Generalized Tree-Based Wavelet Transform

In this paper we propose a new wavelet transform applicable to functions defined on high dimensional data, weighted graphs and networks. The proposed method generalizes the Haar-like transform recently introduced by Gavish , and can also construct data adaptive orthonormal wavelets beyond Haar. It i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 59; číslo 9; s. 4199 - 4209
Hlavní autoři: Ram, I., Elad, M., Cohen, I.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.09.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we propose a new wavelet transform applicable to functions defined on high dimensional data, weighted graphs and networks. The proposed method generalizes the Haar-like transform recently introduced by Gavish , and can also construct data adaptive orthonormal wavelets beyond Haar. It is defined via a hierarchical tree, which is assumed to capture the geometry and structure of the input data, and is applied to the data using a modified version of the common one-dimensional (1D) wavelet filtering and decimation scheme. The adaptivity of this wavelet scheme is obtained by permutations derived from the tree and applied to the approximation coefficients in each decomposition level, before they are filtered. We show that the proposed transform is more efficient than both the 1D and two-dimension 2D separable wavelet transforms in representing images. We also explore the application of the proposed transform to image denoising, and show that combined with a subimage averaging scheme, it achieves denoising results which are similar to those obtained with the K-SVD algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2011.2158428