2011; 20
CR24
CR66
CR21
CR20
Lee, Tseng, Mao, Huang, Lu, Singh, Yang (CR31) 2020; 128
Van Buuren, Boshuizen, Knook (CR55) 1999; 18
Menze, Jakab, Bauer, Kalpathy-Cramer, Farahani (CR36) 2015; 34
Perrin, Fagan, Holtzman (CR46) 2009; 461
1791_CR15
RJ Perrin (1791_CR46) 2009; 461
S Van Buuren (1791_CR55) 1999; 18
1791_CR16
1791_CR11
1791_CR56
1791_CR13
1791_CR57
1791_CR14
1791_CR19
P Costa (1791_CR6) 2017; 37
K Kim (1791_CR27) 2018; 6
Y Wang (1791_CR58) 2018; 38
1791_CR7
1791_CR5
1791_CR4
H Bourlard (1791_CR2) 1988; 59
1791_CR51
LR Dice (1791_CR10) 1945; 26
1791_CR8
1791_CR49
1791_CR44
L Zhang (1791_CR63) 2011; 20
A Torrado-Carvajal (1791_CR54) 2016; 57
1791_CR47
A Ramirez-Manzanares (1791_CR48) 2006; 69
BH Menze (1791_CR36) 2015; 34
O Maier (1791_CR34) 2017; 35
L Sun (1791_CR53) 2021; 129
W Sauerbrei (1791_CR50) 1999; 162
N Burgos (1791_CR3) 2014; 33
M Georgopoulos (1791_CR12) 2021; 129
1791_CR41
M Yurt (1791_CR61) 2021; 70
1791_CR42
1791_CR43
D Nie (1791_CR40) 2020; 128
O Dalmaz (1791_CR9) 2022; 41
1791_CR38
1791_CR39
W Xu (1791_CR60) 2019; 21
1791_CR33
1791_CR35
H Blumberg (1791_CR1) 1920; 27
NK Singh (1791_CR52) 2021
H-Y Lee (1791_CR31) 2020; 128
H Zhang (1791_CR62) 2021; 129
1791_CR30
1791_CR32
T Park (1791_CR45) 2020; 33
GE Hinton (1791_CR17) 2006; 313
1791_CR26
1791_CR28
1791_CR29
T Zhou (1791_CR65) 2020; 39
1791_CR66
1791_CR24
MI Miller (1791_CR37) 1993; 90
1791_CR25
Y Huang (1791_CR18) 2017; 37
J Jiao (1791_CR22) 2017; 124
A Jog (1791_CR23) 2017; 35
X Zhang (1791_CR64) 2020; 128
1791_CR20
1791_CR21
Z Wang (1791_CR59) 2004; 13
References_xml – volume: 461
  start-page: 916
  issue: 7266
  year: 2009
  end-page: 922
  ident: CR46
  article-title: Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease
  publication-title: Nature
  doi: 10.1038/nature08538
– ident: CR49
– volume: 27
  start-page: 116
  issue: 3
  year: 1920
  end-page: 129
  ident: CR1
  article-title: Hausdorff’s grundzüge der mengenlehre
  publication-title: Bulletin of the American Mathematical Society
  doi: 10.1090/S0002-9904-1920-03378-1
– volume: 59
  start-page: 291
  issue: 4
  year: 1988
  end-page: 294
  ident: CR2
  article-title: Auto-association by multilayer perceptrons and singular value decomposition
  publication-title: Biological cybernetics
  doi: 10.1007/BF00332918
– ident: CR4
– ident: CR39
– ident: CR16
– ident: CR51
– volume: 57
  start-page: 136
  issue: 1
  year: 2016
  end-page: 143
  ident: CR54
  article-title: Fast patch-based pseudo-ct synthesis from t1-weighted mr images for pet/mr attenuation correction in brain studies
  publication-title: Journal of Nuclear Medicine
  doi: 10.2967/jnumed.115.156299
– volume: 128
  start-page: 1699
  issue: 6
  year: 2020
  end-page: 1721
  ident: CR64
  article-title: Gated fusion network for degraded image super resolution
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-019-01285-y
– volume: 129
  start-page: 2288
  issue: 7
  year: 2021
  end-page: 2307
  ident: CR12
  article-title: Mitigating demographic bias in facial datasets with style-based multi-attribute transfer
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-021-01448-w
– volume: 34
  start-page: 1993
  issue: 10
  year: 2015
  end-page: 2024
  ident: CR36
  article-title: The multimodal brain tumor image segmentation benchmark (brats)
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2014.2377694
– ident: CR35
– ident: CR29
– volume: 69
  start-page: 77
  issue: 1
  year: 2006
  end-page: 92
  ident: CR48
  article-title: Basis tensor decomposition for restoring intra-voxel structure and stochastic walks for inferring brain connectivity in dt-mri
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-006-6855-7
– ident: CR8
– volume: 70
  year: 2021
  ident: CR61
  article-title: Mustgan: Multi-stream generative adversarial networks for mr image synthesis
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2020.101944
– ident: CR25
– ident: CR42
– volume: 35
  start-page: 250
  year: 2017
  end-page: 269
  ident: CR34
  article-title: Isles 2015-a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral mri
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2016.07.009
– ident: CR21
– volume: 128
  start-page: 2402
  issue: 10
  year: 2020
  end-page: 2417
  ident: CR31
  article-title: Drit++: Diverse image-to-image translation via disentangled representations
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-019-01284-z
– ident: CR19
– ident: CR15
– ident: CR11
– ident: CR57
– volume: 38
  start-page: 1328
  issue: 6
  year: 2018
  end-page: 1339
  ident: CR58
  article-title: 3d auto-context-based locality adaptive multi-modality gans for pet synthesis
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2018.2884053
– volume: 162
  start-page: 71
  issue: 1
  year: 1999
  end-page: 94
  ident: CR50
  article-title: Building multivariable prognostic and diagnostic models: transformation of the predictors by using fractional polynomials
  publication-title: Journal of the Royal Statistical Society: Series A (Statistics in Society)
  doi: 10.1111/1467-985X.00122
– ident: CR32
– ident: CR5
– volume: 26
  start-page: 297
  issue: 3
  year: 1945
  end-page: 302
  ident: CR10
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 33
  start-page: 7198
  year: 2020
  end-page: 7211
  ident: CR45
  article-title: Swapping autoencoder for deep image manipulation
  publication-title: Advances in Neural Information Processing Systems
– ident: CR26
– ident: CR43
– ident: CR66
– ident: CR47
– volume: 129
  start-page: 2827
  issue: 10
  year: 2021
  end-page: 2845
  ident: CR53
  article-title: Deep maximum a posterior estimator for video denoising
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-021-01510-7
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  end-page: 612
  ident: CR59
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2003.819861
– volume: 41
  start-page: 2598
  issue: 10
  year: 2022
  end-page: 2614
  ident: CR9
  article-title: Resvit: residual vision transformers for multimodal medical image synthesis
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2022.3167808
– ident: CR14
– volume: 18
  start-page: 681
  issue: 6
  year: 1999
  end-page: 694
  ident: CR55
  article-title: Multiple imputation of missing blood pressure covariates in survival analysis
  publication-title: Statistics in Medicine
  doi: 10.1002/(SICI)1097-0258(19990330)18:6<681::AID-SIM71>3.0.CO;2-R
– start-page: 77
  year: 2021
  end-page: 96
  ident: CR52
  publication-title: Medical image generation using generative adversarial networks: A review
– volume: 33
  start-page: 2332
  issue: 12
  year: 2014
  end-page: 2341
  ident: CR3
  article-title: Attenuation correction synthesis for hybrid pet-mr scanners: Application to brain studies
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2014.2340135
– ident: CR30
– ident: CR33
– ident: CR56
– volume: 129
  start-page: 2761
  issue: 10
  year: 2021
  end-page: 2785
  ident: CR62
  article-title: Sdnet: A versatile squeeze-and-decomposition network for real-time image fusion
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-021-01501-8
– volume: 37
  start-page: 815
  issue: 3
  year: 2017
  end-page: 827
  ident: CR18
  article-title: Cross-modality image synthesis via weakly coupled and geometry co-regularized joint dictionary learning
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2017.2781192
– volume: 35
  start-page: 475
  year: 2017
  end-page: 488
  ident: CR23
  article-title: Random forest regression for magnetic resonance image synthesis
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2016.08.009
– volume: 128
  start-page: 2494
  issue: 10
  year: 2020
  end-page: 2513
  ident: CR40
  article-title: Adversarial confidence learning for medical image segmentation and synthesis
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-020-01321-2
– ident: CR44
– volume: 39
  start-page: 2772
  issue: 9
  year: 2020
  end-page: 2781
  ident: CR65
  article-title: Hi-net: Hybrid-fusion network for multi-modal mr image synthesis
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2020.2975344
– ident: CR38
– ident: CR13
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  end-page: 507
  ident: CR17
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 6
  start-page: 54207
  year: 2018
  end-page: 54214
  ident: CR27
  article-title: Autoencoder-combined generative adversarial networks for synthetic image data generation and detection of jellyfish swarm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2872025
– volume: 20
  start-page: 2378
  issue: 8
  year: 2011
  end-page: 2386
  ident: CR63
  article-title: Fsim: A feature similarity index for image quality assessment
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2011.2109730
– volume: 124
  start-page: 204
  issue: 2
  year: 2017
  end-page: 222
  ident: CR22
  article-title: Joint image denoising and disparity estimation via stereo structure pca and noise-tolerant cost
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-017-1015-9
– volume: 37
  start-page: 781
  issue: 3
  year: 2017
  end-page: 791
  ident: CR6
  article-title: End-to-end adversarial retinal image synthesis
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2017.2759102
– ident: CR7
– ident: CR28
– ident: CR41
– ident: CR24
– ident: CR20
– volume: 90
  start-page: 11944
  issue: 24
  year: 1993
  end-page: 11948
  ident: CR37
  article-title: Mathematical textbook of deformable neuroanatomies
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.90.24.11944
– volume: 21
  start-page: 2387
  issue: 9
  year: 2019
  end-page: 2396
  ident: CR60
  article-title: Adversarially approximated autoencoder for image generation and manipulation
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2019.2898777
– ident: 1791_CR4
  doi: 10.1609/aaai.v34i07.6619
– ident: 1791_CR35
– ident: 1791_CR43
  doi: 10.1007/978-3-030-58545-7_19
– volume: 69
  start-page: 77
  issue: 1
  year: 2006
  ident: 1791_CR48
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-006-6855-7
– ident: 1791_CR16
– ident: 1791_CR51
  doi: 10.1146/annurev-bioeng-071516-044442
– volume: 38
  start-page: 1328
  issue: 6
  year: 2018
  ident: 1791_CR58
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2018.2884053
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 1791_CR17
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 35
  start-page: 250
  year: 2017
  ident: 1791_CR34
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2016.07.009
– ident: 1791_CR11
  doi: 10.1109/CVPR.2016.265
– ident: 1791_CR57
  doi: 10.1109/CVPR.2018.00917
– ident: 1791_CR26
  doi: 10.1007/978-3-030-11726-9_4
– volume: 59
  start-page: 291
  issue: 4
  year: 1988
  ident: 1791_CR2
  publication-title: Biological cybernetics
  doi: 10.1007/BF00332918
– volume: 129
  start-page: 2761
  issue: 10
  year: 2021
  ident: 1791_CR62
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-021-01501-8
– ident: 1791_CR47
  doi: 10.1109/IWAIT.2018.8369657
– ident: 1791_CR19
– ident: 1791_CR20
  doi: 10.1109/CVPR.2017.632
– volume: 18
  start-page: 681
  issue: 6
  year: 1999
  ident: 1791_CR55
  publication-title: Statistics in Medicine
  doi: 10.1002/(SICI)1097-0258(19990330)18:6<681::AID-SIM71>3.0.CO;2-R
– volume: 20
  start-page: 2378
  issue: 8
  year: 2011
  ident: 1791_CR63
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2011.2109730
– ident: 1791_CR38
– volume: 124
  start-page: 204
  issue: 2
  year: 2017
  ident: 1791_CR22
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-017-1015-9
– volume: 21
  start-page: 2387
  issue: 9
  year: 2019
  ident: 1791_CR60
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2019.2898777
– ident: 1791_CR13
– volume: 33
  start-page: 7198
  year: 2020
  ident: 1791_CR45
  publication-title: Advances in Neural Information Processing Systems
– ident: 1791_CR25
  doi: 10.1109/CVPR.2019.00453
– ident: 1791_CR33
  doi: 10.1109/CVPR.2019.00726
– ident: 1791_CR32
  doi: 10.1007/978-3-319-10443-0_39
– ident: 1791_CR29
  doi: 10.1109/CVPR.2017.19
– volume: 41
  start-page: 2598
  issue: 10
  year: 2022
  ident: 1791_CR9
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2022.3167808
– volume: 27
  start-page: 116
  issue: 3
  year: 1920
  ident: 1791_CR1
  publication-title: Bulletin of the American Mathematical Society
  doi: 10.1090/S0002-9904-1920-03378-1
– ident: 1791_CR7
– ident: 1791_CR8
  doi: 10.1007/978-3-031-18523-6_8
– volume: 128
  start-page: 2402
  issue: 10
  year: 2020
  ident: 1791_CR31
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-019-01284-z
– start-page: 77
  volume-title: Medical image generation using generative adversarial networks: A review
  year: 2021
  ident: 1791_CR52
– volume: 129
  start-page: 2827
  issue: 10
  year: 2021
  ident: 1791_CR53
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-021-01510-7
– volume: 90
  start-page: 11944
  issue: 24
  year: 1993
  ident: 1791_CR37
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.90.24.11944
– volume: 129
  start-page: 2288
  issue: 7
  year: 2021
  ident: 1791_CR12
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-021-01448-w
– ident: 1791_CR21
  doi: 10.1007/978-3-030-58580-8_13
– ident: 1791_CR30
  doi: 10.1109/CVPR.2019.00259
– volume: 35
  start-page: 475
  year: 2017
  ident: 1791_CR23
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2016.08.009
– volume: 26
  start-page: 297
  issue: 3
  year: 1945
  ident: 1791_CR10
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 461
  start-page: 916
  issue: 7266
  year: 2009
  ident: 1791_CR46
  publication-title: Nature
  doi: 10.1038/nature08538
– ident: 1791_CR24
  doi: 10.1109/ISBI.2013.6556484
– volume: 162
  start-page: 71
  issue: 1
  year: 1999
  ident: 1791_CR50
  publication-title: Journal of the Royal Statistical Society: Series A (Statistics in Society)
  doi: 10.1111/1467-985X.00122
– volume: 128
  start-page: 2494
  issue: 10
  year: 2020
  ident: 1791_CR40
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-020-01321-2
– ident: 1791_CR66
  doi: 10.1109/ICCV.2017.244
– ident: 1791_CR42
  doi: 10.1109/TMI.2023.3290149
– volume: 6
  start-page: 54207
  year: 2018
  ident: 1791_CR27
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2872025
– ident: 1791_CR44
  doi: 10.1109/CVPR.2019.00244
– volume: 33
  start-page: 2332
  issue: 12
  year: 2014
  ident: 1791_CR3
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2014.2340135
– volume: 57
  start-page: 136
  issue: 1
  year: 2016
  ident: 1791_CR54
  publication-title: Journal of Nuclear Medicine
  doi: 10.2967/jnumed.115.156299
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 1791_CR59
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2003.819861
– ident: 1791_CR14
  doi: 10.1109/WACV51458.2022.00103
– ident: 1791_CR49
  doi: 10.1007/978-3-319-24574-4_28
– volume: 37
  start-page: 815
  issue: 3
  year: 2017
  ident: 1791_CR18
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2017.2781192
– ident: 1791_CR15
  doi: 10.1109/CVPR.2016.90
– ident: 1791_CR28
  doi: 10.18653/v1/D16-1139
– ident: 1791_CR41
  doi: 10.1007/978-3-319-66179-7_48
– volume: 70
  year: 2021
  ident: 1791_CR61
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2020.101944
– ident: 1791_CR5
  doi: 10.1109/CVPR.2018.00916
– volume: 39
  start-page: 2772
  issue: 9
  year: 2020
  ident: 1791_CR65
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2020.2975344
– volume: 37
  start-page: 781
  issue: 3
  year: 2017
  ident: 1791_CR6
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2017.2759102
– volume: 34
  start-page: 1993
  issue: 10
  year: 2015
  ident: 1791_CR36
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2014.2377694
– volume: 128
  start-page: 1699
  issue: 6
  year: 2020
  ident: 1791_CR64
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-019-01285-y
– ident: 1791_CR56
– ident: 1791_CR39
SSID ssj0002823
Score 2.5366561
Snippet Multimodal medical images have been widely applied in various clinical diagnoses and treatments. Due to the practical restrictions, certain modalities may be...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1995
SubjectTerms Artificial Intelligence
Coders
Collaborative learning
Computer Imaging
Computer Science
Computer vision
Group work in education
Image Processing and Computer Vision
Image reconstruction
Learning
Medical imaging
Medical imaging equipment
Missing data
Pattern Recognition
Pattern Recognition and Graphics
Source code
Synthesis
Target masking
Team learning approach in education
Vision
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA86PXhxPrE6pQfBgxaaNmuT45gbehnDDdkttE0qA9dJ2w387_2SpSvzBQo9JWka0u_x-_heCF2DBsaS6OQYFjiEiciJGIsdX8ZxW4pAJNLVzSbCwYBOJmxoksKKKtq9cklqSV0nu2FP-xxV_E-o4nW20Q6oO6oaNjyNntfyF4yIVQN5MIzaAcMmVeb7PTbU0Weh_MU7qpVOv_m_4x6gfQMy7c6KKg7RlsyOUNMATtuwcwFDVU-HauwYDTuLct7LVKZ77tznShbaOkl3NhewZbcmm6W0TXHWFxuQr21cPvbjDESUPXrPAFoW0-IEjfu9cffBMV0XnMSnQekIrCBSSFKXCN9NAEHG8HhYpL70WCwYUSX4JWUkJW6USEpjLH03xWkAtqL0T1Ejm2fyTEVNhTINYwEYICawIApTKiiWroAPgJ1lIVzdPU9MRXLVGOOV17WU1SVyuESuL5G7Frpdv_O2qsfx6-ob9Uu5YlbYOYlMzgGcT5W94p0Q0Cr1SehZqLWxEpgs2ZyuiIIbJi84IDPaVuWOsIXuKiKop38-1vnfll-gPU_TkQo7bKFGmS_kJdpNluW0yK808X8A0CL6vA
  priority: 102
  providerName: Springer Nature
Title AutoEncoder-Driven Multimodal Collaborative Learning for Medical Image Synthesis
URI https://link.springer.com/article/10.1007/s11263-023-01791-0
https://www.proquest.com/docview/2838509731
Volume 131
WOSCitedRecordID wos000981840400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_Wdg97absvmq0NfhjsYROzbMWSnkaWpmyMhdCWrduLsCV5FFanjdPC_vvdKXJDVtaXgRFYkmXB6U6_k-4D4BXuwNyL4ByjCya0K1mpdcVyX1UD7wpnfRqSTcjJRJ2d6Wk8cGujWWUnE4OgdjNLZ-TvcBtUA4otw99fXjHKGkW3qzGFxgZsEbIhk74v6ehWEqM6sUwljyrSoNA8Os0sXed4Fm4wyZpIkvXP2sb0t3i-c08atp-jnf-d-C5sR-CZDJcr5TE88M0T2IkgNIks3mJVl-ehq3sK0-H1YjZuyPt9zg7nJB-T4Lh7MXM45Gi1lG58EgO2_kwQDSfxGij5dIFiKzn53SDcbM_bZ3B6ND4dfWQxEwOzuSoWzHGCTVLUqXB5ahFVVvhk3NW5z3TltKCw_F5pUYu0tF6pivs8rXldoP7o8-ew2cwav0eWVNLXsnKICyqBHUpZK6e4Tx3-AHWvHvCOCsbGKOWULOOXWcVXJsoZpJwJlDNpD97cfnO5jNFxb-_XRFxDDIwj2zL6IeD8KBSWGUpEsCoXMuvB_lpPZDy73twR3ETGb82K2j142y2ZVfO_p_Xi_tFewqMsLFYyPdyHzcX82h_AQ3uzOG_nfdiQ3773YevDeDI9xrfPkvUDK2A5HfzA8vjk6x_PUApb
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXylMsFMgBxAEs4sQb2weEVn2oqy2rSuyhNyuxHVSJZstmW9QfxX9kxnG6WhC99YCUU-I4r2--mYnnAfAGNTD3IiTH6IIJ7UpWal2x3FfV0LvCWZ-GZhNyOlXHx_poA371uTAUVtlzYiBqN7f0j_wjqkE1pNoy_PPZD0Zdo2h1tW-h0cFi4i9_osvWfhrv4vd9m2X7e7OdAxa7CjCbq2LJHCcTQIo6FS5PLVpIFW4Zd3XuM105LajEvFda1CItrVeq4j5Pa14X6Av5HKe9BbdFriSJ1USyK-JH76XrXI8e2bDQPObodJl6PAsLphS8JCnYaE0P_qkN_lqWDdpuf-s_e08P4H40q5NRJwcPYcM3j2ArmthJJLAWd_VdLPp9j-FodL6c7zWU279guwti_ySkJZ_OHU65sxKUC5_EcrTfErT1k7jIlYxPkZSTr5cNGtPtSfsEZjfxpE9hs5k3_hnFiUlfy8qh1VMJHFDKWjnFferwAuhZDoD3H93YWIOdWoF8N6vq0QQUg0AxASgmHcD7q3POugok145-R1gyRE84sy1jlgXeHxX6MiOJ9rnKhcwGsL02EmnFrh_u8WUirbVmBa4BfOgRujr879t6fv1sr-HuwezLoTkcTycv4F4W5ISCLLdhc7k49y_hjr1YnrSLV0HiEjA3jNzfLlFfOw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aAyEujE_RsYEPIA4QLU7cxD6gqVpXUQ1Vldhh4mIltjNNYunWdEP70_bf7T3HWVUQu-2AlJPjOE7ye195XwAfUAJzJ3xyjMoioWwRFUqVUerKsu9sZo2LfbOJfDKRR0dqugbXXS4MhVV2PNEzajsz9I98B8Wg7FNtGb5ThbCI6XC0e3YeUQcp8rR27TRaiBy4q99ovjVfx0P81h-TZLR_uPctCh0GIpPKbBFZTupALqpY2DQ2qC2VeCTcVqlLVGmVoHLzTipRibgwTsqSuzSueJWhXeRSXPYBPMzRxKRowmn_560QQEum7WKP1lk_Uzzk67RZezzxzlMKZMop8GhFJv4pGf5y0XrJN9r4j9_ZM3ga1G02aOnjOay5-gVsBNWbBcbW4FDX3aIbewnTwcVitl9Tzv88Gs5JKjCfrnw6s7jk3pKALh0LZWqPGdoALDi_2PgUmTX7cVWjkt2cNK_g8D6e9DWs17PavaH4sdxVeWlRGyoFTijySlrJXWzxBmhx9oB3ANAm1GanFiG_9LKqNIFGI2i0B42Oe_D59pqztjLJnbM_Ea40sS1c2RQh-wL3RwXA9CBHvV2mIk96sLUyE9mNWT3dYU0HdtfoJdB68KVD6_L0v7e1efdq7-ExAlZ_H08O3sKTxJMMxV5uwfpifuG24ZG5XJw083ee-BjoewbuDRk3aF8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AutoEncoder-Driven+Multimodal+Collaborative+Learning+for+Medical+Image+Synthesis&rft.jtitle=International+journal+of+computer+vision&rft.au=Cao%2C+Bing&rft.au=Bi%2C+Zhiwei&rft.au=Hu%2C+Qinghua&rft.au=Zhang%2C+Han&rft.date=2023-08-01&rft.pub=Springer&rft.issn=0920-5691&rft.volume=131&rft.issue=8&rft.spage=1995&rft_id=info:doi/10.1007%2Fs11263-023-01791-0&rft.externalDocID=A757583472
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon