Improved time series clustering based on new geometric frameworks
•We use the geometrical information of the time series via Takens embedding.•We analyze the geometrical information obtained by the embedding on the Stiefel, the unit sphere and the Rn×p manifolds.•We point out the gain obtained by such an embedding with respect to traditional time series clustering...
Saved in:
| Published in: | Pattern recognition Vol. 124; p. 108423 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.04.2022
Elsevier |
| Subjects: | |
| ISSN: | 0031-3203, 1873-5142 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •We use the geometrical information of the time series via Takens embedding.•We analyze the geometrical information obtained by the embedding on the Stiefel, the unit sphere and the Rn×p manifolds.•We point out the gain obtained by such an embedding with respect to traditional time series clustering approaches.•We analyze over 79 times series databases different frameworks.•The advocated framework is the Stiefel embedding followed by the UMAP and HDBSCAN algorithms.
Most existing methods for time series clustering rely on distances calculated from the entire raw data using the Euclidean distance or Dynamic Time Warping distance. In this work, we propose to embed the time series onto higher-dimensional spaces to obtain geometric representations of the time series themselves. Particularly, the embedding on Rn×p, on the Stiefel manifold and on the unit Sphere are analyzed for their performances with respect to several yet well-known clustering algorithms. The gain brought by the geometrical representation for the time series clustering is illustrated through a large benchmark of databases. We particularly exhibit that, firstly, the embedding of the time series on higher dimensional spaces gives better results than classical approaches and, secondly, that the embedding on the Stiefel manifold - in conjunction with UMAP and HDBSCAN clustering algorithms - is the recommended framework for time series clustering. |
|---|---|
| AbstractList | Most existing methods for time series clustering rely on distances calculated from the entire raw data using the Euclidean distance or Dynamic Time Warping distance. In this work, we propose to embed the time series onto higher-dimensional spaces to obtain geometric representations of the time series them- selves. Particularly, the embedding on R n ×p , on the Stiefel manifold and on the unit Sphere are analyzed for their performances with respect to several yet well-known clustering algorithms. The gain brought by the geometrical representation for the time series clustering is illustrated through a large benchmark of databases. We particularly exhibit that, firstly, the embedding of the time series on higher dimensional spaces gives better results than classical approaches and, secondly, that the embedding on the Stiefel manifold - in conjunction with UMAP and HDBSCAN clustering algorithms - is the recommended frame- work for time series clustering. •We use the geometrical information of the time series via Takens embedding.•We analyze the geometrical information obtained by the embedding on the Stiefel, the unit sphere and the Rn×p manifolds.•We point out the gain obtained by such an embedding with respect to traditional time series clustering approaches.•We analyze over 79 times series databases different frameworks.•The advocated framework is the Stiefel embedding followed by the UMAP and HDBSCAN algorithms. Most existing methods for time series clustering rely on distances calculated from the entire raw data using the Euclidean distance or Dynamic Time Warping distance. In this work, we propose to embed the time series onto higher-dimensional spaces to obtain geometric representations of the time series themselves. Particularly, the embedding on Rn×p, on the Stiefel manifold and on the unit Sphere are analyzed for their performances with respect to several yet well-known clustering algorithms. The gain brought by the geometrical representation for the time series clustering is illustrated through a large benchmark of databases. We particularly exhibit that, firstly, the embedding of the time series on higher dimensional spaces gives better results than classical approaches and, secondly, that the embedding on the Stiefel manifold - in conjunction with UMAP and HDBSCAN clustering algorithms - is the recommended framework for time series clustering. |
| ArticleNumber | 108423 |
| Author | Péalat, Clément Cheutet, Vincent Bouleux, Guillaume |
| Author_xml | – sequence: 1 givenname: Clément surname: Péalat fullname: Péalat, Clément email: clement.pealat@insa-lyon.fr – sequence: 2 givenname: Guillaume surname: Bouleux fullname: Bouleux, Guillaume email: guillaume.bouleux@insa-lyon.fr – sequence: 3 givenname: Vincent surname: Cheutet fullname: Cheutet, Vincent email: vincent.cheutet@insa-lyon.fr |
| BackLink | https://hal.science/hal-03457460$$DView record in HAL |
| BookMark | eNqFkD1PwzAQhi1UJNrCP2DIypDiryQuA1JVAa1UiQVmy7EvxSWJK9u04t_jKrAwwHSnez9OeiZo1LseELomeEYwKW93s72K2m1nFFOSToJTdobGRFQsLwinIzTGmJGcUcwu0CSEHcakSsIYLdbd3rsDmCzaDrIA3kLIdPsRYlr7bVarkETXZz0csy24DqK3Omu86uDo_Hu4ROeNagNcfc8pen18eFmu8s3z03q52OSaiTLmBuNS15UoBC-ZouVccAGYccJqDQKMNhWtOVBlGoWZwVBTaDTlrGzonBTApuhm6H1Trdx72yn_KZ2ycrXYyNMtlRUVL_GBJO_d4NXeheChkdpGFa3ro1e2lQTLEzi5kwM4eQInB3ApzH-Ff779E7sfYpAgHCx4GbSFXoOxHnSUxtm_C74ALL6Log |
| CitedBy_id | crossref_primary_10_1016_j_rse_2023_113969 crossref_primary_10_1016_j_compbiomed_2023_106655 crossref_primary_10_1109_TSMC_2025_3577606 crossref_primary_10_1016_j_compbiomed_2024_109255 crossref_primary_10_1016_j_eswa_2023_120620 crossref_primary_10_1016_j_patcog_2025_111708 crossref_primary_10_1002_itl2_395 crossref_primary_10_3390_electronics14081660 |
| Cites_doi | 10.1109/TPAMI.2019.2913863 10.1016/j.patcog.2021.108142 10.1016/S0362-546X(96)00149-6 10.1007/s11263-009-0273-6 10.1109/ICCV.2007.4409044 10.1063/1.3227736 10.1103/PhysRevE.55.6162 10.1109/JBHI.2014.2350996 10.1137/16M1074485 10.1016/0024-3795(92)90251-5 10.1109/JBHI.2018.2882748 10.3390/e20090717 10.1109/TPAMI.2020.2986319 10.1016/j.patrec.2021.02.004 10.1016/j.knosys.2017.05.026 10.1016/j.patcog.2019.05.040 10.1109/TPAMI.2011.52 10.1145/3068335 10.1007/BF01908075 10.1109/BHI.2019.8834507 10.1002/widm.30 10.1002/cpa.3160300502 10.1016/j.ymssp.2013.06.018 10.1109/TIT.2019.2923217 |
| ContentType | Journal Article |
| Copyright | 2021 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2021 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC VOOES |
| DOI | 10.1016/j.patcog.2021.108423 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-5142 |
| ExternalDocumentID | oai:HAL:hal-03457460v1 10_1016_j_patcog_2021_108423 S0031320321005999 |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 1XC VOOES |
| ID | FETCH-LOGICAL-c386t-d006cb7858463a269848e03413bce8edcd72b4e2adfa03d0eb2efc2436f2915e3 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000782989900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Sat Nov 29 15:04:43 EST 2025 Sat Nov 29 07:29:08 EST 2025 Tue Nov 18 22:03:35 EST 2025 Fri Feb 23 02:39:32 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | UMAP HDBSCAN Stiefel manifold Time series Embedding Clustering Delayed coordinate embedding Stiefel Manifold |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c386t-d006cb7858463a269848e03413bce8edcd72b4e2adfa03d0eb2efc2436f2915e3 |
| ORCID | 0000-0001-8009-8156 0000-0003-1920-2609 |
| OpenAccessLink | https://hal.science/hal-03457460 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03457460v1 crossref_citationtrail_10_1016_j_patcog_2021_108423 crossref_primary_10_1016_j_patcog_2021_108423 elsevier_sciencedirect_doi_10_1016_j_patcog_2021_108423 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Yang, Liang, Wang, Rosin, Yang (bib0012) 2020; 42 Sigal, Balan, Black (bib0009) 2010; 87 Rosenberg, Hirschberg (bib0037) 2007 Karim, Majumdar, Darabi (bib0042) 2021; 43 Javed, Suk Lee, Rizzo (bib0016) 2020; 1 Gautama, Mandic, Van Hulle (bib0041) 2003; vol. 6 O’Reilly, Moessner, Nati (bib0019) 2017; 133 Schubert, Sander, Ester, Kriegel, Xu (bib0034) 2017; 42 Kavitha, Punithavalli (bib0006) 2010; 8 Li, Jung (bib0005) 2021; 145 Gudmundsson (bib0032) 2014 Bouleux (bib0002) 2013; 41 Sun, Yang, Liu, Chen, Rao, Bai (bib0018) 2019; 95 Karcher (bib0029) 1977; 30 Kaufman, Rousseeuw (bib0033) 1990; vol. 344 C. Pealat, G. Bouleux, V. Cheutet, Extracting Most Impacting Emergency Department Patient Flow By Embedding Laboratory-confirmed and Clinical Diagnosis on The Stiefel Manifold, Proceedings of 2019 IEEE EMBS International Conference on Biomedical Health Informatics (BHI) (2019). ISSN: 2641-3590. Kriegel, Kröger, Sander, Zimek (bib0035) 2011; 1 Nguyen, Brun, Lezoray, Bougleux (bib0010) 2019 Rodrigues, Congedo, Jutten (bib0011) 2018 Campello, Moulavi, Sander (bib0025) 2013; 7819 Bouleux, Dugast, Marcon (bib0020) 2019; 65 M. Cuturi, M. Blondel, Soft-DTW: a differentiable loss function for time-series, Proceedings of the 34th International Conference on Machine Learning (2017). Xu, Chen, Li, Luo, Yang (bib0015) 2021; 120 Fakhrazari, Vakilzadian (bib0017) 2017 Miao, Ben-Israel (bib0030) 1992; 171 Bouleux, Marcon, Mory (bib0003) 2015; 19 R. Li, T. P. Tian, S. Sclaroff, Simultaneous Learning of Nonlinear Manifold and Dynamical Models for High-dimensional Time Series, in: 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 2007. Mittal, Goyal, Hemanth, Sethi (bib0036) 2019 Hubert, Arabie (bib0038) 1985 Rhodes, Morari (bib0040) 1997; 55 Turaga, Veeraraghavan, Srivastava, Chellappa (bib0014) 2011; 33 Xu, Wunsch (bib0001) 2008 Dugast, Bouleux, Mory, Marcon (bib0004) 2019; 23 Oates, Firoiu, Cohen (bib0007) 1999 R. Zimmermann, A matrix-algebraic algorithm for the Riemannian logarithm on the Stiefel manifold under the canonical metric, 2016 Z. Wang, T. Oates, Imaging time-series to improve classification and imputation, 24th International Joint Conference on Artificial Intelligence (2015). L. Mc, J. Healy, J. Melville, UMAP: uniform manifold approximation and projection for dimension reduction, 2018 Dugast, Bouleux, Marcon (bib0021) 2018; 20 C. Pealat, G. Bouleux, V. Cheutet, Improved Time-Series Clustering with UMAP dimension reduction method, Proceedings of 22nd International Conference on Pattern Recognition (2020). Stark, Broomhead, Davies, Huke (bib0022) 1997; 30 Gao, Jin (bib0023) 2009; 19 B. St Thomas, L. Lin, L.H. Lim, S. Mukherjee, Learning subspaces of different dimension, 2014 Xu (10.1016/j.patcog.2021.108423_bib0001) 2008 Karcher (10.1016/j.patcog.2021.108423_bib0029) 1977; 30 Dugast (10.1016/j.patcog.2021.108423_bib0004) 2019; 23 Kavitha (10.1016/j.patcog.2021.108423_bib0006) 2010; 8 Sun (10.1016/j.patcog.2021.108423_bib0018) 2019; 95 Bouleux (10.1016/j.patcog.2021.108423_bib0020) 2019; 65 Mittal (10.1016/j.patcog.2021.108423_bib0036) 2019 10.1016/j.patcog.2021.108423_bib0039 10.1016/j.patcog.2021.108423_bib0013 Hubert (10.1016/j.patcog.2021.108423_bib0038) 1985 Gao (10.1016/j.patcog.2021.108423_bib0023) 2009; 19 Fakhrazari (10.1016/j.patcog.2021.108423_bib0017) 2017 10.1016/j.patcog.2021.108423_bib0031 Oates (10.1016/j.patcog.2021.108423_bib0007) 1999 Gautama (10.1016/j.patcog.2021.108423_bib0041) 2003; vol. 6 Yang (10.1016/j.patcog.2021.108423_bib0012) 2020; 42 Campello (10.1016/j.patcog.2021.108423_bib0025) 2013; 7819 Javed (10.1016/j.patcog.2021.108423_bib0016) 2020; 1 Schubert (10.1016/j.patcog.2021.108423_bib0034) 2017; 42 Stark (10.1016/j.patcog.2021.108423_bib0022) 1997; 30 Gudmundsson (10.1016/j.patcog.2021.108423_sbref0032) 2014 O’Reilly (10.1016/j.patcog.2021.108423_bib0019) 2017; 133 Sigal (10.1016/j.patcog.2021.108423_bib0009) 2010; 87 Rodrigues (10.1016/j.patcog.2021.108423_bib0011) 2018 Miao (10.1016/j.patcog.2021.108423_bib0030) 1992; 171 10.1016/j.patcog.2021.108423_bib0008 Bouleux (10.1016/j.patcog.2021.108423_bib0003) 2015; 19 10.1016/j.patcog.2021.108423_bib0027 10.1016/j.patcog.2021.108423_bib0028 Turaga (10.1016/j.patcog.2021.108423_bib0014) 2011; 33 Li (10.1016/j.patcog.2021.108423_bib0005) 2021; 145 10.1016/j.patcog.2021.108423_bib0026 Xu (10.1016/j.patcog.2021.108423_bib0015) 2021; 120 10.1016/j.patcog.2021.108423_bib0024 Rhodes (10.1016/j.patcog.2021.108423_bib0040) 1997; 55 Dugast (10.1016/j.patcog.2021.108423_bib0021) 2018; 20 Kaufman (10.1016/j.patcog.2021.108423_bib0033) 1990; vol. 344 Rosenberg (10.1016/j.patcog.2021.108423_bib0037) 2007 Karim (10.1016/j.patcog.2021.108423_bib0042) 2021; 43 Bouleux (10.1016/j.patcog.2021.108423_bib0002) 2013; 41 Kriegel (10.1016/j.patcog.2021.108423_bib0035) 2011; 1 Nguyen (10.1016/j.patcog.2021.108423_bib0010) 2019 |
| References_xml | – start-page: 476 year: 2017 end-page: 481 ident: bib0017 article-title: A survey on time series data mining publication-title: 2017 IEEE International Conference on Electro Information Technology (EIT) – volume: 23 start-page: 2174 year: 2019 end-page: 2181 ident: bib0004 article-title: Improving health care management through persistent homology of time-varying variability of emergency department patient flow publication-title: IEEE J. Biomed. Heal. Inform. – volume: 43 start-page: 3309 year: 2021 end-page: 3320 ident: bib0042 article-title: Adversarial attacks on time series publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 1 start-page: 231 year: 2011 end-page: 240 ident: bib0035 article-title: Density-based clustering publication-title: WIREs Data Min. Knowl. Discov. – volume: 19 start-page: 1929 year: 2015 end-page: 1936 ident: bib0003 article-title: Early index for detection of pediatric emergency department crowding publication-title: IEEE J. Biomed. Health Inform. – volume: 7819 start-page: 160 year: 2013 end-page: 172 ident: bib0025 article-title: Density-based clustering based on hierarchical density estimates publication-title: Adv. Data Min. – volume: 33 start-page: 2273 year: 2011 end-page: 2286 ident: bib0014 article-title: Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 133 start-page: 1 year: 2017 end-page: 16 ident: bib0019 article-title: Univariate and multivariate time series manifold learning publication-title: Knowl. Based Syst. – volume: 95 start-page: 24 year: 2019 end-page: 35 ident: bib0018 article-title: Univariate time series classification using information geometry publication-title: Pattern Recognit. – reference: R. Zimmermann, A matrix-algebraic algorithm for the Riemannian logarithm on the Stiefel manifold under the canonical metric, 2016, – reference: L. Mc, J. Healy, J. Melville, UMAP: uniform manifold approximation and projection for dimension reduction, 2018, – year: 2008 ident: bib0001 article-title: Clustering – reference: R. Li, T. P. Tian, S. Sclaroff, Simultaneous Learning of Nonlinear Manifold and Dynamical Models for High-dimensional Time Series, in: 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 2007. – volume: 19 start-page: 033137 year: 2009 ident: bib0023 article-title: Complex network from time series based on phase space reconstruction publication-title: Chaos – year: 1985 ident: bib0038 article-title: Comparing partitions publication-title: J. Classif. – volume: 1 start-page: 100001 year: 2020 ident: bib0016 article-title: A benchmark study on time series clustering publication-title: Mach. Learn. Appl. – reference: B. St Thomas, L. Lin, L.H. Lim, S. Mukherjee, Learning subspaces of different dimension, 2014, – volume: vol. 344 start-page: 68 year: 1990 end-page: 125 ident: bib0033 article-title: Finding Groups in Data: An Introduction to Cluster Analysis – volume: 65 start-page: 6484 year: 2019 end-page: 6495 ident: bib0020 article-title: Information topological characterization of periodically correlated processes by dilation operators publication-title: IEEE Trans. Inf. Theory – volume: 171 start-page: 81 year: 1992 end-page: 98 ident: bib0030 article-title: On principal angles between subspaces in Rn publication-title: Linear Algebra Appl. – volume: 8 year: 2010 ident: bib0006 article-title: Clustering time series data stream - a literature survey publication-title: Int. J. Comput. Sci.Inf. Secur. – start-page: 130 year: 2014 ident: bib0032 article-title: An introduction to Riemannian geometry publication-title: Lecture Notes – reference: C. Pealat, G. Bouleux, V. Cheutet, Improved Time-Series Clustering with UMAP dimension reduction method, Proceedings of 22nd International Conference on Pattern Recognition (2020). – start-page: 17 year: 1999 end-page: 21 ident: bib0007 article-title: Clustering time series with hidden Markov models and dynamic time warping publication-title: Proceedings of the IJCAI-99 Workshop on Neural, Symbolic and Reinforcement Learning Methods for Sequence Learning – volume: 87 start-page: 4 year: 2010 end-page: 27 ident: bib0009 article-title: HumanEva: synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion publication-title: Int. J. Comput. Vis. – volume: 30 start-page: 509 year: 1977 end-page: 541 ident: bib0029 article-title: Riemannian center of mass and mollifier smoothing publication-title: Comm. Pure Appl. Math. – volume: 42 start-page: 1 year: 2017 end-page: 21 ident: bib0034 article-title: DBSCAN Revisited, revisited: why and how you should (still) use DBSCAN publication-title: ACM Trans. Database Syst. – year: 2019 ident: bib0036 article-title: Clustering approaches for high-dimensional databases: a review publication-title: Wiley Interdiscip. Rev. – start-page: 410 year: 2007 end-page: 420 ident: bib0037 article-title: V-measure: a conditional entropy-based external cluster evaluation measure publication-title: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL) – start-page: 12036 year: 2019 end-page: 12045 ident: bib0010 article-title: A neural network based on SPD manifold learning for skeleton-based hand gesture recognition publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 20 start-page: 717 year: 2018 ident: bib0021 article-title: Representation and characterization of nonstationary processes by dilation operators and induced shape space manifolds publication-title: Entropy – reference: Z. Wang, T. Oates, Imaging time-series to improve classification and imputation, 24th International Joint Conference on Artificial Intelligence (2015). – volume: 145 start-page: 194 year: 2021 end-page: 199 ident: bib0005 article-title: Dynamic relationship identification for abnormality detection on financial time series publication-title: Pattern Recognit. Lett. – volume: vol. 6 start-page: 6 year: 2003 end-page: 29 ident: bib0041 article-title: A differential entropy based method for determining the optimal embedding parameters of a signal publication-title: 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, Proceedings. (ICASSP ’03) – volume: 120 start-page: 108142 year: 2021 ident: bib0015 article-title: Learnable low-rank latent dictionary for subspace clustering publication-title: Pattern Recognit. – volume: 55 start-page: 6162 year: 1997 end-page: 6170 ident: bib0040 article-title: False-nearest-neighbors algorithm and noise-corrupted time series publication-title: Phys. Rev. E – start-page: 573 year: 2018 end-page: 577 ident: bib0011 article-title: Multivariate time-series analysis via manifold learning publication-title: 2018 IEEE Statistical Signal Processing Workshop (SSP) – volume: 30 start-page: 5303 year: 1997 end-page: 5314 ident: bib0022 article-title: Takens embedding theorems for forced and stochastic systems publication-title: Nonlinear Anal. – reference: C. Pealat, G. Bouleux, V. Cheutet, Extracting Most Impacting Emergency Department Patient Flow By Embedding Laboratory-confirmed and Clinical Diagnosis on The Stiefel Manifold, Proceedings of 2019 IEEE EMBS International Conference on Biomedical Health Informatics (BHI) (2019). ISSN: 2641-3590. – volume: 41 start-page: 301 year: 2013 end-page: 312 ident: bib0002 article-title: Oblique projection pre-processing and TLS application for diagnosing rotor bar defects by improving power spectrum estimation publication-title: Mech. Syst. Signal Process. – reference: M. Cuturi, M. Blondel, Soft-DTW: a differentiable loss function for time-series, Proceedings of the 34th International Conference on Machine Learning (2017). – volume: 42 start-page: 1537 year: 2020 end-page: 1544 ident: bib0012 article-title: Subspace clustering via good neighbors publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 42 start-page: 1537 issue: 6 year: 2020 ident: 10.1016/j.patcog.2021.108423_bib0012 article-title: Subspace clustering via good neighbors publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2913863 – volume: 8 issue: 1 year: 2010 ident: 10.1016/j.patcog.2021.108423_bib0006 article-title: Clustering time series data stream - a literature survey publication-title: Int. J. Comput. Sci.Inf. Secur. – volume: 120 start-page: 108142 year: 2021 ident: 10.1016/j.patcog.2021.108423_bib0015 article-title: Learnable low-rank latent dictionary for subspace clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.108142 – volume: 30 start-page: 5303 issue: 8 year: 1997 ident: 10.1016/j.patcog.2021.108423_bib0022 article-title: Takens embedding theorems for forced and stochastic systems publication-title: Nonlinear Anal. doi: 10.1016/S0362-546X(96)00149-6 – volume: vol. 344 start-page: 68 year: 1990 ident: 10.1016/j.patcog.2021.108423_bib0033 – volume: vol. 6 start-page: 6 year: 2003 ident: 10.1016/j.patcog.2021.108423_bib0041 article-title: A differential entropy based method for determining the optimal embedding parameters of a signal – volume: 87 start-page: 4 year: 2010 ident: 10.1016/j.patcog.2021.108423_bib0009 article-title: HumanEva: synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-009-0273-6 – ident: 10.1016/j.patcog.2021.108423_bib0013 doi: 10.1109/ICCV.2007.4409044 – volume: 19 start-page: 033137 issue: 3 year: 2009 ident: 10.1016/j.patcog.2021.108423_bib0023 article-title: Complex network from time series based on phase space reconstruction publication-title: Chaos doi: 10.1063/1.3227736 – start-page: 130 year: 2014 ident: 10.1016/j.patcog.2021.108423_sbref0032 article-title: An introduction to Riemannian geometry publication-title: Lecture Notes – ident: 10.1016/j.patcog.2021.108423_bib0039 – volume: 1 start-page: 100001 year: 2020 ident: 10.1016/j.patcog.2021.108423_bib0016 article-title: A benchmark study on time series clustering publication-title: Mach. Learn. Appl. – year: 2019 ident: 10.1016/j.patcog.2021.108423_bib0036 article-title: Clustering approaches for high-dimensional databases: a review publication-title: Wiley Interdiscip. Rev. – volume: 55 start-page: 6162 issue: 5 year: 1997 ident: 10.1016/j.patcog.2021.108423_bib0040 article-title: False-nearest-neighbors algorithm and noise-corrupted time series publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.55.6162 – volume: 19 start-page: 1929 issue: 6 year: 2015 ident: 10.1016/j.patcog.2021.108423_bib0003 article-title: Early index for detection of pediatric emergency department crowding publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2014.2350996 – start-page: 17 year: 1999 ident: 10.1016/j.patcog.2021.108423_bib0007 article-title: Clustering time series with hidden Markov models and dynamic time warping – year: 2008 ident: 10.1016/j.patcog.2021.108423_bib0001 – start-page: 476 year: 2017 ident: 10.1016/j.patcog.2021.108423_bib0017 article-title: A survey on time series data mining – ident: 10.1016/j.patcog.2021.108423_bib0031 doi: 10.1137/16M1074485 – start-page: 12036 year: 2019 ident: 10.1016/j.patcog.2021.108423_bib0010 article-title: A neural network based on SPD manifold learning for skeleton-based hand gesture recognition – ident: 10.1016/j.patcog.2021.108423_bib0027 – start-page: 410 year: 2007 ident: 10.1016/j.patcog.2021.108423_bib0037 article-title: V-measure: a conditional entropy-based external cluster evaluation measure – volume: 171 start-page: 81 issue: 92 year: 1992 ident: 10.1016/j.patcog.2021.108423_bib0030 article-title: On principal angles between subspaces in Rn publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(92)90251-5 – volume: 23 start-page: 2174 issue: 5 year: 2019 ident: 10.1016/j.patcog.2021.108423_bib0004 article-title: Improving health care management through persistent homology of time-varying variability of emergency department patient flow publication-title: IEEE J. Biomed. Heal. Inform. doi: 10.1109/JBHI.2018.2882748 – volume: 20 start-page: 717 issue: 9 year: 2018 ident: 10.1016/j.patcog.2021.108423_bib0021 article-title: Representation and characterization of nonstationary processes by dilation operators and induced shape space manifolds publication-title: Entropy doi: 10.3390/e20090717 – volume: 43 start-page: 3309 issue: 10 year: 2021 ident: 10.1016/j.patcog.2021.108423_bib0042 article-title: Adversarial attacks on time series publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.2986319 – volume: 145 start-page: 194 year: 2021 ident: 10.1016/j.patcog.2021.108423_bib0005 article-title: Dynamic relationship identification for abnormality detection on financial time series publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2021.02.004 – volume: 133 start-page: 1 year: 2017 ident: 10.1016/j.patcog.2021.108423_bib0019 article-title: Univariate and multivariate time series manifold learning publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2017.05.026 – volume: 95 start-page: 24 year: 2019 ident: 10.1016/j.patcog.2021.108423_bib0018 article-title: Univariate time series classification using information geometry publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.05.040 – volume: 7819 start-page: 160 year: 2013 ident: 10.1016/j.patcog.2021.108423_bib0025 article-title: Density-based clustering based on hierarchical density estimates publication-title: Adv. Data Min. – start-page: 573 year: 2018 ident: 10.1016/j.patcog.2021.108423_bib0011 article-title: Multivariate time-series analysis via manifold learning – volume: 33 start-page: 2273 issue: 11 year: 2011 ident: 10.1016/j.patcog.2021.108423_bib0014 article-title: Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.52 – volume: 42 start-page: 1 issue: 3 year: 2017 ident: 10.1016/j.patcog.2021.108423_bib0034 article-title: DBSCAN Revisited, revisited: why and how you should (still) use DBSCAN publication-title: ACM Trans. Database Syst. doi: 10.1145/3068335 – year: 1985 ident: 10.1016/j.patcog.2021.108423_bib0038 article-title: Comparing partitions publication-title: J. Classif. doi: 10.1007/BF01908075 – ident: 10.1016/j.patcog.2021.108423_bib0024 – ident: 10.1016/j.patcog.2021.108423_bib0008 doi: 10.1109/BHI.2019.8834507 – volume: 1 start-page: 231 issue: 3 year: 2011 ident: 10.1016/j.patcog.2021.108423_bib0035 article-title: Density-based clustering publication-title: WIREs Data Min. Knowl. Discov. doi: 10.1002/widm.30 – ident: 10.1016/j.patcog.2021.108423_bib0028 – volume: 30 start-page: 509 issue: 5 year: 1977 ident: 10.1016/j.patcog.2021.108423_bib0029 article-title: Riemannian center of mass and mollifier smoothing publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.3160300502 – ident: 10.1016/j.patcog.2021.108423_bib0026 – volume: 41 start-page: 301 issue: 1 year: 2013 ident: 10.1016/j.patcog.2021.108423_bib0002 article-title: Oblique projection pre-processing and TLS application for diagnosing rotor bar defects by improving power spectrum estimation publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2013.06.018 – volume: 65 start-page: 6484 issue: 10 year: 2019 ident: 10.1016/j.patcog.2021.108423_bib0020 article-title: Information topological characterization of periodically correlated processes by dilation operators publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2019.2923217 |
| SSID | ssj0017142 |
| Score | 2.4473944 |
| Snippet | •We use the geometrical information of the time series via Takens embedding.•We analyze the geometrical information obtained by the embedding on the Stiefel,... Most existing methods for time series clustering rely on distances calculated from the entire raw data using the Euclidean distance or Dynamic Time Warping... |
| SourceID | hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 108423 |
| SubjectTerms | Clustering Computer Aided Engineering Computer Science Delayed coordinate embedding Embedding Engineering Sciences HDBSCAN Mechanical engineering Mechanics Stiefel manifold Time series UMAP |
| Title | Improved time series clustering based on new geometric frameworks |
| URI | https://dx.doi.org/10.1016/j.patcog.2021.108423 https://hal.science/hal-03457460 |
| Volume | 124 |
| WOSCitedRecordID | wos000782989900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdruoe9bN0X7boWMfYWPGTJkaXHULp1ZZTAupE340hyP0id0MSlf37vLMnuKKPbYC8mEZEV7k6n0339CPmouRWS6Qp22oglcOKpRGmrE2MkK8FiL2VWtWAT-cmJmk71JKCirlo4gbyu1e2tXv5XVsMYMBtLZ_-C3d1LYQA-A9PhCWyH5x8x3rsJwI5E2PghLulWQzNvsCMC-gXw3LIYIwCDenjmFleIqWWGVczSWt23Vydt-00seQl5Rn3UfuJj7OW89Jkjc__9fiYNgla7pj3evjQIb9RcdXJ0cO6atY-E_LyoTZwVHBBwd-3zVlqvWKyM6dOQWk0r0kRw5pWX88pV5SIBA-1X7etLqB9ocu9UuPy0hBNpcQYXeZ5iPmTGRX9ydfmE330LSoYFSdhwRm-QTZ6PtBqQzfHXw-lxF1jK08w3kA9_L1ZTtil_D9f6nbWycR797q0dcrpFnocLBB17xr8kT1z9iryI4Bw06OrXZBzlgKIcUC8HtJcD2soBXdQU5IB2ckB7OXhDfnw-PD04SgJeRmKEkuvEggY1s1yhTSlgo2mVKcfQTJkZp5w1NuezzPHSViUTlrkZd5XhmZAV1-nIibdkUC9qt02odYjAJYVEdIRS2jKFzWszU6XMGSbLHSIiXQoTmskjpsm8iFmDl4WnZoHULDw1d0jSzVr6ZiqP_D6PJC-CQegNvQKk5JGZH4BD3SLYQ_1o_K3AMSDIKM8ku0nf_fPrd8mzfie8J4P1deP2yFNzs75YXe8HmbsDu-6RNw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+time+series+clustering+based+on+new+geometric+frameworks&rft.jtitle=Pattern+recognition&rft.au=P%C3%A9alat%2C+Cl%C3%A9ment&rft.au=Bouleux%2C+Guillaume&rft.au=Cheutet%2C+Vincent&rft.date=2022-04-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=124&rft_id=info:doi/10.1016%2Fj.patcog.2021.108423&rft.externalDocID=S0031320321005999 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |