Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI

•We review concepts related to the explainability of AI methods (XAI).•We comprehensive analyze the XAI literature organized in two taxonomies.•We identify future research directions of the XAI field.•We discuss potential implications of XAI and privacy in data fusion contexts.•We identify Responsib...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information fusion Ročník 58; s. 82 - 115
Hlavní autoři: Barredo Arrieta, Alejandro, Díaz-Rodríguez, Natalia, Del Ser, Javier, Bennetot, Adrien, Tabik, Siham, Barbado, Alberto, Garcia, Salvador, Gil-Lopez, Sergio, Molina, Daniel, Benjamins, Richard, Chatila, Raja, Herrera, Francisco
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.06.2020
Elsevier
Témata:
ISSN:1566-2535, 1872-6305
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •We review concepts related to the explainability of AI methods (XAI).•We comprehensive analyze the XAI literature organized in two taxonomies.•We identify future research directions of the XAI field.•We discuss potential implications of XAI and privacy in data fusion contexts.•We identify Responsible AI as a concept promoting XAI and other AI principles in practical settings. In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, if harnessed appropriately, may deliver the best of expectations over many application sectors across the field. For this to occur shortly in Machine Learning, the entire community stands in front of the barrier of explainability, an inherent problem of the latest techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI (namely, expert systems and rule based models). Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is widely acknowledged as a crucial feature for the practical deployment of AI models. The overview presented in this article examines the existing literature and contributions already done in the field of XAI, including a prospect toward what is yet to be reached. For this purpose we summarize previous efforts made to define explainability in Machine Learning, establishing a novel definition of explainable Machine Learning that covers such prior conceptual propositions with a major focus on the audience for which the explainability is sought. Departing from this definition, we propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at explaining Deep Learning methods for which a second dedicated taxonomy is built and examined in detail. This critical literature analysis serves as the motivating background for a series of challenges faced by XAI, such as the interesting crossroads of data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to the field of XAI with a thorough taxonomy that can serve as reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.
AbstractList •We review concepts related to the explainability of AI methods (XAI).•We comprehensive analyze the XAI literature organized in two taxonomies.•We identify future research directions of the XAI field.•We discuss potential implications of XAI and privacy in data fusion contexts.•We identify Responsible AI as a concept promoting XAI and other AI principles in practical settings. In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, if harnessed appropriately, may deliver the best of expectations over many application sectors across the field. For this to occur shortly in Machine Learning, the entire community stands in front of the barrier of explainability, an inherent problem of the latest techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI (namely, expert systems and rule based models). Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is widely acknowledged as a crucial feature for the practical deployment of AI models. The overview presented in this article examines the existing literature and contributions already done in the field of XAI, including a prospect toward what is yet to be reached. For this purpose we summarize previous efforts made to define explainability in Machine Learning, establishing a novel definition of explainable Machine Learning that covers such prior conceptual propositions with a major focus on the audience for which the explainability is sought. Departing from this definition, we propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at explaining Deep Learning methods for which a second dedicated taxonomy is built and examined in detail. This critical literature analysis serves as the motivating background for a series of challenges faced by XAI, such as the interesting crossroads of data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to the field of XAI with a thorough taxonomy that can serve as reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.
In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of expectations over many application sectors across the field. For this to occur, the entire community stands in front of the barrier of explainability, an inherent problem of AI techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI. Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is acknowledged as a crucial feature for the practical deployment of AI models. This overview examines the existing literature in the field of XAI, including a prospect toward what is yet to be reached. We summarize previous efforts to define explainability in Machine Learning, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought. We then propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at Deep Learning methods for which a second taxonomy is built. This literature analysis serves as the background for a series of challenges faced by XAI, such as the crossroads between data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to XAI with a reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.
Author Chatila, Raja
Gil-Lopez, Sergio
Barredo Arrieta, Alejandro
Benjamins, Richard
Molina, Daniel
Díaz-Rodríguez, Natalia
Barbado, Alberto
Del Ser, Javier
Garcia, Salvador
Herrera, Francisco
Bennetot, Adrien
Tabik, Siham
Author_xml – sequence: 1
  givenname: Alejandro
  surname: Barredo Arrieta
  fullname: Barredo Arrieta, Alejandro
  organization: TECNALIA, Derio 48160, Spain
– sequence: 2
  givenname: Natalia
  surname: Díaz-Rodríguez
  fullname: Díaz-Rodríguez, Natalia
  organization: ENSTA, Institute Polytechnique Paris and INRIA Flowers Team, Palaiseau, France
– sequence: 3
  givenname: Javier
  surname: Del Ser
  fullname: Del Ser, Javier
  email: javier.delser@tecnalia.com
  organization: TECNALIA, Derio 48160, Spain
– sequence: 4
  givenname: Adrien
  surname: Bennetot
  fullname: Bennetot, Adrien
  organization: ENSTA, Institute Polytechnique Paris and INRIA Flowers Team, Palaiseau, France
– sequence: 5
  givenname: Siham
  surname: Tabik
  fullname: Tabik, Siham
  organization: DaSCI Andalusian Institute of Data Science and Computational Intelligence, University of Granada, Granada 18071, Spain
– sequence: 6
  givenname: Alberto
  surname: Barbado
  fullname: Barbado, Alberto
  organization: Telefonica, Madrid 28050, Spain
– sequence: 7
  givenname: Salvador
  surname: Garcia
  fullname: Garcia, Salvador
  organization: DaSCI Andalusian Institute of Data Science and Computational Intelligence, University of Granada, Granada 18071, Spain
– sequence: 8
  givenname: Sergio
  surname: Gil-Lopez
  fullname: Gil-Lopez, Sergio
  organization: TECNALIA, Derio 48160, Spain
– sequence: 9
  givenname: Daniel
  surname: Molina
  fullname: Molina, Daniel
  organization: DaSCI Andalusian Institute of Data Science and Computational Intelligence, University of Granada, Granada 18071, Spain
– sequence: 10
  givenname: Richard
  surname: Benjamins
  fullname: Benjamins, Richard
  organization: Telefonica, Madrid 28050, Spain
– sequence: 11
  givenname: Raja
  surname: Chatila
  fullname: Chatila, Raja
  organization: Institut des Systèmes Intelligents et de Robotique, Sorbonne Universitè, France
– sequence: 12
  givenname: Francisco
  surname: Herrera
  fullname: Herrera, Francisco
  organization: DaSCI Andalusian Institute of Data Science and Computational Intelligence, University of Granada, Granada 18071, Spain
BackLink https://hal.science/hal-02381211$$DView record in HAL
BookMark eNqFkE1PGzEQhq0KpPLRf9DDHkFiF4_X62w4IEURlEiRuFCpN8uZ9cJExl7ZhtJ_j9NUPfRQTjPvaJ6x9RyzAx-8Zewr8AY4qMttQ34cX1IjOMwbEA0H8YkdQT8TtWp5d1D6TqladG33mR2ntOUcZryFI5Zu3iZnyJuNs9UiZhoJybhq5bN1jh6tR1ud_Viszq-qZShhyumiyuYt-PBMtvRhmkLML55yiZXxQ4VPxjnrH0vM4aeJQxVtmoJP9PuR1Sk7HI1L9sufesK-3948LO_q9f231XKxrrHtVa5RIsrZONhOKintpu06Y2CuemxR9gh8Ps5AKL4ZOSppFcdeyg2H3hgcRCfbE3a-v1v-o6dIzyb-0sGQvlus9W7GRduDAHiFsiv3uxhDStGOfwHgeidZb_Vest5J1iB0kVywq38wpGwyBZ-jIfcRfL2HbZHwSjbqhLQTPlC0mPUQ6P8H3gGA_p3G
CitedBy_id crossref_primary_10_1016_j_epsr_2022_108487
crossref_primary_10_1515_jqas_2025_0006
crossref_primary_10_3390_encyclopedia1040080
crossref_primary_10_1287_opre_2023_0300
crossref_primary_10_1016_j_inffus_2021_09_017
crossref_primary_10_1016_j_measen_2021_100232
crossref_primary_10_1109_COMST_2023_3280465
crossref_primary_10_1007_s00146_021_01361_3
crossref_primary_10_1016_j_inffus_2021_09_012
crossref_primary_10_1016_j_cmpb_2025_108922
crossref_primary_10_31083_JFSFQ39242
crossref_primary_10_1109_ACCESS_2022_3204051
crossref_primary_10_1016_j_asoc_2022_109976
crossref_primary_10_3390_app13127082
crossref_primary_10_3390_aerospace10090762
crossref_primary_10_1007_s11081_023_09825_9
crossref_primary_10_1145_3637487
crossref_primary_10_1109_ACCESS_2022_3162588
crossref_primary_10_1007_s10676_024_09762_w
crossref_primary_10_1109_MSP_2022_3155906
crossref_primary_10_1177_14727978251355795
crossref_primary_10_1016_j_compbiomed_2025_109905
crossref_primary_10_1016_j_inffus_2021_09_022
crossref_primary_10_1016_j_inffus_2025_103275
crossref_primary_10_1186_s12859_023_05444_4
crossref_primary_10_1093_qje_qjac025
crossref_primary_10_1108_JMLC_10_2024_0159
crossref_primary_10_1108_OIR_03_2024_0155
crossref_primary_10_1016_j_techsoc_2024_102599
crossref_primary_10_1109_MC_2021_3131990
crossref_primary_10_1016_j_ijmedinf_2024_105441
crossref_primary_10_3389_fpubh_2023_1328918
crossref_primary_10_1016_j_mex_2024_103009
crossref_primary_10_1088_2632_2153_ad6391
crossref_primary_10_1109_ACCESS_2024_3369912
crossref_primary_10_3390_bioengineering11070729
crossref_primary_10_1109_ACCESS_2025_3555926
crossref_primary_10_1155_2022_1255200
crossref_primary_10_1007_s10489_021_02451_x
crossref_primary_10_1109_TGRS_2024_3522998
crossref_primary_10_1016_j_fpsl_2024_101287
crossref_primary_10_3389_fnins_2022_1096737
crossref_primary_10_1007_s10703_024_00445_2
crossref_primary_10_1145_3731559
crossref_primary_10_1080_10095020_2025_2543496
crossref_primary_10_1093_bib_bbad453
crossref_primary_10_1007_s13218_022_00766_6
crossref_primary_10_1029_2024EF004588
crossref_primary_10_1057_s41599_024_03277_x
crossref_primary_10_1109_ACCESS_2025_3572492
crossref_primary_10_1007_s42521_022_00068_4
crossref_primary_10_1088_1741_2552_ad83c0
crossref_primary_10_1007_s13369_022_07459_0
crossref_primary_10_1016_j_enbuild_2022_111870
crossref_primary_10_1109_ACCESS_2022_3191907
crossref_primary_10_1007_s11042_024_19755_y
crossref_primary_10_1007_s00256_025_04951_0
crossref_primary_10_3390_f14081616
crossref_primary_10_1016_j_giq_2024_102003
crossref_primary_10_1111_isj_12482
crossref_primary_10_1016_j_compbiomed_2020_104027
crossref_primary_10_1007_s00521_022_07709_0
crossref_primary_10_1109_JSTARS_2023_3318675
crossref_primary_10_1007_s10489_024_05321_4
crossref_primary_10_1109_TII_2025_3528557
crossref_primary_10_1007_s11747_025_01098_1
crossref_primary_10_3390_diagnostics15162040
crossref_primary_10_1016_j_tra_2025_104635
crossref_primary_10_1371_journal_pone_0318874
crossref_primary_10_1007_s00146_025_02312_y
crossref_primary_10_1111_ijsa_12325
crossref_primary_10_3390_electronics14030571
crossref_primary_10_3390_rs13183650
crossref_primary_10_1016_j_eswa_2022_119390
crossref_primary_10_1016_j_aei_2025_103256
crossref_primary_10_1002_aisy_202200189
crossref_primary_10_1016_j_engstruct_2021_112836
crossref_primary_10_1016_j_compag_2025_110962
crossref_primary_10_1016_j_knosys_2022_109465
crossref_primary_10_1109_ACCESS_2024_3365586
crossref_primary_10_3390_network1020007
crossref_primary_10_1016_j_micpro_2022_104672
crossref_primary_10_1016_j_rse_2023_113664
crossref_primary_10_1177_10648046231166047
crossref_primary_10_1002_sstr_202400477
crossref_primary_10_1007_s42421_023_00083_w
crossref_primary_10_1016_j_apor_2024_104273
crossref_primary_10_1016_j_jbi_2021_103876
crossref_primary_10_1109_ACCESS_2025_3538566
crossref_primary_10_1016_j_dwt_2025_101384
crossref_primary_10_1177_08901171251348208
crossref_primary_10_1029_2024EF004576
crossref_primary_10_3390_fintech4030033
crossref_primary_10_1109_TITS_2024_3424667
crossref_primary_10_1007_s00371_024_03579_w
crossref_primary_10_3390_w17050676
crossref_primary_10_1007_s10506_023_09362_x
crossref_primary_10_1016_j_advengsoft_2022_103339
crossref_primary_10_64289_iej_25_01A05_7298001
crossref_primary_10_1007_s43681_025_00733_5
crossref_primary_10_1016_j_future_2022_02_021
crossref_primary_10_1109_ACCESS_2025_3585764
crossref_primary_10_1016_j_eswa_2021_115968
crossref_primary_10_1080_00273171_2025_2456598
crossref_primary_10_1029_2024EF004540
crossref_primary_10_1007_s43681_024_00482_x
crossref_primary_10_1177_07356331221129765
crossref_primary_10_1016_j_artint_2021_103571
crossref_primary_10_3390_app122110947
crossref_primary_10_1007_s10044_024_01299_4
crossref_primary_10_1007_s12243_022_00926_7
crossref_primary_10_1016_j_inffus_2024_102922
crossref_primary_10_1007_s12559_023_10179_8
crossref_primary_10_1016_j_jobe_2023_107814
crossref_primary_10_1016_j_eprac_2024_08_001
crossref_primary_10_1016_j_ijdrr_2023_104123
crossref_primary_10_1016_j_procir_2024_08_366
crossref_primary_10_1007_s43681_023_00325_1
crossref_primary_10_1145_3479609
crossref_primary_10_1016_j_rineng_2024_102831
crossref_primary_10_1016_j_bspc_2022_104144
crossref_primary_10_1089_cyber_2021_0347
crossref_primary_10_1016_j_jbusres_2023_114494
crossref_primary_10_1109_ACCESS_2023_3294569
crossref_primary_10_1080_08839514_2025_2515063
crossref_primary_10_1002_sd_2706
crossref_primary_10_1080_08839514_2025_2515062
crossref_primary_10_25300_MISQ_2021_16564
crossref_primary_10_1038_s41598_024_80535_7
crossref_primary_10_1016_j_compchemeng_2024_108849
crossref_primary_10_1155_2022_4653923
crossref_primary_10_38124_ijsrmt_v3i4_433
crossref_primary_10_1016_j_bas_2024_102858
crossref_primary_10_1016_j_artmed_2024_102873
crossref_primary_10_3390_en17081797
crossref_primary_10_3390_electronics12214430
crossref_primary_10_32604_cmes_2024_056289
crossref_primary_10_1016_j_procs_2024_02_119
crossref_primary_10_1016_j_techfore_2022_121763
crossref_primary_10_1007_s12559_021_09901_1
crossref_primary_10_21015_vtse_v13i2_2082
crossref_primary_10_1109_MC_2023_3243645
crossref_primary_10_1016_j_ijepes_2025_110647
crossref_primary_10_1016_j_compchemeng_2024_108857
crossref_primary_10_1080_10447318_2022_2095705
crossref_primary_10_1186_s40537_023_00770_z
crossref_primary_10_3390_app15031412
crossref_primary_10_1080_19942060_2025_2511886
crossref_primary_10_1080_10447318_2024_2383034
crossref_primary_10_1007_s11947_025_03971_x
crossref_primary_10_1007_s40747_021_00613_5
crossref_primary_10_1016_j_est_2024_110783
crossref_primary_10_1016_j_eswa_2021_116411
crossref_primary_10_2196_66200
crossref_primary_10_3390_app14020898
crossref_primary_10_1007_s13218_020_00702_6
crossref_primary_10_1016_j_biotechadv_2024_108495
crossref_primary_10_1007_s13042_024_02421_y
crossref_primary_10_1016_j_inffus_2020_10_014
crossref_primary_10_3390_bdcc8110160
crossref_primary_10_3233_SJI_190555
crossref_primary_10_1109_TAFFC_2024_3505269
crossref_primary_10_1109_TDSC_2023_3268360
crossref_primary_10_1016_j_artmed_2024_102859
crossref_primary_10_1016_j_neunet_2025_107528
crossref_primary_10_1186_s43045_025_00547_5
crossref_primary_10_3389_fdata_2024_1406365
crossref_primary_10_1016_j_enbuild_2024_115115
crossref_primary_10_1016_j_ijmedinf_2021_104585
crossref_primary_10_1007_s11023_023_09651_z
crossref_primary_10_1016_j_scs_2023_105004
crossref_primary_10_1371_journal_pdig_0000016
crossref_primary_10_1038_s41467_024_45879_8
crossref_primary_10_1371_journal_pone_0322052
crossref_primary_10_1007_s10994_021_06051_1
crossref_primary_10_1016_j_compbiomed_2025_110036
crossref_primary_10_1109_TASLP_2022_3156789
crossref_primary_10_1109_TIM_2025_3566801
crossref_primary_10_1016_j_compind_2023_103892
crossref_primary_10_1007_s00704_024_04951_5
crossref_primary_10_1111_itor_13594
crossref_primary_10_1016_j_artmed_2024_102841
crossref_primary_10_1016_j_ijhcs_2024_103411
crossref_primary_10_1016_j_inffus_2025_103217
crossref_primary_10_2196_64482
crossref_primary_10_1109_TEVC_2022_3225509
crossref_primary_10_1021_acs_jctc_5c00054
crossref_primary_10_1038_s41467_024_51970_x
crossref_primary_10_3390_info13100459
crossref_primary_10_1016_j_ress_2023_109172
crossref_primary_10_1371_journal_pone_0289795
crossref_primary_10_1007_s40593_025_00487_5
crossref_primary_10_1287_orsc_2021_1544
crossref_primary_10_3390_drones6110347
crossref_primary_10_1287_orsc_2021_1549
crossref_primary_10_1177_10949968231200221
crossref_primary_10_1371_journal_pone_0281821
crossref_primary_10_3390_pr13082624
crossref_primary_10_1109_JIOT_2023_3327738
crossref_primary_10_1016_j_cej_2025_163978
crossref_primary_10_3390_make6020038
crossref_primary_10_1016_j_genrep_2025_102314
crossref_primary_10_1016_j_compchemeng_2023_108139
crossref_primary_10_1016_j_compbiomed_2025_110027
crossref_primary_10_1371_journal_pdig_0000038
crossref_primary_10_1007_s10462_023_10525_0
crossref_primary_10_3390_info14050256
crossref_primary_10_1109_TEVC_2023_3257230
crossref_primary_10_3389_frai_2022_884749
crossref_primary_10_1007_s12599_023_00810_1
crossref_primary_10_1093_logcom_exab082
crossref_primary_10_32604_cmc_2024_048914
crossref_primary_10_1145_3586163
crossref_primary_10_1088_1361_6579_ad548e
crossref_primary_10_1038_s41598_021_90555_2
crossref_primary_10_1109_JIOT_2022_3194837
crossref_primary_10_1016_j_cosust_2023_101411
crossref_primary_10_1016_j_talanta_2023_124946
crossref_primary_10_1016_j_cogsys_2024_101243
crossref_primary_10_1016_j_cmpb_2022_107161
crossref_primary_10_3389_fdata_2024_1410424
crossref_primary_10_1126_scirobotics_abq3658
crossref_primary_10_1029_2022SW003376
crossref_primary_10_1109_TTS_2024_3403681
crossref_primary_10_1080_10429247_2024_2407254
crossref_primary_10_1109_TSIPN_2022_3223805
crossref_primary_10_1016_j_icte_2024_05_007
crossref_primary_10_3390_math13081305
crossref_primary_10_1111_tbed_14369
crossref_primary_10_1080_23311916_2023_2272361
crossref_primary_10_1145_3645090
crossref_primary_10_3390_sym14071338
crossref_primary_10_1007_s10676_022_09670_x
crossref_primary_10_1080_14479338_2025_2504428
crossref_primary_10_3389_frai_2022_825565
crossref_primary_10_1177_0162243920975488
crossref_primary_10_1002_ppap_202100096
crossref_primary_10_1007_s10462_025_11165_2
crossref_primary_10_1016_j_procs_2025_04_444
crossref_primary_10_1016_j_knosys_2025_113092
crossref_primary_10_3389_fcomp_2023_1117848
crossref_primary_10_1016_j_ijinfomgt_2024_102779
crossref_primary_10_1007_s11948_021_00319_4
crossref_primary_10_30658_hmc_8_7
crossref_primary_10_1007_s11023_023_09628_y
crossref_primary_10_1016_S2589_7500_24_00222_X
crossref_primary_10_1111_cgf_14733
crossref_primary_10_1093_jigpal_jzae057
crossref_primary_10_1016_j_ymben_2020_10_005
crossref_primary_10_1109_MSP_2022_3153277
crossref_primary_10_31466_kfbd_1473382
crossref_primary_10_1111_ejed_12542
crossref_primary_10_1109_JIOT_2024_3363654
crossref_primary_10_1002_sd_3270
crossref_primary_10_3390_technologies13030093
crossref_primary_10_3390_jmse9111178
crossref_primary_10_1016_j_watres_2024_122457
crossref_primary_10_3390_electronics14132609
crossref_primary_10_1145_3721283
crossref_primary_10_1016_j_inffus_2023_102180
crossref_primary_10_3390_info14120642
crossref_primary_10_1016_j_neucom_2022_01_027
crossref_primary_10_1016_j_solener_2025_113937
crossref_primary_10_1111_ejed_12531
crossref_primary_10_2196_73374
crossref_primary_10_3390_ijgi11080422
crossref_primary_10_30935_cedtech_14615
crossref_primary_10_1109_ACCESS_2022_3188394
crossref_primary_10_1109_TKDE_2022_3142260
crossref_primary_10_1016_j_geosus_2024_100257
crossref_primary_10_1038_s41598_025_09538_2
crossref_primary_10_3390_fi16010031
crossref_primary_10_1080_07370024_2024_2341217
crossref_primary_10_1109_TCYB_2025_3539990
crossref_primary_10_1016_j_compbiomed_2023_107628
crossref_primary_10_1007_s10796_022_10313_1
crossref_primary_10_3390_neurolint16060098
crossref_primary_10_1088_1742_6596_2650_1_012025
crossref_primary_10_1016_j_esg_2025_100276
crossref_primary_10_1016_j_compbiolchem_2023_107867
crossref_primary_10_1007_s11814_024_00276_1
crossref_primary_10_1016_j_geotexmem_2023_04_004
crossref_primary_10_3389_fpls_2022_1089454
crossref_primary_10_1162_neco_a_01542
crossref_primary_10_1177_02683962241289597
crossref_primary_10_1080_13527266_2025_2508181
crossref_primary_10_3390_make5010006
crossref_primary_10_1016_j_engappai_2023_105823
crossref_primary_10_1109_ACCESS_2025_3581417
crossref_primary_10_3390_eng5030068
crossref_primary_10_1177_20552076221147423
crossref_primary_10_1016_j_heliyon_2024_e39205
crossref_primary_10_1093_mnras_stac3009
crossref_primary_10_1007_s42380_022_00120_2
crossref_primary_10_3390_ijerph192316359
crossref_primary_10_1007_s12599_025_00963_1
crossref_primary_10_1016_j_jastp_2025_106427
crossref_primary_10_1016_j_knosys_2020_106590
crossref_primary_10_3390_app15020672
crossref_primary_10_1016_j_knosys_2024_112756
crossref_primary_10_3390_e25081160
crossref_primary_10_1080_02564602_2025_2512086
crossref_primary_10_1002_adma_202208683
crossref_primary_10_3390_rs17050771
crossref_primary_10_1007_s43681_021_00127_3
crossref_primary_10_1016_j_cpet_2021_07_001
crossref_primary_10_1016_j_ijhcs_2024_103380
crossref_primary_10_1016_j_adhoc_2023_103329
crossref_primary_10_1016_j_inffus_2022_06_003
crossref_primary_10_1145_3519313
crossref_primary_10_1016_j_landusepol_2023_106761
crossref_primary_10_1007_s10639_023_11990_4
crossref_primary_10_1038_s42256_020_00273_z
crossref_primary_10_3390_ijgi13100345
crossref_primary_10_1155_2022_8980664
crossref_primary_10_1016_j_neunet_2024_106335
crossref_primary_10_1086_731729
crossref_primary_10_1093_bib_bbac094
crossref_primary_10_1080_24725854_2022_2046893
crossref_primary_10_3390_s21238020
crossref_primary_10_3390_a15080291
crossref_primary_10_1007_s13218_022_00771_9
crossref_primary_10_1186_s12911_025_02994_w
crossref_primary_10_1016_j_ijdrr_2025_105233
crossref_primary_10_1016_j_sigpro_2025_109888
crossref_primary_10_1007_s10618_023_00930_y
crossref_primary_10_1016_j_heliyon_2024_e32637
crossref_primary_10_1007_s43681_025_00674_z
crossref_primary_10_54481_sju_2024_2_13
crossref_primary_10_1016_j_neunet_2024_106345
crossref_primary_10_1016_j_knosys_2024_111441
crossref_primary_10_1145_3645103
crossref_primary_10_29333_ejmste_16602
crossref_primary_10_1007_s10838_022_09625_2
crossref_primary_10_3390_s21134322
crossref_primary_10_1039_D4JA00407H
crossref_primary_10_1109_JSEN_2023_3289670
crossref_primary_10_1016_j_jfoodeng_2022_111014
crossref_primary_10_1186_s40561_023_00260_y
crossref_primary_10_3389_fmed_2025_1636214
crossref_primary_10_1016_j_ejor_2025_08_058
crossref_primary_10_1016_j_rineng_2024_103381
crossref_primary_10_1016_j_neucom_2024_127798
crossref_primary_10_1515_icom_2020_0024
crossref_primary_10_1007_s10676_021_09616_9
crossref_primary_10_1038_s41598_024_82384_w
crossref_primary_10_1016_j_knosys_2021_107737
crossref_primary_10_1029_2022MS003162
crossref_primary_10_1007_s10010_025_00875_2
crossref_primary_10_1016_j_ins_2025_122648
crossref_primary_10_1016_j_biosystems_2023_104927
crossref_primary_10_1177_10711813251370745
crossref_primary_10_1109_ACCESS_2024_3395444
crossref_primary_10_1016_j_omega_2023_102925
crossref_primary_10_1007_s44163_024_00114_7
crossref_primary_10_1109_MC_2021_3092610
crossref_primary_10_3390_info13080395
crossref_primary_10_1109_ACCESS_2023_3331219
crossref_primary_10_1016_j_psep_2024_05_014
crossref_primary_10_3390_bdcc8110149
crossref_primary_10_1016_j_knosys_2023_110273
crossref_primary_10_1007_s11423_020_09882_2
crossref_primary_10_3390_make4040057
crossref_primary_10_1016_j_knosys_2024_111469
crossref_primary_10_1016_j_artint_2021_103550
crossref_primary_10_1007_s10140_024_02306_1
crossref_primary_10_1016_j_knosys_2022_108970
crossref_primary_10_3389_fpsyt_2022_990370
crossref_primary_10_1109_MCI_2024_3401348
crossref_primary_10_3390_a15100367
crossref_primary_10_1016_j_apenergy_2024_123634
crossref_primary_10_1016_j_apergo_2021_103552
crossref_primary_10_1145_3470454
crossref_primary_10_1109_TAFFC_2022_3205170
crossref_primary_10_1007_s10462_024_11093_7
crossref_primary_10_1016_j_fuel_2022_127194
crossref_primary_10_1016_j_neucom_2025_130211
crossref_primary_10_1007_s42979_024_02810_8
crossref_primary_10_1109_ACCESS_2024_3443527
crossref_primary_10_1016_j_bspc_2024_106504
crossref_primary_10_1007_s13534_023_00319_2
crossref_primary_10_33131_24222208_402
crossref_primary_10_1007_s10462_022_10256_8
crossref_primary_10_1016_j_simpat_2023_102811
crossref_primary_10_1016_j_asoc_2025_113678
crossref_primary_10_1016_j_enbenv_2025_03_005
crossref_primary_10_1016_j_ecolind_2024_111739
crossref_primary_10_3390_diagnostics15172219
crossref_primary_10_1016_j_compbiomed_2025_110855
crossref_primary_10_3390_healthcare10071269
crossref_primary_10_2208_jscejj_24_13523
crossref_primary_10_1080_0960085X_2025_2506875
crossref_primary_10_3390_j5010010
crossref_primary_10_1016_j_compbiomed_2024_108842
crossref_primary_10_1016_j_compbiomed_2025_109857
crossref_primary_10_1016_j_compbiomed_2024_108844
crossref_primary_10_1109_TGRS_2025_3542628
crossref_primary_10_1109_ACCESS_2022_3197299
crossref_primary_10_1016_j_eswa_2022_118888
crossref_primary_10_1109_TAI_2022_3194503
crossref_primary_10_1177_21695067231193646
crossref_primary_10_3390_bioengineering12090951
crossref_primary_10_3390_s21041121
crossref_primary_10_1007_s13042_024_02242_z
crossref_primary_10_1016_j_ymssp_2024_111430
crossref_primary_10_3390_bioengineering12090954
crossref_primary_10_1016_j_opresp_2025_100402
crossref_primary_10_3390_make4040047
crossref_primary_10_1145_3506857
crossref_primary_10_1016_j_compind_2024_104128
crossref_primary_10_1007_s43681_023_00267_8
crossref_primary_10_1007_s11192_020_03859_x
crossref_primary_10_1109_TAFFC_2023_3276425
crossref_primary_10_1007_s11548_025_03497_9
crossref_primary_10_1038_s41598_022_16493_9
crossref_primary_10_3390_genes14020248
crossref_primary_10_1016_j_agwat_2025_109402
crossref_primary_10_1007_s10044_021_01055_y
crossref_primary_10_1007_s10994_022_06167_y
crossref_primary_10_1016_j_buildenv_2025_113144
crossref_primary_10_1038_s42256_024_00857_z
crossref_primary_10_1016_j_jhydrol_2025_133237
crossref_primary_10_1016_j_neucom_2022_09_129
crossref_primary_10_1177_01655515221112844
crossref_primary_10_3389_fnins_2021_674055
crossref_primary_10_3390_make3040045
crossref_primary_10_3390_app13095809
crossref_primary_10_1109_TETC_2022_3143154
crossref_primary_10_1016_j_techsoc_2024_102666
crossref_primary_10_3390_s21010002
crossref_primary_10_1016_j_inffus_2023_102149
crossref_primary_10_1016_j_techsoc_2024_102662
crossref_primary_10_3390_mining1030018
crossref_primary_10_3389_fnins_2021_611300
crossref_primary_10_1016_j_fsigen_2021_102632
crossref_primary_10_1016_j_jhydrol_2023_129401
crossref_primary_10_1016_j_aei_2025_103303
crossref_primary_10_1016_j_apacoust_2025_110952
crossref_primary_10_1016_j_ijmedinf_2024_105526
crossref_primary_10_1145_3593240
crossref_primary_10_1016_j_agrformet_2025_110692
crossref_primary_10_1002_met_70048
crossref_primary_10_1016_j_techfore_2022_122120
crossref_primary_10_3758_s13428_021_01720_4
crossref_primary_10_1016_j_future_2023_12_003
crossref_primary_10_1108_DPRG_03_2020_0032
crossref_primary_10_3390_pr13051583
crossref_primary_10_1145_3555803
crossref_primary_10_1007_s00521_024_10197_z
crossref_primary_10_1109_JAS_2023_123123
crossref_primary_10_1016_j_inffus_2023_102135
crossref_primary_10_1080_01431161_2024_2349267
crossref_primary_10_1016_j_jwpe_2025_108457
crossref_primary_10_5465_amj_2020_1516
crossref_primary_10_1016_j_eswa_2024_123154
crossref_primary_10_1007_s10796_021_10234_5
crossref_primary_10_1016_j_artint_2021_103503
crossref_primary_10_1109_JSTARS_2022_3155967
crossref_primary_10_1016_j_diamond_2024_111687
crossref_primary_10_18261_nft_58_2_3_5
crossref_primary_10_1002_ibra_12174
crossref_primary_10_1016_j_atmosenv_2025_121360
crossref_primary_10_5604_01_3001_0015_5582
crossref_primary_10_1016_j_dss_2025_114467
crossref_primary_10_1109_ACCESS_2025_3535590
crossref_primary_10_3390_biom10060963
crossref_primary_10_3390_info16090797
crossref_primary_10_1080_1369118X_2021_1874035
crossref_primary_10_3390_a15100353
crossref_primary_10_1016_j_asoc_2022_109940
crossref_primary_10_1016_j_artint_2021_103507
crossref_primary_10_25046_aj090502
crossref_primary_10_1016_j_epsr_2022_108366
crossref_primary_10_3389_fpubh_2022_862407
crossref_primary_10_1063_5_0077050
crossref_primary_10_1016_j_ejrad_2024_111356
crossref_primary_10_1111_insr_12492
crossref_primary_10_3389_fnins_2022_883385
crossref_primary_10_1016_j_compchemeng_2025_109266
crossref_primary_10_38124_ijsrmt_v2i4_746
crossref_primary_10_1016_j_inffus_2023_101896
crossref_primary_10_1002_advs_202414173
crossref_primary_10_3847_1538_4357_ad014c
crossref_primary_10_1016_j_commatsci_2021_110360
crossref_primary_10_1186_s40561_023_00237_x
crossref_primary_10_1016_j_engappai_2023_106139
crossref_primary_10_1145_3744745
crossref_primary_10_3390_rs14092086
crossref_primary_10_1007_s10710_022_09435_x
crossref_primary_10_1007_s00146_023_01837_4
crossref_primary_10_1007_s11571_025_10343_w
crossref_primary_10_1016_j_procs_2022_01_260
crossref_primary_10_3390_e24010067
crossref_primary_10_1016_j_eswa_2022_119227
crossref_primary_10_1038_s41598_025_97159_0
crossref_primary_10_3390_s21165317
crossref_primary_10_1016_j_eswa_2024_124373
crossref_primary_10_1016_j_neucom_2022_04_005
crossref_primary_10_1109_JBHI_2020_3037127
crossref_primary_10_1145_3604433
crossref_primary_10_3390_pharmaceutics14040832
crossref_primary_10_1016_j_health_2023_100147
crossref_primary_10_1016_j_osnem_2022_100239
crossref_primary_10_1007_s13042_022_01628_1
crossref_primary_10_3390_rs15102659
crossref_primary_10_1016_j_cirp_2023_03_004
crossref_primary_10_1016_j_inffus_2023_101883
crossref_primary_10_1007_s11709_025_1191_6
crossref_primary_10_1126_science_abk3333
crossref_primary_10_1016_j_jacr_2022_06_008
crossref_primary_10_1016_j_displa_2022_102233
crossref_primary_10_1016_j_renene_2024_120935
crossref_primary_10_1080_10447318_2025_2470278
crossref_primary_10_1177_1071181322661537
crossref_primary_10_1177_1088467X251319188
crossref_primary_10_1016_j_inffus_2021_01_009
crossref_primary_10_1002_cpe_6834
crossref_primary_10_1016_j_ajp_2023_103855
crossref_primary_10_1016_j_inffus_2021_01_008
crossref_primary_10_1007_s00194_025_00742_y
crossref_primary_10_1016_j_future_2021_10_033
crossref_primary_10_1016_j_asoc_2022_108526
crossref_primary_10_1016_j_comnet_2020_107530
crossref_primary_10_1016_j_techfore_2022_122306
crossref_primary_10_1109_ACCESS_2024_3441088
crossref_primary_10_1016_j_ins_2022_10_084
crossref_primary_10_1021_acssensors_5c01232
crossref_primary_10_1177_00368504241266573
crossref_primary_10_1038_s41746_023_00955_z
crossref_primary_10_1109_TNSM_2025_3539830
crossref_primary_10_1016_j_ecolmodel_2025_111164
crossref_primary_10_1016_j_cirp_2024_04_102
crossref_primary_10_1111_1541_4337_70054
crossref_primary_10_3390_a17050210
crossref_primary_10_3390_electronics12051092
crossref_primary_10_1016_j_ecolind_2023_111137
crossref_primary_10_1145_3576903
crossref_primary_10_1007_s12553_021_00601_2
crossref_primary_10_1016_j_comcom_2021_07_009
crossref_primary_10_1109_ACCESS_2023_3272403
crossref_primary_10_1109_ACCESS_2024_3431691
crossref_primary_10_3389_fdata_2024_1467222
crossref_primary_10_21202_jdtl_2025_7
crossref_primary_10_3233_ICA_210668
crossref_primary_10_1016_j_artint_2021_103473
crossref_primary_10_1111_wej_12970
crossref_primary_10_1109_EMR_2023_3342200
crossref_primary_10_1016_j_jag_2023_103287
crossref_primary_10_1111_insr_12448
crossref_primary_10_1186_s10020_023_00603_y
crossref_primary_10_1016_j_watres_2025_124165
crossref_primary_10_1016_j_jmst_2025_06_012
crossref_primary_10_1016_j_mlwa_2025_100691
crossref_primary_10_1109_TPAMI_2022_3197845
crossref_primary_10_1016_j_medj_2024_07_016
crossref_primary_10_1016_j_mlwa_2025_100696
crossref_primary_10_1108_JMP_03_2024_0177
crossref_primary_10_1007_s11948_021_00325_6
crossref_primary_10_1016_j_envsoft_2024_106119
crossref_primary_10_1108_JSM_10_2023_0377
crossref_primary_10_1109_TEM_2024_3369231
crossref_primary_10_3390_info16030240
crossref_primary_10_1016_j_annemergmed_2024_01_031
crossref_primary_10_1016_j_jss_2022_111545
crossref_primary_10_1038_s41598_023_28804_9
crossref_primary_10_1007_s11301_023_00320_0
crossref_primary_10_1007_s12105_024_01643_4
crossref_primary_10_2188_jea_JE20210278
crossref_primary_10_1016_j_compbiomed_2024_109338
crossref_primary_10_1016_j_eiar_2025_108130
crossref_primary_10_1007_s10506_024_09395_w
crossref_primary_10_3390_s23042087
crossref_primary_10_1007_s10115_023_01879_6
crossref_primary_10_3390_app14198884
crossref_primary_10_1007_s13222_022_00414_1
crossref_primary_10_1186_s13635_025_00201_x
crossref_primary_10_1007_s12652_021_03138_4
crossref_primary_10_3390_app15116152
crossref_primary_10_1016_j_oreoa_2024_100064
crossref_primary_10_1016_j_ijdrr_2024_104785
crossref_primary_10_1126_scirobotics_adt7329
crossref_primary_10_1109_TNNLS_2023_3270027
crossref_primary_10_1002_mar_22211
crossref_primary_10_1007_s10676_025_09821_w
crossref_primary_10_1007_s42113_023_00180_7
crossref_primary_10_1016_j_inffus_2020_08_018
crossref_primary_10_1016_j_media_2023_102809
crossref_primary_10_1016_j_neucom_2021_10_124
crossref_primary_10_3389_fceng_2021_700717
crossref_primary_10_1371_journal_pone_0309175
crossref_primary_10_1016_j_asoc_2023_110706
crossref_primary_10_1016_j_isprsjprs_2024_11_002
crossref_primary_10_1016_j_enbuild_2023_112949
crossref_primary_10_1016_j_ecolind_2024_112376
crossref_primary_10_1016_j_knosys_2023_110413
crossref_primary_10_1021_acs_jcim_5c01003
crossref_primary_10_1016_j_neucom_2022_04_072
crossref_primary_10_3389_frai_2022_833238
crossref_primary_10_3233_SW_233469
crossref_primary_10_1016_j_techfore_2024_123389
crossref_primary_10_1109_TITS_2024_3375936
crossref_primary_10_3390_a13010017
crossref_primary_10_1007_s11623_025_2081_8
crossref_primary_10_1016_j_procir_2023_06_183
crossref_primary_10_1109_TASE_2024_3430394
crossref_primary_10_1029_2021WR030394
crossref_primary_10_1177_30504554251331568
crossref_primary_10_1016_j_bspc_2024_107034
crossref_primary_10_1016_j_inffus_2025_103311
crossref_primary_10_18270_rcfc_4288
crossref_primary_10_1109_ACCESS_2021_3116664
crossref_primary_10_1016_j_mlwa_2025_100655
crossref_primary_10_1080_01969722_2023_2296251
crossref_primary_10_1109_JIOT_2021_3122019
crossref_primary_10_1007_s10614_025_10962_9
crossref_primary_10_1007_s10515_022_00337_x
crossref_primary_10_3389_frai_2022_910630
crossref_primary_10_1007_s00500_025_10539_6
crossref_primary_10_1136_bmj_m3919
crossref_primary_10_1016_j_jelectrocard_2024_153792
crossref_primary_10_1016_j_atmosres_2023_106608
crossref_primary_10_1016_j_jclepro_2023_136605
crossref_primary_10_1007_s00415_023_11979_6
crossref_primary_10_1109_ACCESS_2021_3130956
crossref_primary_10_3390_mti7030027
crossref_primary_10_1016_j_inffus_2023_101805
crossref_primary_10_3390_app11125541
crossref_primary_10_1109_TPAMI_2023_3331846
crossref_primary_10_1007_s43681_024_00524_4
crossref_primary_10_1038_s41598_025_15268_2
crossref_primary_10_3390_bioengineering11100957
crossref_primary_10_1007_s12559_021_09837_6
crossref_primary_10_1109_TCI_2023_3321985
crossref_primary_10_1016_j_ins_2022_10_010
crossref_primary_10_1177_27523543241289108
crossref_primary_10_1145_3594728
crossref_primary_10_5050_KSNVE_2025_35_3_307
crossref_primary_10_1016_j_ins_2022_10_013
crossref_primary_10_1080_02640414_2025_2518694
crossref_primary_10_1145_3387166
crossref_primary_10_1016_j_ipm_2023_103584
crossref_primary_10_46991_BYSU_G_2025_16_1_004
crossref_primary_10_3390_app13095659
crossref_primary_10_1016_j_ijhcs_2020_102551
crossref_primary_10_1007_s12553_021_00609_8
crossref_primary_10_1016_j_iot_2025_101714
crossref_primary_10_1038_s41467_023_40550_0
crossref_primary_10_1371_journal_pone_0308718
crossref_primary_10_1016_j_ijhcs_2024_103301
crossref_primary_10_3390_diagnostics14242770
crossref_primary_10_1109_TAFE_2024_3492323
crossref_primary_10_1145_3731456
crossref_primary_10_1371_journal_pone_0313238
crossref_primary_10_1109_ACCESS_2024_3401007
crossref_primary_10_1016_j_asoc_2023_110757
crossref_primary_10_1016_j_asoc_2023_110758
crossref_primary_10_1080_00332747_2023_2291945
crossref_primary_10_1016_j_eswa_2025_128661
crossref_primary_10_1038_s41746_025_01784_y
crossref_primary_10_48175_IJARSCT_23294
crossref_primary_10_1016_j_compbiomed_2024_108076
crossref_primary_10_3390_mti6010004
crossref_primary_10_1016_j_inffus_2025_103352
crossref_primary_10_1016_j_ejor_2024_03_008
crossref_primary_10_1109_TLT_2023_3314610
crossref_primary_10_1007_s43503_025_00066_6
crossref_primary_10_1016_j_bspc_2023_104979
crossref_primary_10_1007_s10668_024_05263_4
crossref_primary_10_1016_j_irfa_2023_103005
crossref_primary_10_1007_s11098_025_02379_9
crossref_primary_10_1007_s00521_024_09640_y
crossref_primary_10_3233_SW_233407
crossref_primary_10_1080_10447318_2022_2066246
crossref_primary_10_1007_s10506_022_09309_8
crossref_primary_10_1371_journal_pone_0331917
crossref_primary_10_3389_frai_2023_1249322
crossref_primary_10_1109_ACCESS_2023_3325283
crossref_primary_10_3390_app11135781
crossref_primary_10_1088_2632_2153_abd614
crossref_primary_10_3389_fdgth_2025_1557467
crossref_primary_10_3390_electronics13193806
crossref_primary_10_3390_bioengineering10091070
crossref_primary_10_1109_TGRS_2023_3284475
crossref_primary_10_3390_asi8040097
crossref_primary_10_1016_j_jretconser_2025_104241
crossref_primary_10_1007_s10586_024_04655_5
crossref_primary_10_1177_10497315251329531
crossref_primary_10_1061_JCCEE5_CPENG_6018
crossref_primary_10_1145_3637348
crossref_primary_10_1016_j_neucom_2022_10_014
crossref_primary_10_1177_08920206251322644
crossref_primary_10_7717_peerj_cs_2899
crossref_primary_10_1007_s12239_025_00353_2
crossref_primary_10_1007_s12652_021_03658_z
crossref_primary_10_1016_j_inffus_2023_101821
crossref_primary_10_1109_TMI_2023_3247659
crossref_primary_10_1016_j_health_2023_100170
crossref_primary_10_3390_a18010020
crossref_primary_10_1007_s10916_025_02211_1
crossref_primary_10_1109_ACCESS_2022_3184693
crossref_primary_10_3390_rs16224270
crossref_primary_10_1016_j_ecolind_2025_113557
crossref_primary_10_2139_ssrn_5023415
crossref_primary_10_1007_s10278_021_00527_1
crossref_primary_10_1016_j_clinbiomech_2021_105452
crossref_primary_10_1145_3670854
crossref_primary_10_1108_JICES_05_2023_0063
crossref_primary_10_1021_acs_est_5c04330
crossref_primary_10_1177_20539517231219958
crossref_primary_10_1155_2024_5080332
crossref_primary_10_1007_s13194_024_00614_4
crossref_primary_10_1109_MCOM_003_2200461
crossref_primary_10_1111_jace_20173
crossref_primary_10_3390_a18060368
crossref_primary_10_3390_app11083321
crossref_primary_10_1007_s10664_025_10656_8
crossref_primary_10_1016_j_csbj_2022_05_031
crossref_primary_10_1186_s44147_025_00727_4
crossref_primary_10_1053_j_semnuclmed_2020_09_003
crossref_primary_10_1109_MS_2023_3244204
crossref_primary_10_1016_j_inffus_2021_05_009
crossref_primary_10_1080_01587919_2022_2150145
crossref_primary_10_1109_TGRS_2024_3424680
crossref_primary_10_1007_s00500_021_05810_5
crossref_primary_10_3389_fnsys_2021_766980
crossref_primary_10_1007_s10462_024_10854_8
crossref_primary_10_1016_j_scitotenv_2023_164858
crossref_primary_10_1016_j_neuroimage_2023_119929
crossref_primary_10_3390_su16010274
crossref_primary_10_1145_3665494
crossref_primary_10_1093_jcde_qwad038
crossref_primary_10_1007_s13132_024_01868_2
crossref_primary_10_1016_j_chaos_2020_110338
crossref_primary_10_1016_j_csl_2022_101466
crossref_primary_10_3389_frai_2020_507973
crossref_primary_10_1109_JSTARS_2025_3549524
crossref_primary_10_1007_s00146_022_01389_z
crossref_primary_10_1007_s10064_025_04180_8
crossref_primary_10_1109_ACCESS_2024_3444907
crossref_primary_10_1016_j_oceaneng_2024_116977
crossref_primary_10_1038_s42003_021_01697_y
crossref_primary_10_1145_3673907
crossref_primary_10_1057_s41599_025_04361_6
crossref_primary_10_1109_ACCESS_2021_3051315
crossref_primary_10_1016_j_cag_2024_104058
crossref_primary_10_1017_flo_2024_28
crossref_primary_10_1093_humrep_deab168
crossref_primary_10_1016_j_infsof_2024_107456
crossref_primary_10_1109_ACCESS_2025_3567257
crossref_primary_10_1007_s10901_021_09885_2
crossref_primary_10_1007_s10462_023_10561_w
crossref_primary_10_1111_bjet_13466
crossref_primary_10_3904_kjim_2024_098
crossref_primary_10_1007_s44163_022_00023_7
crossref_primary_10_1016_j_engappai_2024_109127
crossref_primary_10_1016_j_paerosci_2025_101085
crossref_primary_10_1007_s10845_023_02304_z
crossref_primary_10_1007_s11192_024_04996_3
crossref_primary_10_1007_s10458_023_09619_4
crossref_primary_10_1007_s00146_023_01633_0
crossref_primary_10_3390_app11104697
crossref_primary_10_1007_s00146_025_02504_6
crossref_primary_10_1162_artl_a_00414
crossref_primary_10_1007_s11416_025_00561_5
crossref_primary_10_1016_j_jsinno_2025_200537
crossref_primary_10_1088_1741_2552_ad6593
crossref_primary_10_1016_j_jece_2025_117826
crossref_primary_10_1186_s13321_023_00682_3
crossref_primary_10_1007_s00146_022_01452_9
crossref_primary_10_1016_j_imu_2024_101504
crossref_primary_10_1186_s13244_025_01922_w
crossref_primary_10_1016_j_techsoc_2022_102145
crossref_primary_10_1016_j_knosys_2024_111556
crossref_primary_10_3390_s22083031
crossref_primary_10_1016_j_eswa_2024_123890
crossref_primary_10_1109_ACCESS_2025_3602004
crossref_primary_10_1016_j_scitotenv_2022_153486
crossref_primary_10_1016_j_bspc_2021_102681
crossref_primary_10_1097_TP_0000000000005063
crossref_primary_10_5194_hess_26_4773_2022
crossref_primary_10_1016_j_imu_2024_101507
crossref_primary_10_1016_j_procs_2021_01_361
crossref_primary_10_1109_COMST_2022_3192978
crossref_primary_10_1177_0272989X221098409
crossref_primary_10_3389_fpls_2024_1319938
crossref_primary_10_1016_j_catena_2021_105967
crossref_primary_10_1109_ACCESS_2024_3394243
crossref_primary_10_1007_s12525_022_00606_3
crossref_primary_10_1016_j_jbi_2022_104216
crossref_primary_10_1088_1361_6560_ad19f1
crossref_primary_10_1109_ACCESS_2025_3526706
crossref_primary_10_1155_2022_5140148
crossref_primary_10_1177_14604582251342178
crossref_primary_10_1016_j_rineng_2025_104629
crossref_primary_10_1007_s12525_023_00649_0
crossref_primary_10_1007_s44163_022_00041_5
crossref_primary_10_1016_j_chb_2022_107539
crossref_primary_10_1002_cb_2428
crossref_primary_10_1080_00207543_2022_2138611
crossref_primary_10_1016_j_artmed_2024_102769
crossref_primary_10_1108_K_02_2024_0409
crossref_primary_10_3390_healthcare11152199
crossref_primary_10_1007_s13218_022_00772_8
crossref_primary_10_1093_jamiaopen_ooae074
crossref_primary_10_1016_j_arcontrol_2021_05_003
crossref_primary_10_3390_info11030167
crossref_primary_10_3390_rs13214439
crossref_primary_10_1016_j_ins_2024_120276
crossref_primary_10_1016_j_rineng_2024_103498
crossref_primary_10_1016_j_pacfin_2025_102845
crossref_primary_10_1007_s10676_022_09623_4
crossref_primary_10_1016_j_eswa_2024_124302
crossref_primary_10_1088_2632_2153_acf545
crossref_primary_10_1016_j_compind_2024_104233
crossref_primary_10_7717_peerj_17932
crossref_primary_10_1007_s13755_024_00303_9
crossref_primary_10_1109_ACCESS_2025_3571340
crossref_primary_10_1016_j_eswa_2023_120901
crossref_primary_10_1371_journal_pone_0282158
crossref_primary_10_3390_molecules26072065
crossref_primary_10_1016_j_energy_2025_134781
crossref_primary_10_1007_s44204_024_00238_8
crossref_primary_10_1080_10580530_2025_2506369
crossref_primary_10_1007_s10462_025_11325_4
crossref_primary_10_1038_s41591_023_02448_8
crossref_primary_10_1016_j_inffus_2023_102221
crossref_primary_10_1109_ACCESS_2023_3323573
crossref_primary_10_1016_j_compbiomed_2025_109740
crossref_primary_10_1007_s12559_021_09974_y
crossref_primary_10_1007_s10506_023_09356_9
crossref_primary_10_1016_j_cmpb_2024_108371
crossref_primary_10_7232_JKIIE_2024_50_4_222
crossref_primary_10_1016_j_electacta_2024_144449
crossref_primary_10_1109_TIP_2024_3359331
crossref_primary_10_1109_TMI_2021_3129068
crossref_primary_10_1016_j_compbiomed_2025_109749
crossref_primary_10_3390_jmse9111227
crossref_primary_10_3390_rs15184585
crossref_primary_10_1016_j_clbc_2025_03_006
crossref_primary_10_1016_j_dss_2025_114529
crossref_primary_10_1016_j_inffus_2023_102218
crossref_primary_10_1007_s41060_023_00458_w
crossref_primary_10_1016_j_cmpb_2022_106837
crossref_primary_10_1007_s00330_020_07561_7
crossref_primary_10_1007_s00521_022_07608_4
crossref_primary_10_1016_j_patrec_2021_05_018
crossref_primary_10_1007_s11257_024_09400_6
crossref_primary_10_3390_s25092845
crossref_primary_10_3233_IDA_240075
crossref_primary_10_7232_JKIIE_2022_48_2_151
crossref_primary_10_3390_electronics13010175
crossref_primary_10_1061__ASCE_NH_1527_6996_0000492
crossref_primary_10_1016_j_micpro_2024_105062
crossref_primary_10_1016_j_swevo_2021_100888
crossref_primary_10_1007_s11604_023_01474_3
crossref_primary_10_1371_journal_pone_0263898
crossref_primary_10_1016_j_inffus_2023_102208
crossref_primary_10_34133_icomputing_0126
crossref_primary_10_1109_TITS_2022_3188671
crossref_primary_10_1007_s43681_022_00195_z
crossref_primary_10_1038_s41598_024_84810_5
crossref_primary_10_1016_j_enbuild_2023_113326
crossref_primary_10_3390_app12105137
crossref_primary_10_3390_s21020327
crossref_primary_10_1109_MIM_2021_9513641
crossref_primary_10_1016_j_eswa_2025_129065
crossref_primary_10_1038_s41598_025_96634_y
crossref_primary_10_1016_j_ins_2023_119354
crossref_primary_10_1057_s41599_024_02759_2
crossref_primary_10_1007_s43681_025_00758_w
crossref_primary_10_1109_ACCESS_2025_3537459
crossref_primary_10_1109_TEVC_2022_3225591
crossref_primary_10_1145_3593374
crossref_primary_10_1145_3652154
crossref_primary_10_1109_JIOT_2023_3237893
crossref_primary_10_1016_j_energy_2025_134738
crossref_primary_10_1016_j_inffus_2022_11_028
crossref_primary_10_1109_THMS_2023_3334988
crossref_primary_10_1109_TETC_2022_3227113
crossref_primary_10_3390_cancers13030552
crossref_primary_10_1016_j_imu_2024_101587
crossref_primary_10_3390_app12031295
crossref_primary_10_1080_13501763_2025_2499113
crossref_primary_10_1007_s40808_025_02521_w
crossref_primary_10_1109_JBHI_2023_3236722
crossref_primary_10_1016_j_inffus_2022_11_013
crossref_primary_10_1007_s13748_025_00367_y
crossref_primary_10_3390_pr12020328
crossref_primary_10_1016_j_engappai_2024_109947
crossref_primary_10_1371_journal_pone_0275814
crossref_primary_10_1016_j_semcancer_2023_02_007
crossref_primary_10_1016_j_compbiomed_2025_109709
crossref_primary_10_3917_res_240_0179
crossref_primary_10_1016_j_jatrs_2025_100072
crossref_primary_10_1007_s10489_022_03622_0
crossref_primary_10_1016_j_neucom_2024_128111
crossref_primary_10_1016_j_swevo_2025_102136
crossref_primary_10_1088_1361_6560_ac678a
crossref_primary_10_1002_cfp2_70006
crossref_primary_10_1145_3685053
crossref_primary_10_1007_s00259_021_05339_7
crossref_primary_10_1016_j_mechatronics_2021_102735
crossref_primary_10_1007_s12559_024_10294_0
crossref_primary_10_1007_s00521_021_06282_2
crossref_primary_10_1109_ACCESS_2024_3391130
crossref_primary_10_1145_3609333
crossref_primary_10_1049_cit2_12253
crossref_primary_10_5465_amj_2022_0850
crossref_primary_10_1002_ett_4970
crossref_primary_10_1038_s41746_024_01043_6
crossref_primary_10_1007_s41095_023_0351_7
crossref_primary_10_1016_j_bspc_2023_105490
crossref_primary_10_1155_2020_8884539
crossref_primary_10_1145_3702004
crossref_primary_10_1007_s00521_022_07363_6
crossref_primary_10_7232_JKIIE_2023_49_3_223
crossref_primary_10_1016_j_eswa_2022_117464
crossref_primary_10_1002_advs_202307647
crossref_primary_10_3390_info16030182
crossref_primary_10_1109_ACCESS_2024_3430317
crossref_primary_10_1016_j_jmsy_2024_10_007
crossref_primary_10_3390_sym15091711
crossref_primary_10_1080_13658816_2024_2369535
crossref_primary_10_1002_asi_24889
crossref_primary_10_1016_j_artmed_2022_102471
crossref_primary_10_1007_s10994_024_06543_w
crossref_primary_10_3390_en17133242
crossref_primary_10_1016_j_ins_2023_119885
crossref_primary_10_2139_ssrn_5401475
crossref_primary_10_3390_s22228761
crossref_primary_10_1007_s11042_022_12234_2
crossref_primary_10_1016_j_knosys_2021_108053
crossref_primary_10_1016_j_compbiomed_2021_104578
crossref_primary_10_1016_j_cities_2025_105712
crossref_primary_10_1016_j_health_2023_100242
crossref_primary_10_3390_s22228760
crossref_primary_10_1016_j_istruc_2025_109967
crossref_primary_10_3390_app14167192
crossref_primary_10_1016_j_imu_2025_101667
crossref_primary_10_1016_j_pnucene_2025_105745
crossref_primary_10_1109_TAI_2022_3227225
crossref_primary_10_1016_j_tifs_2024_104612
crossref_primary_10_1109_TITS_2023_3236274
crossref_primary_10_1109_TFUZZ_2022_3177028
crossref_primary_10_1109_TCYB_2022_3165104
crossref_primary_10_3390_universe11060187
crossref_primary_10_1016_j_ins_2023_119898
crossref_primary_10_1016_j_engappai_2024_108939
crossref_primary_10_1016_j_artint_2022_103667
crossref_primary_10_1016_j_engappai_2023_106016
crossref_primary_10_1109_ACCESS_2024_3405071
crossref_primary_10_1007_s41666_023_00127_4
crossref_primary_10_1016_j_enconman_2024_119118
crossref_primary_10_1088_1361_6463_ad2339
crossref_primary_10_1016_j_inffus_2025_103032
crossref_primary_10_1371_journal_pone_0328411
crossref_primary_10_1016_j_compchemeng_2025_109382
crossref_primary_10_1007_s12273_024_1154_1
crossref_primary_10_1051_itmconf_20246901002
crossref_primary_10_1002_epi4_70137
crossref_primary_10_1080_12460125_2020_1870065
crossref_primary_10_1007_s11042_023_17666_y
crossref_primary_10_1007_s11042_023_17982_3
crossref_primary_10_1016_j_procs_2025_04_627
crossref_primary_10_1007_s12652_024_04856_1
crossref_primary_10_3390_s21186168
crossref_primary_10_1016_j_enbuild_2024_114426
crossref_primary_10_1002_alz_12948
crossref_primary_10_12688_openreseurope_20195_1
crossref_primary_10_3390_app112411659
crossref_primary_10_1109_TCDS_2021_3099945
crossref_primary_10_1007_s43681_025_00668_x
crossref_primary_10_1177_00108367241288073
crossref_primary_10_3390_app12094459
crossref_primary_10_1016_j_ecolind_2024_112886
crossref_primary_10_1016_j_csbj_2024_12_027
crossref_primary_10_3390_ijms232113149
crossref_primary_10_1007_s00439_021_02387_9
crossref_primary_10_1007_s12525_022_00612_5
crossref_primary_10_1007_s41109_021_00438_8
crossref_primary_10_1016_j_procs_2025_04_642
crossref_primary_10_1016_j_eswa_2024_125120
crossref_primary_10_1016_j_ergon_2024_103568
crossref_primary_10_1002_aisy_202500241
crossref_primary_10_1017_eds_2024_14
crossref_primary_10_1109_MNET_001_2100227
crossref_primary_10_3390_ph18091271
crossref_primary_10_1016_j_tplants_2022_08_021
crossref_primary_10_1016_j_joitmc_2024_100338
crossref_primary_10_4018_JDM_318455
crossref_primary_10_1007_s10489_023_04942_5
crossref_primary_10_3390_a18030120
crossref_primary_10_1007_s00146_024_02152_2
crossref_primary_10_3390_batteries10030099
crossref_primary_10_3389_fpsyg_2023_1217178
crossref_primary_10_1016_j_cbpa_2021_102111
crossref_primary_10_1109_ACCESS_2024_3430010
crossref_primary_10_3390_math12071024
crossref_primary_10_1016_j_artint_2023_103923
crossref_primary_10_1111_exsy_13503
crossref_primary_10_1016_j_eswa_2021_115736
crossref_primary_10_1016_j_joitmc_2025_100629
crossref_primary_10_1038_s41598_024_84120_w
crossref_primary_10_59324_ejaset_2025_3_3__06
crossref_primary_10_1109_TNNLS_2023_3282599
crossref_primary_10_1111_jbl_70032
crossref_primary_10_1142_S0217984924502105
crossref_primary_10_1109_TCSS_2022_3227458
crossref_primary_10_1016_j_cca_2024_119938
crossref_primary_10_3390_metabo13101079
crossref_primary_10_1016_j_apenergy_2020_116062
crossref_primary_10_1007_s10676_022_09624_3
crossref_primary_10_1080_10447318_2023_2301250
crossref_primary_10_1109_ACCESS_2024_3477553
crossref_primary_10_21202_2782_2923_2024_1_217_245
crossref_primary_10_1038_s41562_024_02020_5
crossref_primary_10_1109_MC_2024_3405708
crossref_primary_10_1016_j_bdr_2022_100359
crossref_primary_10_1016_j_engappai_2024_108921
crossref_primary_10_3390_app12199545
crossref_primary_10_1515_teme_2024_0004
crossref_primary_10_1016_j_compchemeng_2023_108310
crossref_primary_10_1093_clinchem_hvac190
crossref_primary_10_3390_ijms232213838
crossref_primary_10_1016_j_joitmc_2025_100640
crossref_primary_10_1080_19439962_2025_2540388
crossref_primary_10_1007_s10844_021_00672_7
crossref_primary_10_1093_jamia_ocaf110
crossref_primary_10_3390_electronics12071670
crossref_primary_10_1016_j_cirp_2024_04_014
crossref_primary_10_1016_j_compag_2024_109478
crossref_primary_10_1007_s10618_022_00867_8
crossref_primary_10_1093_jcde_qwaf075
crossref_primary_10_1016_j_artint_2023_103945
crossref_primary_10_11648_j_ajai_20250902_16
crossref_primary_10_3390_a15110431
crossref_primary_10_1007_s00500_021_05893_0
crossref_primary_10_1145_3729420
crossref_primary_10_1007_s12652_023_04694_7
crossref_primary_10_1177_10944281231202741
crossref_primary_10_3390_ai6080169
crossref_primary_10_1109_ACCESS_2021_3068597
crossref_primary_10_1007_s11042_023_14432_y
crossref_primary_10_1016_j_schres_2021_05_018
crossref_primary_10_1109_TAI_2023_3279808
crossref_primary_10_1109_TIM_2022_3175033
crossref_primary_10_1145_3708504
crossref_primary_10_1177_23312165241298606
crossref_primary_10_3389_frai_2022_827584
crossref_primary_10_5194_hess_25_5839_2021
crossref_primary_10_1177_15553434221113964
crossref_primary_10_1007_s10458_020_09478_3
crossref_primary_10_3390_pr12122771
crossref_primary_10_1016_j_ymssp_2025_112331
crossref_primary_10_1007_s00521_025_11227_0
crossref_primary_10_1108_IJHMA_03_2025_0067
crossref_primary_10_1007_s10791_025_09590_6
crossref_primary_10_2118_223622_PA
crossref_primary_10_1016_j_ecolind_2022_109523
crossref_primary_10_1016_j_neuroimage_2023_120073
crossref_primary_10_1109_ACCESS_2024_3384460
crossref_primary_10_1109_TDSC_2022_3194884
crossref_primary_10_3390_app12136799
crossref_primary_10_1108_JKM_01_2025_0119
crossref_primary_10_1007_s10489_024_05483_1
crossref_primary_10_1109_JSEN_2021_3065908
crossref_primary_10_1038_s41440_024_02024_8
crossref_primary_10_1371_journal_pone_0300906
crossref_primary_10_1007_s11227_023_05179_2
crossref_primary_10_3389_fnhum_2024_1406786
crossref_primary_10_1016_j_eswa_2021_115771
crossref_primary_10_3390_electronics13224339
crossref_primary_10_1016_j_jclepro_2022_133638
crossref_primary_10_3389_fbioe_2020_553904
crossref_primary_10_1002_cjce_25525
crossref_primary_10_1007_s00521_023_09192_7
crossref_primary_10_1007_s43681_024_00503_9
crossref_primary_10_32604_cmc_2024_058932
crossref_primary_10_3390_risks10010003
crossref_primary_10_1016_j_asoc_2020_106959
crossref_primary_10_1007_s00371_022_02715_8
crossref_primary_10_3390_electronics11132067
crossref_primary_10_1016_j_sftr_2025_101279
crossref_primary_10_1007_s42979_022_01360_1
crossref_primary_10_1016_j_inffus_2022_01_001
crossref_primary_10_1109_ACCESS_2021_3101257
crossref_primary_10_1038_s41598_024_82111_5
crossref_primary_10_1063_5_0129324
crossref_primary_10_34133_2020_4152816
crossref_primary_10_1109_TON_2025_3540640
crossref_primary_10_1016_j_artmed_2023_102700
crossref_primary_10_1016_j_csbj_2024_03_006
crossref_primary_10_1002_wcms_1716
crossref_primary_10_3390_app12136761
crossref_primary_10_3390_a18080470
crossref_primary_10_1016_j_watres_2024_122191
crossref_primary_10_1109_TEVC_2023_3238741
crossref_primary_10_3389_fmed_2021_699984
crossref_primary_10_1007_s00521_022_07853_7
crossref_primary_10_3390_app15147856
crossref_primary_10_1007_s10669_022_09855_1
crossref_primary_10_1145_3678181
crossref_primary_10_3390_app15126931
crossref_primary_10_1007_s12539_024_00630_1
crossref_primary_10_1364_JOCN_470812
crossref_primary_10_3390_app12178669
crossref_primary_10_1117_1_NPh_9_4_041411
crossref_primary_10_1007_s00146_024_02014_x
crossref_primary_10_3389_fmed_2024_1396459
crossref_primary_10_1007_s12525_023_00644_5
crossref_primary_10_1016_j_engappai_2025_110664
crossref_primary_10_1109_ACCESS_2023_3281407
crossref_primary_10_1109_TMAG_2023_3301963
crossref_primary_10_3390_rs16193602
crossref_primary_10_1016_j_artmed_2022_102421
crossref_primary_10_1016_j_compbiomed_2024_108193
crossref_primary_10_2196_47736
crossref_primary_10_1007_s44163_024_00134_3
crossref_primary_10_1016_j_ins_2023_119851
crossref_primary_10_1016_j_engappai_2022_105222
crossref_primary_10_1617_s11527_025_02664_3
crossref_primary_10_2196_30079
crossref_primary_10_1109_ACCESS_2022_3230151
crossref_primary_10_1145_3569889
crossref_primary_10_1186_s42162_025_00529_1
crossref_primary_10_1016_j_artmed_2022_102438
crossref_primary_10_1109_TEM_2023_3324149
crossref_primary_10_1002_alz_13479
crossref_primary_10_1007_s42979_022_01044_w
crossref_primary_10_3390_electronics13224375
crossref_primary_10_1145_3495013
crossref_primary_10_1109_ACCESS_2024_3398203
crossref_primary_10_1080_10447318_2022_2081762
crossref_primary_10_1111_exsy_70111
crossref_primary_10_1016_j_biotechadv_2021_107739
crossref_primary_10_1016_j_isprsjprs_2023_12_007
crossref_primary_10_1016_j_nuclphysb_2023_116182
crossref_primary_10_1016_j_nima_2025_170921
crossref_primary_10_3390_make6030097
crossref_primary_10_1109_ACCESS_2021_3127881
crossref_primary_10_2196_26811
crossref_primary_10_1520_SSMS20200084
crossref_primary_10_3390_jtaer18020044
crossref_primary_10_1016_j_egyai_2025_100480
crossref_primary_10_26634_jfet_19_4_20913
crossref_primary_10_3390_jpm14080812
crossref_primary_10_1016_j_ecolind_2025_113685
crossref_primary_10_3390_s20154232
crossref_primary_10_1016_j_cageo_2022_105281
crossref_primary_10_1016_j_trc_2022_103924
crossref_primary_10_1007_s10796_021_10174_0
crossref_primary_10_1007_s12559_025_10408_2
crossref_primary_10_1016_j_cegh_2025_101956
crossref_primary_10_1017_dsj_2020_22
crossref_primary_10_1109_ACCESS_2025_3544625
crossref_primary_10_3390_ph16060891
crossref_primary_10_3390_ijfs11030096
crossref_primary_10_1109_ACCESS_2021_3101284
crossref_primary_10_1038_s41524_021_00616_3
crossref_primary_10_1109_TEM_2024_3411656
crossref_primary_10_1109_ACCESS_2024_3387547
crossref_primary_10_48175_IJARSCT_25105
crossref_primary_10_3390_a16010049
crossref_primary_10_1016_j_compbiomed_2022_105350
crossref_primary_10_1007_s00146_024_02147_z
crossref_primary_10_1145_3626104
crossref_primary_10_1145_3700598
crossref_primary_10_1016_j_trd_2022_103252
crossref_primary_10_1088_1361_6501_add6c8
crossref_primary_10_1007_s10853_024_09379_w
crossref_primary_10_1109_TPAMI_2022_3176387
crossref_primary_10_1093_rfs_hhac027
crossref_primary_10_1007_s42979_025_04358_7
crossref_primary_10_1109_JIOT_2025_3586721
crossref_primary_10_1109_ACCESS_2021_3071269
crossref_primary_10_1109_TVT_2024_3498038
crossref_primary_10_1016_j_isprsjprs_2021_11_008
crossref_primary_10_1016_j_bir_2025_06_013
crossref_primary_10_1016_j_dajour_2025_100591
crossref_primary_10_1145_3561048
crossref_primary_10_1093_gigascience_giab030
crossref_primary_10_1007_s10676_024_09769_3
crossref_primary_10_1007_s11042_023_17978_z
crossref_primary_10_1109_ACCESS_2022_3216617
crossref_primary_10_1016_j_medj_2024_02_006
crossref_primary_10_1007_s10815_023_02973_y
crossref_primary_10_1080_1351847X_2020_1847725
crossref_primary_10_1002_batt_202200309
crossref_primary_10_1016_j_trb_2024_102947
crossref_primary_10_1016_j_ijar_2022_09_008
crossref_primary_10_3390_s25072288
crossref_primary_10_1080_00207721_2025_2455998
crossref_primary_10_1109_COMST_2024_3437248
crossref_primary_10_1145_3563691
crossref_primary_10_1016_j_neucom_2024_128840
crossref_primary_10_1002_pmic_202200031
crossref_primary_10_1016_j_eswa_2023_122588
crossref_primary_10_1016_j_tsc_2023_101356
crossref_primary_10_3390_ani14142023
crossref_primary_10_1002_widm_1391
crossref_primary_10_1007_s10458_025_09689_6
crossref_primary_10_1016_j_engappai_2024_108171
crossref_primary_10_1109_ACCESS_2022_3202889
crossref_primary_10_1016_j_heliyon_2024_e38596
crossref_primary_10_2196_36199
crossref_primary_10_1016_j_inffus_2024_102223
crossref_primary_10_1109_RBME_2020_2987975
crossref_primary_10_1007_s12650_024_00996_w
crossref_primary_10_1007_s13347_025_00911_7
crossref_primary_10_3390_computers14050160
crossref_primary_10_3103_S0147688221050129
crossref_primary_10_1016_j_inffus_2020_04_002
crossref_primary_10_1016_j_eswa_2025_127169
crossref_primary_10_1080_07366981_2025_2518821
crossref_primary_10_1109_TBME_2021_3116607
crossref_primary_10_1016_j_oceaneng_2023_115267
crossref_primary_10_1007_s11063_025_11732_2
crossref_primary_10_1016_j_knosys_2024_111668
crossref_primary_10_1007_s00773_024_01043_x
crossref_primary_10_1063_5_0260424
crossref_primary_10_1016_j_ejmech_2024_117164
crossref_primary_10_1080_13662716_2023_2281983
crossref_primary_10_3389_fbuil_2024_1387953
crossref_primary_10_1007_s00521_021_06359_y
crossref_primary_10_1109_TCBB_2023_3269767
crossref_primary_10_1007_s43681_022_00135_x
crossref_primary_10_1029_2022WR034215
crossref_primary_10_1109_LRA_2021_3135927
crossref_primary_10_3390_w15193369
crossref_primary_10_1016_j_aei_2023_102024
crossref_primary_10_3390_make3010009
crossref_primary_10_1016_j_neucom_2021_07_097
crossref_primary_10_1080_21642583_2024_2364033
crossref_primary_10_2139_ssrn_4106222
crossref_primary_10_1109_ACCESS_2024_3397871
crossref_primary_10_32604_cmc_2024_054654
crossref_primary_10_3389_fdata_2020_577974
crossref_primary_10_1111_bjet_13158
crossref_primary_10_1007_s12649_025_03206_2
crossref_primary_10_1109_TNNLS_2023_3246980
crossref_primary_10_2113_2025_lithosphere_2024_240
crossref_primary_10_1515_sagmb_2021_0087
crossref_primary_10_1016_j_eswa_2021_116100
crossref_primary_10_1109_TNS_2025_3546143
crossref_primary_10_1111_ppa_13927
crossref_primary_10_1021_acssensors_4c02272
crossref_primary_10_1016_j_eneco_2024_108112
crossref_primary_10_1016_j_egyai_2025_100528
crossref_primary_10_3390_cancers15020470
crossref_primary_10_1097_XCS_0000000000000242
crossref_primary_10_3389_frai_2022_1015604
crossref_primary_10_1136_jme_2023_109737
crossref_primary_10_1002_advs_202403547
crossref_primary_10_1109_TNNLS_2024_3373101
crossref_primary_10_1111_exsy_70060
crossref_primary_10_1111_jedm_12333
crossref_primary_10_1186_s12984_023_01169_w
crossref_primary_10_1109_TPAMI_2024_3388275
crossref_primary_10_1093_tse_tdac036
crossref_primary_10_1007_s10462_024_11077_7
crossref_primary_10_3390_rs17010081
crossref_primary_10_3390_s23083826
crossref_primary_10_3389_fenrg_2025_1531655
crossref_primary_10_3389_fenvs_2022_1057081
crossref_primary_10_1016_j_ejor_2023_04_013
crossref_primary_10_1111_risa_17679
crossref_primary_10_1016_j_psep_2022_01_010
crossref_primary_10_1016_j_geoderma_2025_117207
crossref_primary_10_1016_j_insi_2025_100049
crossref_primary_10_1016_j_eswa_2024_125997
crossref_primary_10_1109_MCI_2023_3327834
crossref_primary_10_1016_j_compag_2024_109414
crossref_primary_10_1002_alr_23613
crossref_primary_10_4018_IJIIT_370967
crossref_primary_10_1016_j_rser_2025_115668
crossref_primary_10_1016_j_patcog_2024_110825
crossref_primary_10_1016_j_ijmedinf_2024_105727
crossref_primary_10_3389_fpsyg_2021_686624
crossref_primary_10_1016_j_scs_2025_106243
crossref_primary_10_1016_j_psep_2024_02_056
crossref_primary_10_1080_10447318_2023_2210890
crossref_primary_10_1016_j_annonc_2023_10_125
crossref_primary_10_1016_j_compbiomed_2023_107450
crossref_primary_10_1016_j_rineng_2025_104380
crossref_primary_10_1109_TSE_2024_3422427
crossref_primary_10_1007_s13347_022_00586_4
crossref_primary_10_1016_j_eswa_2023_119808
crossref_primary_10_1016_j_eswa_2023_123066
crossref_primary_10_1016_j_rineng_2024_101834
crossref_primary_10_3390_joitmc7010071
crossref_primary_10_3390_smartcities7060132
crossref_primary_10_3390_smartcities7060131
crossref_primary_10_1007_s42979_025_04260_2
crossref_primary_10_1371_journal_pcbi_1010718
crossref_primary_10_1016_j_jii_2022_100354
crossref_primary_10_1016_j_jbiomech_2021_110878
crossref_primary_10_3389_fcomp_2023_1151150
crossref_primary_10_1016_j_ins_2022_08_110
crossref_primary_10_1155_2023_2979822
crossref_primary_10_1177_00187208251320589
crossref_primary_10_1016_j_jmsy_2021_07_021
crossref_primary_10_1080_00949655_2024_2449534
crossref_primary_10_1016_j_cities_2023_104677
crossref_primary_10_1177_0958305X241256293
crossref_primary_10_1109_ACCESS_2024_3367110
crossref_primary_10_1109_TLT_2024_3425959
crossref_primary_10_3233_JIFS_237539
crossref_primary_10_1007_s12144_024_06658_2
crossref_primary_10_1007_s00347_024_02146_x
crossref_primary_10_1016_j_datak_2023_102264
crossref_primary_10_1016_j_eswa_2024_123375
crossref_primary_10_37648_ijtbm_v14i01_012
crossref_primary_10_1177_14614448211022702
crossref_primary_10_1063_5_0156044
crossref_primary_10_1016_j_engappai_2024_108988
crossref_primary_10_1016_j_jhydrol_2025_133473
crossref_primary_10_1016_j_asoc_2024_112257
crossref_primary_10_1111_ppa_13988
crossref_primary_10_1007_s00432_024_05998_7
crossref_primary_10_1155_atr_3748345
crossref_primary_10_1109_ACCESS_2022_3207765
crossref_primary_10_1002_jsc_2403
crossref_primary_10_1002_pol_20240522
crossref_primary_10_1007_s10115_025_02541_z
crossref_primary_10_1007_s11245_025_10218_z
crossref_primary_10_1007_s10796_021_10191_z
crossref_primary_10_1016_j_psep_2025_107402
crossref_primary_10_1016_j_asoc_2025_113876
crossref_primary_10_1007_s10551_021_04843_y
crossref_primary_10_3103_S1060992X22040026
crossref_primary_10_1016_j_knosys_2021_107587
crossref_primary_10_1016_j_jss_2024_112180
crossref_primary_10_1109_TMI_2024_3362837
crossref_primary_10_1080_2573234X_2025_2514190
crossref_primary_10_1007_s00766_022_00393_5
crossref_primary_10_1109_TII_2025_3547004
crossref_primary_10_1007_s00146_022_01457_4
crossref_primary_10_1038_s42256_025_00998_9
crossref_primary_10_1057_s41310_023_00207_2
crossref_primary_10_1177_03019233251318492
crossref_primary_10_3389_fdata_2023_921355
crossref_primary_10_1016_j_jag_2023_103215
crossref_primary_10_3389_frai_2024_1363531
crossref_primary_10_3389_frobt_2021_665729
crossref_primary_10_1007_s10729_023_09647_2
crossref_primary_10_1007_s41870_025_02444_w
crossref_primary_10_1016_j_cmpb_2024_108033
crossref_primary_10_1109_ACCESS_2023_3250262
crossref_primary_10_1007_s13347_025_00955_9
crossref_primary_10_1109_ACCESS_2025_3578043
crossref_primary_10_3390_jmse12040624
crossref_primary_10_1109_TIFS_2021_3117075
crossref_primary_10_4467_22996834FLR_23_014_18598
crossref_primary_10_1007_s10994_023_06373_2
crossref_primary_10_1007_s44212_025_00077_9
crossref_primary_10_1016_j_neucom_2025_129405
crossref_primary_10_3389_frai_2023_1241290
crossref_primary_10_1007_s41207_024_00659_0
crossref_primary_10_1016_j_compchemeng_2022_107675
crossref_primary_10_1109_TSC_2023_3327822
crossref_primary_10_1016_j_ress_2022_108561
crossref_primary_10_3390_agriculture13050971
crossref_primary_10_1016_j_csbj_2025_06_008
crossref_primary_10_3390_app12083890
crossref_primary_10_1016_j_chbr_2025_100693
crossref_primary_10_2196_59649
crossref_primary_10_1007_s12065_021_00663_1
crossref_primary_10_1016_j_bspc_2023_104793
crossref_primary_10_1016_j_inffus_2020_07_007
crossref_primary_10_1109_TITS_2021_3119968
crossref_primary_10_1186_s40537_024_01010_8
crossref_primary_10_1016_j_inffus_2020_07_001
crossref_primary_10_1016_j_chbah_2025_100144
crossref_primary_10_3389_fbinf_2025_1645785
crossref_primary_10_1016_j_engappai_2023_107222
crossref_primary_10_3390_electronics13132621
crossref_primary_10_1109_TETC_2022_3171314
crossref_primary_10_1038_s41598_024_54482_2
crossref_primary_10_3390_rs14153563
crossref_primary_10_1016_j_ecolind_2024_111696
crossref_primary_10_1109_JBHI_2020_3005769
crossref_primary_10_1007_s41060_022_00363_8
crossref_primary_10_1111_exsy_13667
crossref_primary_10_1109_ACCESS_2022_3187507
crossref_primary_10_1007_s11760_025_04394_z
crossref_primary_10_3390_w14152423
crossref_primary_10_1109_MSP_2022_3142719
crossref_primary_10_1515_revneuro_2023_0050
crossref_primary_10_1016_j_neucom_2025_130602
crossref_primary_10_1016_j_techsoc_2024_102471
crossref_primary_10_1007_s42452_024_06324_z
crossref_primary_10_1016_j_enpol_2023_113542
crossref_primary_10_1016_j_ins_2023_119987
crossref_primary_10_1016_j_artmed_2022_102370
crossref_primary_10_1145_3763230
crossref_primary_10_1007_s12525_022_00600_9
crossref_primary_10_1016_j_engappai_2024_108842
crossref_primary_10_3846_ijspm_2021_15129
crossref_primary_10_1016_j_csbr_2024_100005
crossref_primary_10_1007_s10140_022_02099_1
crossref_primary_10_1016_j_inffus_2025_103184
crossref_primary_10_1016_j_cherd_2023_09_003
crossref_primary_10_1039_D5DD00219B
crossref_primary_10_1016_j_dcan_2024_08_013
crossref_primary_10_1007_s00146_024_02151_3
crossref_primary_10_1080_07370024_2024_2392494
crossref_primary_10_3390_brainsci14080831
crossref_primary_10_1109_TETCI_2021_3074919
crossref_primary_10_1002_wer_11140
crossref_primary_10_1007_s00259_021_05417_w
crossref_primary_10_1109_ACCESS_2024_3418499
crossref_primary_10_1155_2022_4271711
crossref_primary_10_3389_fendo_2022_959546
crossref_primary_10_3390_app112411790
crossref_primary_10_1109_TITS_2021_3131637
crossref_primary_10_1177_10711813241260350
crossref_primary_10_1016_j_artint_2023_103861
crossref_primary_10_1016_j_ymeth_2025_04_016
crossref_primary_10_1016_j_cmpb_2022_107079
crossref_primary_10_3390_biomedicines12061220
crossref_primary_10_3390_math11204355
crossref_primary_10_1016_j_trpro_2023_11_745
crossref_primary_10_1109_ACCESS_2021_3138614
crossref_primary_10_1007_s11023_024_09682_0
crossref_primary_10_2478_fman_2021_0008
crossref_primary_10_3390_jpm11090832
crossref_primary_10_1109_TAI_2024_3357041
crossref_primary_10_1016_j_compind_2025_104318
crossref_primary_10_1080_09585192_2024_2335515
crossref_primary_10_1016_j_eswa_2025_127979
crossref_primary_10_1016_j_ins_2021_05_055
crossref_primary_10_3389_fcvm_2022_855356
crossref_primary_10_1038_s41467_024_44740_2
crossref_primary_10_1080_14697688_2022_2118071
crossref_primary_10_3390_drones7020078
crossref_primary_10_1016_j_matt_2023_03_031
crossref_primary_10_1016_j_media_2022_102726
crossref_primary_10_1080_13683500_2024_2389308
crossref_primary_10_1103_PRXLife_3_013005
crossref_primary_10_2478_raft_2025_0046
crossref_primary_10_1007_s11280_022_01030_5
crossref_primary_10_3390_math13132215
crossref_primary_10_1007_s12144_024_07175_y
crossref_primary_10_1177_0192623321990375
crossref_primary_10_1177_1071181322661363
crossref_primary_10_3390_s24227407
crossref_primary_10_1016_j_compbiomed_2024_109569
crossref_primary_10_3389_fpsyg_2023_980523
crossref_primary_10_1016_j_compbiomed_2021_105111
crossref_primary_10_1109_JIOT_2025_3531884
crossref_primary_10_1016_j_engappai_2025_111009
crossref_primary_10_1080_10447318_2022_2050543
crossref_primary_10_1016_j_inffus_2021_11_008
crossref_primary_10_1145_3665647
crossref_primary_10_1016_j_ejmp_2021_02_024
crossref_primary_10_3390_electronics12041020
crossref_primary_10_1080_0960085X_2022_2026621
crossref_primary_10_1109_TFUZZ_2022_3179582
crossref_primary_10_1016_j_artmed_2023_102697
crossref_primary_10_3389_feduc_2023_1073829
crossref_primary_10_3389_fmed_2025_1651934
crossref_primary_10_7717_peerj_17793
crossref_primary_10_1109_TNSM_2021_3122940
crossref_primary_10_1016_j_inffus_2021_11_003
crossref_primary_10_1016_j_inffus_2021_11_004
crossref_primary_10_24979_ambiente_vi_1677
crossref_primary_10_1080_17517575_2022_2098537
crossref_primary_10_1007_s10111_024_00765_7
crossref_primary_10_1007_s10994_025_06855_5
crossref_primary_10_1016_j_inffus_2021_11_007
crossref_primary_10_3390_s24216776
crossref_primary_10_1007_s11036_022_02021_6
crossref_primary_10_1080_10447318_2022_2070107
crossref_primary_10_1016_j_compag_2024_109599
crossref_primary_10_1016_j_compmedimag_2025_102617
crossref_primary_10_1093_bib_bbae616
crossref_primary_10_1016_j_inffus_2021_11_019
crossref_primary_10_1108_MBE_09_2023_0133
crossref_primary_10_1038_s41598_024_81794_0
crossref_primary_10_1016_j_watres_2024_121861
crossref_primary_10_1007_s41666_023_00126_5
crossref_primary_10_1111_tgis_12939
crossref_primary_10_1007_s42454_021_00037_z
crossref_primary_10_1016_j_inffus_2021_11_015
crossref_primary_10_32604_cmes_2024_051363
crossref_primary_10_1016_j_inffus_2021_11_017
crossref_primary_10_1016_j_techsoc_2025_102912
crossref_primary_10_1109_COMST_2022_3200740
crossref_primary_10_1145_3677613
crossref_primary_10_1016_j_future_2023_03_005
crossref_primary_10_1029_2021WR030185
crossref_primary_10_1016_j_cgh_2024_12_010
crossref_primary_10_1109_ACCESS_2023_3285082
crossref_primary_10_1080_07357907_2025_2483302
crossref_primary_10_1109_COMST_2024_3443193
crossref_primary_10_1002_iis2_13096
crossref_primary_10_3390_a18020077
crossref_primary_10_3390_electronics11101661
crossref_primary_10_1007_s12525_025_00799_3
crossref_primary_10_1038_s41598_022_21417_8
crossref_primary_10_1088_1741_2552_ac8b38
crossref_primary_10_3390_ijerph191912180
crossref_primary_10_1016_j_aei_2025_103179
crossref_primary_10_1007_s11760_025_03984_1
crossref_primary_10_1016_j_apergo_2022_103708
crossref_primary_10_1016_j_ijar_2023_108982
crossref_primary_10_1016_j_is_2023_102335
crossref_primary_10_1109_ACCESS_2025_3575022
crossref_primary_10_3233_JIFS_211737
crossref_primary_10_3390_bioengineering10030321
crossref_primary_10_1016_j_brainres_2025_149797
crossref_primary_10_3389_fmed_2025_1562558
crossref_primary_10_1016_j_addma_2024_104195
crossref_primary_10_1007_s12525_020_00441_4
crossref_primary_10_1109_TAFFC_2022_3228749
crossref_primary_10_1109_ACCESS_2021_3086230
crossref_primary_10_1016_j_addma_2022_102691
crossref_primary_10_1016_j_neucom_2022_11_023
crossref_primary_10_3390_informatics10010032
crossref_primary_10_1016_j_bspc_2025_107530
crossref_primary_10_1016_j_ijar_2023_108977
crossref_primary_10_1016_j_jsis_2023_101790
crossref_primary_10_1155_2023_9922475
crossref_primary_10_1016_j_future_2021_11_018
crossref_primary_10_1016_j_ijepes_2021_106806
crossref_primary_10_3390_app122211750
crossref_primary_10_3390_biomedicines13010124
crossref_primary_10_3390_info12110473
crossref_primary_10_1016_j_asoc_2024_111632
crossref_primary_10_1111_ecog_07587
crossref_primary_10_3389_fdata_2021_693494
crossref_primary_10_1002_ima_70201
crossref_primary_10_1016_j_inffus_2023_03_008
crossref_primary_10_1016_j_inffus_2023_03_007
crossref_primary_10_1108_INTR_01_2022_0042
crossref_primary_10_1109_TCBB_2023_3272333
crossref_primary_10_1016_j_compbiomed_2024_108284
crossref_primary_10_1161_CIRCRESAHA_121_318106
crossref_primary_10_3390_a14120339
crossref_primary_10_1016_j_future_2024_02_023
crossref_primary_10_3390_s20185141
crossref_primary_10_1016_j_aei_2025_103156
crossref_primary_10_1016_j_is_2023_102310
crossref_primary_10_1088_1742_6596_2340_1_012003
crossref_primary_10_1002_aenm_202502420
crossref_primary_10_3389_frai_2024_1471208
crossref_primary_10_3390_bs14100964
crossref_primary_10_1007_s10618_023_00924_w
crossref_primary_10_1109_TETCI_2024_3379240
crossref_primary_10_2139_ssrn_5346270
crossref_primary_10_1016_j_jtrangeo_2022_103310
crossref_primary_10_3390_e25101429
crossref_primary_10_1134_S1064230724700138
crossref_primary_10_1007_s11042_023_15382_1
crossref_primary_10_1016_j_comnet_2022_108770
crossref_primary_10_1016_j_asoc_2021_108066
crossref_primary_10_1016_j_eswa_2024_125097
crossref_primary_10_1029_2022EF003086
crossref_primary_10_3389_frobt_2022_937772
crossref_primary_10_1016_j_artmed_2024_102962
crossref_primary_10_1177_15485129211028651
crossref_primary_10_1016_j_vehcom_2025_100896
crossref_primary_10_1109_ACCESS_2022_3171109
crossref_primary_10_1038_s41539_025_00333_2
crossref_primary_10_1080_00207543_2025_2513574
crossref_primary_10_1029_2024JH000391
crossref_primary_10_1038_s41598_023_38459_1
crossref_primary_10_1016_j_neunet_2024_106292
crossref_primary_10_1029_2024WR039820
crossref_primary_10_1016_j_trd_2025_104709
crossref_primary_10_3390_make5010017
crossref_primary_10_1109_TVCG_2023_3326943
crossref_primary_10_1109_ACCESS_2022_3188808
crossref_primary_10_1175_AIES_D_22_0001_1
crossref_primary_10_1007_s10479_024_05825_9
crossref_primary_10_3390_app15147925
crossref_primary_10_1007_s10462_025_11153_6
crossref_primary_10_1016_j_inffus_2022_08_017
crossref_primary_10_1111_2041_210X_13992
crossref_primary_10_1016_j_isprsjprs_2022_04_029
crossref_primary_10_1080_1461670X_2021_1916984
crossref_primary_10_1016_j_knosys_2025_114384
crossref_primary_10_1109_ACCESS_2025_3589620
crossref_primary_10_1080_14685248_2020_1742918
crossref_primary_10_1016_j_compind_2020_103290
crossref_primary_10_1016_j_compmedimag_2024_102387
crossref_primary_10_1016_j_csbj_2025_06_037
crossref_primary_10_1109_MCOM_001_2100736
crossref_primary_10_1109_TPAMI_2021_3115452
crossref_primary_10_3389_fdgth_2021_595704
crossref_primary_10_1109_JIOT_2022_3232845
crossref_primary_10_1016_j_cose_2023_103654
crossref_primary_10_1093_scipol_scad038
crossref_primary_10_1080_09540091_2025_2507180
crossref_primary_10_1016_j_knosys_2024_111840
crossref_primary_10_1016_j_knosys_2025_113042
crossref_primary_10_1109_TRS_2025_3566222
crossref_primary_10_1145_3721437
crossref_primary_10_1007_s10796_021_10186_w
crossref_primary_10_1155_2023_8068569
crossref_primary_10_1016_j_artmed_2023_102616
crossref_primary_10_1016_j_patrec_2023_11_009
crossref_primary_10_1364_JOCN_560757
crossref_primary_10_3390_app122010228
crossref_primary_10_1109_TVCG_2023_3326929
crossref_primary_10_1016_j_eswa_2025_128443
crossref_primary_10_3390_e24030346
crossref_primary_10_3390_app14177462
crossref_primary_10_1016_j_jmapro_2023_05_016
crossref_primary_10_1109_ACCESS_2023_3294840
crossref_primary_10_1016_j_inffus_2025_103133
crossref_primary_10_1016_j_matt_2022_04_016
crossref_primary_10_3390_app14188108
crossref_primary_10_1109_TAI_2021_3133846
crossref_primary_10_1007_s10462_024_10852_w
crossref_primary_10_1177_2327857925141018
crossref_primary_10_1098_rsta_2020_0363
crossref_primary_10_1145_3743672
crossref_primary_10_1109_TVCG_2023_3326912
crossref_primary_10_1109_TVCG_2024_3418653
crossref_primary_10_1016_j_apenergy_2021_118240
crossref_primary_10_1109_TG_2022_3159704
crossref_primary_10_3390_diagnostics13010111
crossref_primary_10_3390_s25072183
crossref_primary_10_1016_j_ces_2024_120493
crossref_primary_10_1109_TNSRE_2024_3465016
crossref_primary_10_1016_j_engappai_2024_109359
crossref_primary_10_3390_ai4030034
crossref_primary_10_1016_j_cose_2024_103862
crossref_primary_10_3390_laws12010005
crossref_primary_10_1145_3716818
crossref_primary_10_1016_j_ipm_2025_104061
crossref_primary_10_32628_IJSRST2302551
crossref_primary_10_1145_3711123
crossref_primary_10_1007_s10458_022_09577_3
crossref_primary_10_1109_TGRS_2023_3329649
crossref_primary_10_1145_3711122
crossref_primary_10_1016_j_neucom_2022_09_053
crossref_primary_10_32604_cmc_2025_058361
crossref_primary_10_1109_TGRS_2021_3077062
crossref_primary_10_1109_ACCESS_2024_3485200
crossref_primary_10_1002_ppp3_70007
crossref_primary_10_3390_computers10080103
crossref_primary_10_1109_ACCESS_2024_3514197
crossref_primary_10_1016_j_inffus_2024_102360
crossref_primary_10_1007_s44163_025_00241_9
crossref_primary_10_1016_j_compchemeng_2024_108584
crossref_primary_10_1109_MIS_2023_3334639
crossref_primary_10_1007_s10462_023_10692_0
crossref_primary_10_1145_3716820
crossref_primary_10_52399_001c_138720
crossref_primary_10_1109_ACCESS_2025_3571518
crossref_primary_10_1007_s11229_022_03485_5
crossref_primary_10_1186_s42408_023_00236_w
crossref_primary_10_1111_bjet_13233
crossref_primary_10_3390_app15031467
crossref_primary_10_1007_s12525_022_00608_1
crossref_primary_10_1016_j_jshs_2025_101047
crossref_primary_10_1145_3610536
crossref_primary_10_1038_s41524_022_00884_7
crossref_primary_10_1109_TFUZZ_2022_3141761
crossref_primary_10_1080_01605682_2022_2139646
crossref_primary_10_1007_s10796_022_10291_4
crossref_primary_10_1016_j_future_2021_06_046
crossref_primary_10_1007_s43681_024_00445_2
crossref_primary_10_1007_s10606_022_09461_4
crossref_primary_10_1016_j_eswa_2023_121138
crossref_primary_10_1016_j_knosys_2024_111732
crossref_primary_10_1007_s43681_023_00309_1
crossref_primary_10_1007_s00138_024_01653_w
crossref_primary_10_1109_JPROC_2024_3403898
crossref_primary_10_1145_3429739
crossref_primary_10_2174_0129503752359512250325061847
crossref_primary_10_1007_s11831_023_09899_9
crossref_primary_10_1007_s12599_023_00787_x
crossref_primary_10_1007_s00521_022_07263_9
crossref_primary_10_1109_TITS_2025_3543810
crossref_primary_10_3233_SW_233297
crossref_primary_10_1016_j_inffus_2023_102040
crossref_primary_10_3390_app15052392
crossref_primary_10_1109_TIFS_2023_3251842
crossref_primary_10_1038_s41598_024_59690_4
crossref_primary_10_3390_ma17143540
crossref_primary_10_1016_j_engappai_2024_109376
crossref_primary_10_1016_j_ssaho_2025_101467
crossref_primary_10_2196_76981
crossref_primary_10_1016_j_knosys_2024_111741
crossref_primary_10_1109_JIOT_2024_3377731
crossref_primary_10_1016_j_techfore_2021_121209
crossref_primary_10_1007_s00521_024_10868_x
crossref_primary_10_17694_bajece_1577929
crossref_primary_10_1016_j_cjca_2021_10_009
crossref_primary_10_1016_j_bspc_2025_107620
crossref_primary_10_1016_j_undsp_2024_09_004
crossref_primary_10_1016_j_acra_2024_12_018
crossref_primary_10_1109_ACCESS_2024_3448219
crossref_primary_10_1109_MC_2022_3213181
crossref_primary_10_1080_10696679_2025_2552275
crossref_primary_10_2196_44502
crossref_primary_10_3390_medicina58111681
crossref_primary_10_1016_j_rineng_2024_102397
crossref_primary_10_3390_land9070229
crossref_primary_10_1145_3626094
crossref_primary_10_1016_j_cma_2021_114562
crossref_primary_10_1016_j_rser_2022_112459
crossref_primary_10_1186_s12911_021_01703_7
crossref_primary_10_1016_j_buildenv_2025_113659
crossref_primary_10_1007_s11517_021_02487_8
crossref_primary_10_2196_66760
crossref_primary_10_1016_j_ssci_2021_105528
crossref_primary_10_1016_j_jmsy_2023_05_027
crossref_primary_10_1007_s12599_025_00964_0
crossref_primary_10_1016_j_jmatprotec_2024_118452
crossref_primary_10_1108_JSTP_06_2022_0134
crossref_primary_10_1016_j_bspc_2024_107328
crossref_primary_10_3390_technologies12040056
crossref_primary_10_1016_j_inffus_2023_102094
crossref_primary_10_1007_s10664_024_10526_9
crossref_primary_10_1021_accountsmr_1c00236
crossref_primary_10_59324_stss_2025_2_7__02
crossref_primary_10_1016_j_procs_2025_02_224
crossref_primary_10_3389_fenrg_2023_1328899
crossref_primary_10_1007_s11573_023_01181_5
crossref_primary_10_3390_sym17081290
crossref_primary_10_1016_j_neucom_2020_04_057
crossref_primary_10_1111_geb_13695
crossref_primary_10_1177_23814683251328377
crossref_primary_10_1016_j_ecolind_2025_114138
crossref_primary_10_1007_s00521_024_10811_0
crossref_primary_10_1007_s10479_025_06575_y
crossref_primary_10_1111_jiec_13509
crossref_primary_10_1016_j_tranpol_2025_04_009
crossref_primary_10_3390_app13158684
crossref_primary_10_1109_ACCESS_2024_3392297
crossref_primary_10_3390_s25082398
crossref_primary_10_1016_j_chaos_2021_110814
crossref_primary_10_1016_j_jnca_2024_104091
crossref_primary_10_1016_j_ast_2021_107052
crossref_primary_10_1016_j_inffus_2022_10_022
crossref_primary_10_1016_j_patcog_2023_109666
crossref_primary_10_3389_fonc_2023_1122247
crossref_primary_10_1016_j_technovation_2024_103002
crossref_primary_10_1108_JRIM_07_2021_0192
crossref_primary_10_1111_mice_13322
crossref_primary_10_2196_30704
crossref_primary_10_15187_adr_2022_05_35_2_57
crossref_primary_10_1016_j_infoandorg_2022_100432
crossref_primary_10_1007_s41870_023_01713_w
crossref_primary_10_1016_j_ins_2024_121738
crossref_primary_10_1103_PhysRevApplied_20_044002
crossref_primary_10_1042_BCJ20210535
crossref_primary_10_1007_s11255_024_04165_8
crossref_primary_10_1111_1468_5973_70031
crossref_primary_10_1111_mice_13338
crossref_primary_10_1007_s10506_024_09397_8
crossref_primary_10_1016_j_techfore_2023_122343
crossref_primary_10_1109_TIM_2023_3284940
crossref_primary_10_1016_j_csbj_2022_06_018
crossref_primary_10_1186_s12880_024_01394_2
crossref_primary_10_1016_j_saa_2025_125768
crossref_primary_10_1093_bulcsj_uoae121
crossref_primary_10_1109_TFUZZ_2024_3398719
crossref_primary_10_1016_j_compbiomed_2025_109974
crossref_primary_10_1016_j_chemolab_2022_104556
crossref_primary_10_3389_fcomp_2023_1087929
crossref_primary_10_1109_ACCESS_2023_3347796
crossref_primary_10_1007_s43681_023_00331_3
crossref_primary_10_1016_j_rser_2022_112401
crossref_primary_10_1007_s10639_025_13385_z
crossref_primary_10_1080_10447318_2023_2262797
crossref_primary_10_1016_j_neucom_2021_07_100
crossref_primary_10_1016_j_patcog_2022_108876
crossref_primary_10_1007_s00170_022_10059_9
crossref_primary_10_1109_ACCESS_2024_3431437
crossref_primary_10_1109_TRO_2023_3240619
crossref_primary_10_1186_s12984_022_01025_3
crossref_primary_10_1016_j_ins_2024_121711
crossref_primary_10_1016_j_smhl_2023_100429
crossref_primary_10_1007_s10462_023_10674_2
crossref_primary_10_1080_13658816_2025_2530060
crossref_primary_10_1016_j_giq_2021_101578
crossref_primary_10_1039_D4NP00003J
crossref_primary_10_1080_21642583_2024_2331074
crossref_primary_10_1108_EL_01_2020_0016
crossref_primary_10_1016_j_datak_2022_102088
crossref_primary_10_1162_imag_a_00353
crossref_primary_10_1016_j_csbj_2022_06_045
crossref_primary_10_3390_en15124427
crossref_primary_10_1016_j_csa_2025_100104
crossref_primary_10_1016_S2215_0366_21_00254_6
crossref_primary_10_2478_aei_2025_0005
crossref_primary_10_3390_risks10120230
crossref_primary_10_3389_fninf_2022_871904
crossref_primary_10_52836_sayistay_1554497
crossref_primary_10_1007_s11280_023_01150_6
crossref_primary_10_1016_j_jss_2025_112360
crossref_primary_10_1080_19648189_2025_2544206
crossref_primary_10_1038_s41598_023_41715_z
crossref_primary_10_2196_50342
crossref_primary_10_1186_s12885_025_14369_5
crossref_primary_10_1016_j_jallcom_2022_163828
crossref_primary_10_3233_SJI_210875
crossref_primary_10_3390_computers11120182
crossref_primary_10_1016_j_patcog_2023_109610
crossref_primary_10_3389_fninf_2023_1297874
crossref_primary_10_1016_j_hcl_2025_08_007
crossref_primary_10_1038_s42256_022_00466_8
crossref_primary_10_1109_ACCESS_2021_3119573
crossref_primary_10_1109_TITS_2023_3236489
crossref_primary_10_1016_j_ecoinf_2024_102904
crossref_primary_10_1016_j_jvcir_2022_103685
crossref_primary_10_1016_j_media_2022_102684
crossref_primary_10_3389_frai_2023_1093712
crossref_primary_10_1016_j_im_2024_103969
crossref_primary_10_1177_20552076231186520
crossref_primary_10_1016_j_inffus_2021_02_002
crossref_primary_10_1016_j_knosys_2022_109725
crossref_primary_10_3390_app12010136
crossref_primary_10_1080_00140139_2023_2278394
crossref_primary_10_1109_ACCESS_2024_3393558
crossref_primary_10_1016_j_solener_2024_112414
crossref_primary_10_1007_s43681_025_00725_5
crossref_primary_10_1016_j_compbiomed_2025_110922
crossref_primary_10_3390_app132111953
crossref_primary_10_3390_s25134002
crossref_primary_10_1038_s41746_021_00549_7
crossref_primary_10_1109_TGRS_2023_3318980
crossref_primary_10_3390_app14031047
crossref_primary_10_1007_s10462_023_10585_2
crossref_primary_10_1016_j_inffus_2024_102301
crossref_primary_10_1109_TMLCN_2025_3575368
crossref_primary_10_1016_j_cmpb_2022_106620
crossref_primary_10_1007_s00521_024_10437_2
crossref_primary_10_1016_j_atmosres_2024_107500
crossref_primary_10_1007_s00146_020_01020_z
crossref_primary_10_1109_ACCESS_2022_3155118
crossref_primary_10_1016_j_cej_2022_136147
crossref_primary_10_3390_ma17143584
crossref_primary_10_1038_s41598_022_06483_2
crossref_primary_10_1080_10447318_2022_2095478
crossref_primary_10_1007_s00180_023_01453_2
crossref_primary_10_1016_j_epsr_2022_108489
crossref_primary_10_1016_j_ecolind_2024_112653
crossref_primary_10_1016_j_foodcont_2023_109660
crossref_primary_10_3390_jimaging9100224
crossref_primary_10_1038_s41598_025_02355_7
crossref_primary_10_1007_s41116_023_00038_x
crossref_primary_10_1002_bse_4189
crossref_primary_10_1016_j_eswa_2023_119638
crossref_primary_10_1109_ACCESS_2024_3439096
crossref_primary_10_1007_s00146_021_01263_4
crossref_primary_10_5802_crmath_521
crossref_primary_10_1007_s10115_023_01876_9
crossref_primary_10_1016_j_patrec_2024_04_009
crossref_primary_10_1109_TDSC_2025_3572115
crossref_primary_10_1145_3716394
crossref_primary_10_3390_agriengineering6040277
crossref_primary_10_1108_MEDAR_10_2023_2204
crossref_primary_10_3389_fspor_2024_1440652
crossref_primary_10_1109_THMS_2022_3144956
crossref_primary_10_1007_s10796_022_10352_8
crossref_primary_10_3390_app14020496
crossref_primary_10_1038_s41598_024_79208_2
crossref_primary_10_1111_exsy_13319
crossref_primary_10_1016_j_procs_2024_09_408
crossref_primary_10_12677_acm_2025_152503
crossref_primary_10_1007_s10462_024_10803_5
crossref_primary_10_1007_s10845_023_02266_2
crossref_primary_10_1016_j_techsoc_2025_102847
crossref_primary_10_1109_TCSI_2022_3155443
crossref_primary_10_1016_j_annemergmed_2024_06_004
crossref_primary_10_1016_j_techsoc_2025_102838
crossref_primary_10_1016_j_uncres_2024_100128
crossref_primary_10_1145_3626314
crossref_primary_10_1007_s11263_022_01603_x
crossref_primary_10_1016_j_jclepro_2022_131626
crossref_primary_10_3390_diagnostics13223413
crossref_primary_10_1007_s10796_022_10276_3
crossref_primary_10_3390_electronics14153073
crossref_primary_10_1016_j_ecolind_2024_112636
crossref_primary_10_1016_j_watres_2025_123172
crossref_primary_10_1109_TII_2023_3293863
crossref_primary_10_3390_electronics12020256
crossref_primary_10_1145_3583558
crossref_primary_10_1016_j_knosys_2022_108548
crossref_primary_10_3389_frobt_2021_640647
crossref_primary_10_1016_j_rineng_2024_103724
crossref_primary_10_1016_j_rser_2023_114037
crossref_primary_10_1016_j_asr_2021_04_023
crossref_primary_10_1017_dap_2023_29
crossref_primary_10_1016_j_vehcom_2022_100551
crossref_primary_10_1016_j_jii_2025_100905
crossref_primary_10_1109_JIOT_2024_3452717
crossref_primary_10_1365_s40702_021_00707_1
crossref_primary_10_1016_j_scico_2025_103297
crossref_primary_10_1007_s00530_023_01187_7
crossref_primary_10_1016_j_bbe_2025_05_011
crossref_primary_10_3390_math13132122
crossref_primary_10_1136_bmjopen_2022_066322
crossref_primary_10_1007_s00146_021_01383_x
crossref_primary_10_1007_s10489_021_02264_y
crossref_primary_10_3390_computers14060237
crossref_primary_10_3389_fonc_2025_1578991
crossref_primary_10_1007_s41060_022_00351_y
crossref_primary_10_1080_09544828_2025_2518907
crossref_primary_10_1145_3579460
crossref_primary_10_3390_info15110725
crossref_primary_10_1007_s00521_022_07259_5
crossref_primary_10_3390_cancers15041118
crossref_primary_10_1016_j_ijar_2023_109112
crossref_primary_10_3390_en16176360
crossref_primary_10_1557_s43578_025_01548_0
crossref_primary_10_1097_j_pain_0000000000002002
crossref_primary_10_1145_3672276
crossref_primary_10_1016_j_techsoc_2025_102818
crossref_primary_10_22399_ijcesen_3198
crossref_primary_10_1016_j_jbusres_2024_114788
crossref_primary_10_1039_D2MH01279K
crossref_primary_10_1002_bit_70036
crossref_primary_10_1016_j_ijnurstu_2024_104753
crossref_primary_10_1016_j_tra_2024_104300
crossref_primary_10_3390_s22145205
crossref_primary_10_1360_TB_2024_1299
crossref_primary_10_3390_a15120455
crossref_primary_10_1016_j_envint_2024_108607
crossref_primary_10_1016_j_jallcom_2025_181155
crossref_primary_10_1016_j_neucom_2025_129701
crossref_primary_10_1016_j_imu_2022_100941
crossref_primary_10_1016_j_asoc_2021_107082
crossref_primary_10_1109_ACCESS_2023_3235735
crossref_primary_10_1088_1361_6501_ad774b
crossref_primary_10_1016_j_ajem_2023_11_063
crossref_primary_10_1007_s11042_023_15361_6
crossref_primary_10_1007_s00236_025_00499_7
crossref_primary_10_1109_ACCESS_2025_3583583
crossref_primary_10_1016_j_datak_2021_101909
crossref_primary_10_1016_j_jmsy_2024_02_010
crossref_primary_10_1016_j_iswa_2025_200504
crossref_primary_10_1007_s13347_025_00940_2
crossref_primary_10_1080_10447318_2024_2441015
crossref_primary_10_1177_15353702211052280
crossref_primary_10_1016_j_ipm_2023_103273
crossref_primary_10_3390_computers14060211
crossref_primary_10_1016_j_measurement_2023_112821
crossref_primary_10_1109_TRPMS_2021_3066428
crossref_primary_10_1145_3579485
crossref_primary_10_1016_j_engstruct_2023_116539
crossref_primary_10_3390_app12115637
crossref_primary_10_1080_19475705_2025_2485329
crossref_primary_10_1016_j_knosys_2025_113598
crossref_primary_10_3390_computers11030047
crossref_primary_10_1007_s12028_022_01504_4
crossref_primary_10_3390_s23031065
crossref_primary_10_1007_s10742_025_00351_y
crossref_primary_10_1007_s43681_023_00303_7
crossref_primary_10_3390_atmos16050539
crossref_primary_10_3390_computation12110230
crossref_primary_10_3390_s25185634
crossref_primary_10_1016_j_ecoser_2023_101581
crossref_primary_10_3390_philosophies10050103
crossref_primary_10_1109_LSENS_2024_3503752
crossref_primary_10_3389_frai_2022_826499
crossref_primary_10_1016_j_jmsy_2023_09_007
crossref_primary_10_1103_PhysRevD_110_123038
crossref_primary_10_1016_j_asoc_2021_108391
crossref_primary_10_1016_j_eswa_2023_120655
crossref_primary_10_1109_ACCESS_2024_3365135
crossref_primary_10_1016_j_pediatrneurol_2023_01_004
crossref_primary_10_3390_rs12244073
crossref_primary_10_12991_jrespharm_1644357
crossref_primary_10_3390_machines11070704
crossref_primary_10_3389_fmed_2023_1086097
crossref_primary_10_1016_j_eswa_2021_115546
crossref_primary_10_1002_cpe_8034
crossref_primary_10_1109_JIOT_2023_3287678
crossref_primary_10_3390_s21206910
crossref_primary_10_1002_smll_202305918
crossref_primary_10_1007_s11299_025_00322_3
crossref_primary_10_1145_3567430
crossref_primary_10_3390_make7010006
crossref_primary_10_1016_j_sca_2024_100078
crossref_primary_10_1016_j_chb_2024_108221
crossref_primary_10_1109_ACCESS_2023_3264270
crossref_primary_10_1016_j_asoc_2020_106727
crossref_primary_10_1016_j_energy_2024_132625
crossref_primary_10_1111_tops_12573
crossref_primary_10_1111_exsy_13387
crossref_primary_10_1007_s40766_025_00073_4
crossref_primary_10_1016_j_jobe_2022_105740
crossref_primary_10_1007_s00146_025_02352_4
crossref_primary_10_1007_s12559_024_10311_2
crossref_primary_10_1016_j_apenergy_2021_118300
crossref_primary_10_1016_j_neunet_2022_08_002
crossref_primary_10_1016_j_bspc_2024_106034
crossref_primary_10_1007_s10489_024_05953_6
crossref_primary_10_1016_j_tele_2023_101954
crossref_primary_10_1080_2573234X_2021_1952913
crossref_primary_10_1007_s43681_022_00167_3
crossref_primary_10_1016_j_tre_2024_103881
crossref_primary_10_1177_30494826251336314
crossref_primary_10_1002_ejsc_12162
crossref_primary_10_1007_s12525_021_00496_x
crossref_primary_10_1038_s41569_021_00527_2
crossref_primary_10_3390_life12111894
crossref_primary_10_1016_j_jag_2024_104192
crossref_primary_10_1057_s41599_024_02786_z
crossref_primary_10_1016_j_compbiomed_2021_104393
crossref_primary_10_1109_ACCESS_2024_3488081
crossref_primary_10_1016_j_gpb_2022_11_003
crossref_primary_10_1109_ACCESS_2025_3587114
crossref_primary_10_1109_LRA_2021_3137520
crossref_primary_10_1177_14413582251350407
crossref_primary_10_1002_qj_4167
crossref_primary_10_1016_j_cose_2024_103813
crossref_primary_10_1016_j_asr_2024_06_082
crossref_primary_10_3390_app14135779
crossref_primary_10_1016_j_spasta_2025_100920
crossref_primary_10_3390_electronics11244086
crossref_primary_10_3390_rs13132477
crossref_primary_10_1016_j_chb_2021_106878
crossref_primary_10_1007_s42979_023_01747_8
crossref_primary_10_1109_ACCESS_2025_3555543
crossref_primary_10_1109_TFUZZ_2021_3089284
crossref_primary_10_1109_TSG_2023_3324992
crossref_primary_10_1177_20552076221074488
crossref_primary_10_2174_0115748928361472250123105507
crossref_primary_10_1371_journal_pone_0292960
crossref_primary_10_3389_fmed_2023_1116354
crossref_primary_10_3390_electronics14163265
crossref_primary_10_1162_dint_a_00243
crossref_primary_10_1016_j_inffus_2023_01_021
crossref_primary_10_1007_s44163_024_00123_6
crossref_primary_10_1145_3522579
crossref_primary_10_1016_j_agrformet_2023_109458
crossref_primary_10_1145_3698826
crossref_primary_10_1109_ACCESS_2022_3232561
crossref_primary_10_1007_s00477_025_03007_y
crossref_primary_10_1016_j_compbiomed_2022_105587
crossref_primary_10_1002_widm_70031
crossref_primary_10_1007_s13369_021_06153_x
crossref_primary_10_1515_zwf_2022_1015
crossref_primary_10_3390_smartcities4020029
crossref_primary_10_1016_j_websem_2024_100858
crossref_primary_10_3390_healthcare13151829
crossref_primary_10_1016_j_hlpt_2022_100663
crossref_primary_10_1007_s12652_023_04594_w
crossref_primary_10_1016_j_knosys_2021_106916
crossref_primary_10_1038_s41568_020_00327_9
crossref_primary_10_3390_risks11050080
crossref_primary_10_1016_j_ejmp_2023_102671
crossref_primary_10_1111_bjop_12740
crossref_primary_10_1145_3665926
crossref_primary_10_1007_s12247_025_09940_3
crossref_primary_10_1007_s43681_021_00122_8
crossref_primary_10_1080_23311916_2023_2300557
crossref_primary_10_1016_j_iot_2024_101320
crossref_primary_10_1002_widm_70015
crossref_primary_10_3390_s22249875
crossref_primary_10_1007_s41060_024_00514_z
crossref_primary_10_2478_ebce_2024_0004
crossref_primary_10_3390_s23249722
crossref_primary_10_1029_2024JH000489
crossref_primary_10_1007_s00521_024_09587_0
crossref_primary_10_3390_app112411854
crossref_primary_10_1177_14738716231168671
crossref_primary_10_1007_s13347_024_00743_x
crossref_primary_10_1016_j_future_2023_01_011
crossref_primary_10_23104_ME_e7
crossref_primary_10_1016_j_inffus_2021_07_016
crossref_primary_10_1016_j_procs_2023_03_057
crossref_primary_10_1109_MGRS_2023_3343623
crossref_primary_10_1007_s00521_022_07019_5
crossref_primary_10_3389_fmicb_2022_925454
crossref_primary_10_3390_electronics14153024
crossref_primary_10_1016_j_jengtecman_2022_101716
crossref_primary_10_1109_TFUZZ_2021_3094661
crossref_primary_10_1016_j_ijhcs_2025_103629
crossref_primary_10_1002_asmb_2803
crossref_primary_10_1007_s10796_025_10583_5
crossref_primary_10_1016_j_ijhcs_2025_103625
crossref_primary_10_3390_math10121994
crossref_primary_10_1016_j_inffus_2024_102472
crossref_primary_10_1007_s10489_021_02281_x
crossref_primary_10_1007_s13218_022_00780_8
crossref_primary_10_1002_cpe_70057
crossref_primary_10_1007_s11571_023_09947_x
crossref_primary_10_3390_biology12060795
crossref_primary_10_1016_j_buildenv_2025_113504
crossref_primary_10_1016_j_cosrev_2025_100764
crossref_primary_10_1002_smtd_202401757
crossref_primary_10_1177_26349795211007094
crossref_primary_10_1007_s10729_024_09673_8
crossref_primary_10_1088_2632_2153_add3bd
crossref_primary_10_1007_s10845_021_01817_9
crossref_primary_10_1016_j_ress_2024_110368
crossref_primary_10_1038_s41746_021_00496_3
crossref_primary_10_1016_j_compchemeng_2021_107529
crossref_primary_10_3390_jne3040014
crossref_primary_10_1007_s11571_023_10028_2
crossref_primary_10_1108_QRAM_01_2022_0005
crossref_primary_10_1007_s10796_021_10154_4
crossref_primary_10_3390_w16223328
crossref_primary_10_1016_j_asoc_2025_113288
crossref_primary_10_1007_s40751_024_00161_w
crossref_primary_10_1108_JICES_06_2021_0059
crossref_primary_10_1177_02663821241264705
crossref_primary_10_3390_su14127375
crossref_primary_10_1038_s41598_023_49831_6
crossref_primary_10_1109_MC_2021_3076131
crossref_primary_10_38124_ijsrmt_v4i8_716
crossref_primary_10_1109_JSEN_2025_3568392
crossref_primary_10_1145_3665138
crossref_primary_10_1080_10286608_2022_2049257
crossref_primary_10_1016_j_engappai_2022_105534
crossref_primary_10_1016_j_jbi_2023_104414
crossref_primary_10_1007_s43681_023_00396_0
crossref_primary_10_3390_app13148329
crossref_primary_10_1093_toxsci_kfac046
crossref_primary_10_26599_FIE_2023_9270001
crossref_primary_10_1089_thy_2023_0384
crossref_primary_10_1007_s43762_023_00100_2
crossref_primary_10_7717_peerj_cs_1253
crossref_primary_10_1016_j_eswa_2023_121011
crossref_primary_10_1016_j_neunet_2025_107920
crossref_primary_10_1016_j_jfranklin_2025_108038
crossref_primary_10_1109_ACCESS_2024_3349957
crossref_primary_10_1016_j_bushor_2024_04_008
crossref_primary_10_1016_j_crmeth_2023_100557
crossref_primary_10_1016_j_asoc_2025_113265
crossref_primary_10_33847_2712_8148_4_1_4
crossref_primary_10_1016_j_engappai_2025_111860
crossref_primary_10_1016_j_inffus_2022_08_021
crossref_primary_10_1016_j_jes_2025_06_009
crossref_primary_10_1007_s41649_024_00292_7
crossref_primary_10_1016_j_eswa_2022_117946
crossref_primary_10_1038_s41598_021_83182_4
crossref_primary_10_3390_info14070397
crossref_primary_10_1007_s00371_023_03112_5
crossref_primary_10_1016_j_imavis_2024_105164
crossref_primary_10_1177_1748006X221118448
crossref_primary_10_1016_j_giq_2024_101965
crossref_primary_10_1109_ACCESS_2024_3510526
crossref_primary_10_1016_j_imu_2023_101349
crossref_primary_10_2139_ssrn_5020690
crossref_primary_10_3390_a14110318
crossref_primary_10_3390_smartcities8010025
crossref_primary_10_1016_j_ijar_2022_08_015
crossref_primary_10_3390_cryst11070723
crossref_primary_10_1177_27539687251357020
crossref_primary_10_3390_diagnostics12061482
crossref_primary_10_1016_S0140_6736_24_00302_7
crossref_primary_10_1016_j_cosrev_2021_100452
crossref_primary_10_1007_s10479_024_06348_z
crossref_primary_10_1109_ACCESS_2024_3425226
crossref_primary_10_3389_fonc_2021_704039
crossref_primary_10_1016_j_neunet_2021_04_036
crossref_primary_10_1007_s11390_025_4239_0
crossref_primary_10_1016_j_rse_2024_114484
crossref_primary_10_1134_S1064229324603524
crossref_primary_10_2196_40031
crossref_primary_10_1016_j_ins_2022_12_012
crossref_primary_10_1002_adma_202101474
crossref_primary_10_1007_s00347_025_02189_8
crossref_primary_10_3390_rs14236096
crossref_primary_10_1016_j_apgeog_2024_103486
crossref_primary_10_1016_j_asoc_2021_107849
crossref_primary_10_3390_aerospace10070644
crossref_primary_10_1007_s12559_024_10373_2
crossref_primary_10_1016_j_eswa_2024_123557
crossref_primary_10_1038_s41598_022_13275_1
crossref_primary_10_1109_ACCESS_2024_3484409
crossref_primary_10_1016_j_heliyon_2025_e41871
crossref_primary_10_1007_s40558_024_00301_3
crossref_primary_10_1016_j_cmpb_2025_109036
crossref_primary_10_1109_TMLCN_2025_3576727
crossref_primary_10_1016_j_neucom_2024_127317
crossref_primary_10_1109_ACCESS_2022_3173734
crossref_primary_10_1007_s00521_023_09124_5
crossref_primary_10_1007_s10207_025_01036_w
crossref_primary_10_1017_epi_2022_39
crossref_primary_10_1007_s00146_025_02538_w
crossref_primary_10_3390_make3020020
crossref_primary_10_1016_j_ijrefrig_2025_03_001
crossref_primary_10_1016_j_comcom_2023_07_039
crossref_primary_10_1109_TCDS_2024_3376433
crossref_primary_10_1007_s00477_025_02975_5
crossref_primary_10_1016_j_eswa_2024_124879
crossref_primary_10_3390_s23239536
crossref_primary_10_1007_s11749_022_00826_x
crossref_primary_10_1016_j_socscimed_2022_114782
crossref_primary_10_1109_OJCOMS_2025_3534626
crossref_primary_10_1109_LWC_2025_3557843
crossref_primary_10_1016_j_asoc_2025_113222
crossref_primary_10_1007_s12283_023_00402_y
crossref_primary_10_1007_s00500_023_09530_w
crossref_primary_10_3390_electronics11172634
crossref_primary_10_2196_50295
crossref_primary_10_1016_j_compbiomed_2022_106043
crossref_primary_10_1038_s43588_022_00314_0
crossref_primary_10_1371_journal_pcbi_1010988
crossref_primary_10_1080_08874417_2025_2508860
crossref_primary_10_1002_pra2_663
crossref_primary_10_3389_fdgth_2025_1583490
crossref_primary_10_3390_ani14162295
crossref_primary_10_1109_LGRS_2020_3020098
crossref_primary_10_3390_app11115088
crossref_primary_10_3390_heritage8030102
crossref_primary_10_3390_ijerph19063641
crossref_primary_10_1016_j_fluid_2024_114283
crossref_primary_10_1016_j_jenvman_2025_126398
crossref_primary_10_1016_j_rineng_2025_104137
crossref_primary_10_1109_ACCESS_2024_3450299
crossref_primary_10_3390_rs14184486
crossref_primary_10_1016_j_fuel_2024_133183
crossref_primary_10_3390_fi14050134
crossref_primary_10_1016_j_artint_2022_103823
crossref_primary_10_56398_ajacieda_00405
crossref_primary_10_3390_w16070923
crossref_primary_10_1007_s10462_022_10354_7
crossref_primary_10_1016_j_ejor_2023_08_040
crossref_primary_10_1002_widm_1512
crossref_primary_10_1007_s10462_025_11215_9
crossref_primary_10_1002_widm_1510
crossref_primary_10_1109_TSM_2023_3314431
crossref_primary_10_1016_j_engappai_2024_109628
crossref_primary_10_3389_fphy_2020_00200
crossref_primary_10_1016_j_scs_2025_106492
crossref_primary_10_1038_s44221_023_00069_6
crossref_primary_10_3389_fpsyg_2022_941640
crossref_primary_10_1016_j_ejor_2023_08_039
crossref_primary_10_1109_ACCESS_2024_3420415
crossref_primary_10_2196_22183
crossref_primary_10_3390_atmos16091073
crossref_primary_10_1007_s10479_023_05624_8
crossref_primary_10_1007_s12599_022_00754_y
crossref_primary_10_1016_j_knosys_2023_111188
crossref_primary_10_1186_s13244_025_01950_6
crossref_primary_10_1080_10447318_2023_2215098
crossref_primary_10_1097_j_pain_0000000000002108
crossref_primary_10_1016_j_asoc_2024_112043
crossref_primary_10_1016_j_rineng_2025_104155
crossref_primary_10_1007_s11023_024_09701_0
crossref_primary_10_1016_j_apenergy_2023_121753
crossref_primary_10_1007_s11096_025_02004_z
crossref_primary_10_1016_j_buildenv_2023_110771
crossref_primary_10_1109_ACCESS_2025_3559105
crossref_primary_10_1016_j_knosys_2024_112305
crossref_primary_10_1109_TKDE_2025_3528023
crossref_primary_10_1016_j_isci_2025_112980
crossref_primary_10_1016_j_eml_2024_102269
crossref_primary_10_3390_app15169061
crossref_primary_10_1007_s12559_024_10297_x
crossref_primary_10_1016_j_aei_2025_103726
crossref_primary_10_3389_fpsyg_2021_796371
crossref_primary_10_32604_cmes_2023_023897
crossref_primary_10_1080_17460441_2022_2019704
crossref_primary_10_1016_j_ins_2024_121844
crossref_primary_10_1007_s42979_024_03584_9
crossref_primary_10_1016_j_ssci_2024_106590
crossref_primary_10_1038_s41598_024_60916_8
crossref_primary_10_3390_su16125182
crossref_primary_10_3389_fpsyt_2020_551299
crossref_primary_10_1088_2632_2153_ade6c4
crossref_primary_10_1002_widm_1565
crossref_primary_10_1016_j_solener_2022_11_018
crossref_primary_10_1016_j_compbiomed_2021_104410
crossref_primary_10_1007_s42044_024_00190_z
crossref_primary_10_1016_j_chbah_2024_100062
crossref_primary_10_32604_cmc_2025_057359
crossref_primary_10_1007_s40815_022_01324_w
crossref_primary_10_3390_app12168192
crossref_primary_10_5209_infe_98150
crossref_primary_10_1109_ACCESS_2023_3315605
crossref_primary_10_1016_j_cose_2022_102746
crossref_primary_10_1109_MGRS_2022_3171836
crossref_primary_10_1016_j_knosys_2021_107332
crossref_primary_10_1016_j_chbah_2024_100054
crossref_primary_10_1108_IJLSS_07_2024_0159
crossref_primary_10_1016_j_scitotenv_2022_160240
crossref_primary_10_1088_3049_4761_adce0d
crossref_primary_10_3390_en13102559
crossref_primary_10_1109_ACCESS_2024_3521242
crossref_primary_10_1080_21622965_2024_2336019
crossref_primary_10_1371_journal_pone_0292063
crossref_primary_10_3390_fi13050132
crossref_primary_10_1145_3734191
crossref_primary_10_1145_3725234
crossref_primary_10_1016_j_patcog_2022_108554
crossref_primary_10_3390_machines9120361
crossref_primary_10_3345_cep_2021_00766
crossref_primary_10_1016_j_entcom_2023_100608
crossref_primary_10_1016_j_eswa_2022_117116
crossref_primary_10_1016_j_fss_2023_03_014
crossref_primary_10_1109_TAES_2024_3403078
crossref_primary_10_1007_s10489_025_06262_2
crossref_primary_10_1016_j_jag_2024_103739
crossref_primary_10_3390_forecast4010015
crossref_primary_10_1016_j_inffus_2024_102407
crossref_primary_10_1080_09669582_2020_1778011
crossref_primary_10_1109_ACCESS_2022_3168302
crossref_primary_10_1109_TVCG_2021_3114794
crossref_primary_10_1016_j_gsf_2024_101815
crossref_primary_10_1007_s11192_020_03811_z
crossref_primary_10_3390_asi7060121
crossref_primary_10_3233_IA_190036
crossref_primary_10_7717_peerj_cs_3063
crossref_primary_10_1002_int_23088
crossref_primary_10_1007_s00287_021_01393_5
crossref_primary_10_1007_s10618_022_00831_6
crossref_primary_10_1109_TVCG_2023_3327153
crossref_primary_10_1007_s11431_020_1647_3
crossref_primary_10_1515_cclm_2023_1037
crossref_primary_10_1007_s11948_021_00334_5
crossref_primary_10_1145_3641859
crossref_primary_10_1016_j_ecoinf_2025_103104
crossref_primary_10_3390_electronics10172129
crossref_primary_10_3389_fcvm_2023_1219586
crossref_primary_10_1016_j_jhydrol_2025_134004
crossref_primary_10_1016_j_ergon_2025_103755
crossref_primary_10_1039_D4TB02876G
crossref_primary_10_1002_spy2_70094
crossref_primary_10_1007_s11750_024_00670_2
crossref_primary_10_1016_j_ejor_2025_09_005
crossref_primary_10_1109_TFUZZ_2022_3222033
crossref_primary_10_1109_THMS_2022_3155714
crossref_primary_10_1109_LRA_2021_3111055
crossref_primary_10_1007_s42452_025_06879_5
crossref_primary_10_1016_j_atmosenv_2024_120797
crossref_primary_10_1002_cssc_202500809
crossref_primary_10_1007_s11023_025_09733_0
crossref_primary_10_1016_j_buildenv_2023_110589
crossref_primary_10_1080_09537287_2023_2234882
crossref_primary_10_1007_s10462_024_11036_2
crossref_primary_10_1145_3536428
crossref_primary_10_3390_ai3020015
crossref_primary_10_1109_JIOT_2024_3461775
crossref_primary_10_1007_s10703_024_00468_9
crossref_primary_10_1145_3444693
crossref_primary_10_1007_s00521_022_07981_0
crossref_primary_10_1016_j_comnet_2022_109467
crossref_primary_10_1007_s13347_024_00713_3
crossref_primary_10_1038_s42004_024_01155_w
crossref_primary_10_1109_TITS_2023_3333749
crossref_primary_10_1016_j_ins_2022_07_160
crossref_primary_10_1155_2021_6634811
crossref_primary_10_1016_j_commtr_2025_100178
crossref_primary_10_1016_j_ins_2021_06_076
crossref_primary_10_1080_15583058_2024_2437618
crossref_primary_10_3390_s25134166
crossref_primary_10_1007_s10489_024_05671_z
crossref_primary_10_1109_LRA_2025_3568617
crossref_primary_10_1109_TCSS_2025_3531718
crossref_primary_10_1109_TFUZZ_2024_3349637
crossref_primary_10_32604_cmc_2023_035246
crossref_primary_10_3390_atmos14030542
crossref_primary_10_1109_ACCESS_2023_3347028
crossref_primary_10_1038_s41598_023_35963_2
crossref_primary_10_1115_1_4068821
crossref_primary_10_1145_3645057_3645062
crossref_primary_10_1016_j_scs_2025_106422
crossref_primary_10_48175_IJARSCT_28536
crossref_primary_10_1007_s13755_025_00351_9
crossref_primary_10_1016_j_mex_2025_103408
crossref_primary_10_3390_cancers15102704
crossref_primary_10_1016_j_patcog_2024_111175
crossref_primary_10_1016_j_future_2020_06_011
crossref_primary_10_1007_s12559_023_10189_6
crossref_primary_10_1016_j_geoderma_2024_117006
crossref_primary_10_1038_s41598_024_61257_2
crossref_primary_10_1109_TCE_2023_3318754
crossref_primary_10_1109_MCI_2021_3129959
crossref_primary_10_1145_3729531
crossref_primary_10_1016_j_cose_2024_104191
crossref_primary_10_1016_j_neucom_2025_129830
crossref_primary_10_3390_jimaging6060052
crossref_primary_10_1109_TAI_2023_3266418
crossref_primary_10_1016_j_ymeth_2020_10_004
crossref_primary_10_1109_TPAMI_2023_3330944
crossref_primary_10_1109_TNSM_2024_3376631
crossref_primary_10_1038_s41598_021_03100_6
crossref_primary_10_1111_1540_6229_12397
crossref_primary_10_1109_TITS_2023_3273547
crossref_primary_10_1002_iis2_12871
crossref_primary_10_1007_s10114_025_3329_9
crossref_primary_10_1007_s10489_022_04276_8
crossref_primary_10_1055_a_2542_5742
crossref_primary_10_1002_ldr_5666
crossref_primary_10_1016_j_engappai_2025_110394
crossref_primary_10_1016_j_engappai_2025_110396
crossref_primary_10_1145_3664522
crossref_primary_10_1016_j_compag_2022_106962
crossref_primary_10_3390_bioengineering11040369
crossref_primary_10_3390_ai3020030
crossref_primary_10_3390_app12041834
crossref_primary_10_1016_j_knosys_2023_110832
crossref_primary_10_1038_s41598_024_81151_1
crossref_primary_10_32604_cmes_2023_030391
crossref_primary_10_1016_j_fsidi_2024_301806
crossref_primary_10_1287_isre_2021_0391
crossref_primary_10_1007_s12559_024_10325_w
crossref_primary_10_1080_08839514_2023_2282834
crossref_primary_10_1155_2023_6629507
crossref_primary_10_1016_j_eswa_2024_125290
crossref_primary_10_1145_3568024
crossref_primary_10_1007_s00481_023_00761_x
crossref_primary_10_3389_frai_2023_1272159
crossref_primary_10_1016_j_cor_2025_107163
crossref_primary_10_1145_3507901
crossref_primary_10_1109_TEVC_2024_3382145
crossref_primary_10_1016_j_ijhcs_2025_103591
crossref_primary_10_1016_j_ijhcs_2025_103592
crossref_primary_10_1007_s10462_024_11005_9
crossref_primary_10_1007_s10639_022_11471_0
crossref_primary_10_1007_s12525_024_00707_1
crossref_primary_10_1016_j_ijmedinf_2025_105886
crossref_primary_10_1080_09638180_2025_2463961
crossref_primary_10_3390_ijerph20054261
crossref_primary_10_3390_bdcc9050138
crossref_primary_10_1007_s43681_025_00710_y
crossref_primary_10_1080_10447318_2022_2140385
crossref_primary_10_3390_cells12141847
crossref_primary_10_3390_e23010018
crossref_primary_10_1016_j_jmapro_2023_06_003
crossref_primary_10_5753_jbcs_2025_5324
crossref_primary_10_1007_s00521_024_09435_1
crossref_primary_10_3390_biomedinformatics2010001
crossref_primary_10_1016_j_bspc_2024_106179
crossref_primary_10_1111_exsy_13494
crossref_primary_10_1109_TAFFC_2023_3333200
crossref_primary_10_1016_j_neucom_2023_126884
crossref_primary_10_1109_MGRS_2023_3237465
crossref_primary_10_3390_app15147724
crossref_primary_10_3390_app12020925
crossref_primary_10_3390_asi8020035
crossref_primary_10_3390_systems10050160
crossref_primary_10_1016_j_clinimag_2025_110492
crossref_primary_10_1016_j_ijhcs_2025_103573
crossref_primary_10_1016_j_jbi_2020_103655
crossref_primary_10_1117_1_JRS_18_042604
crossref_primary_10_1109_TITS_2024_3385754
crossref_primary_10_1186_s41239_021_00279_6
crossref_primary_10_1007_s10479_024_05943_4
crossref_primary_10_1016_j_compstruct_2023_117601
crossref_primary_10_1016_j_compchemeng_2023_108442
crossref_primary_10_3389_frai_2023_1203546
crossref_primary_10_1080_00207543_2022_2122620
crossref_primary_10_1007_s13132_024_02096_4
crossref_primary_10_1109_TASE_2023_3242198
crossref_primary_10_1080_09544828_2024_2362587
crossref_primary_10_1038_s41598_025_06998_4
crossref_primary_10_1038_s41746_024_01123_7
crossref_primary_10_1016_j_ecoenv_2023_115250
crossref_primary_10_1007_s12065_023_00833_3
crossref_primary_10_3389_frai_2021_693022
crossref_primary_10_1111_cbdd_14262
crossref_primary_10_1016_j_cmpb_2023_107527
crossref_primary_10_3390_technologies10030074
crossref_primary_10_3390_electronics12030567
crossref_primary_10_1016_j_jsis_2024_101864
crossref_primary_10_1016_j_scitotenv_2023_163004
crossref_primary_10_1109_TFUZZ_2022_3229525
crossref_primary_10_1186_s40337_025_01303_0
crossref_primary_10_1016_j_actpsy_2025_105097
crossref_primary_10_1016_j_engappai_2025_110363
crossref_primary_10_1007_s10676_023_09692_z
crossref_primary_10_1007_s00521_021_06332_9
crossref_primary_10_1016_j_jwpe_2024_104781
crossref_primary_10_1016_j_knosys_2023_110866
crossref_primary_10_3390_electronics13132438
crossref_primary_10_1111_exsy_70021
crossref_primary_10_3390_pr13030912
crossref_primary_10_1016_j_engstruct_2022_114768
crossref_primary_10_1109_TUFFC_2022_3195477
crossref_primary_10_1088_1402_4896_addef5
crossref_primary_10_1162_dint_a_00119
crossref_primary_10_1145_3758967
crossref_primary_10_1145_3644073
crossref_primary_10_3390_sym13122439
crossref_primary_10_1109_ACCESS_2020_3031477
crossref_primary_10_3389_fpubh_2024_1344865
crossref_primary_10_1016_j_jece_2024_114481
crossref_primary_10_1109_MITP_2025_3543555
crossref_primary_10_1016_j_ifacol_2024_11_023
crossref_primary_10_1142_S2811032325400028
crossref_primary_10_1016_j_ijinfomgt_2025_102976
crossref_primary_10_1007_s43681_022_00142_y
crossref_primary_10_3390_systems13040264
crossref_primary_10_1007_s40430_024_05222_0
crossref_primary_10_1016_j_asoc_2020_106658
crossref_primary_10_1016_j_eswa_2025_129514
crossref_primary_10_3390_s23249871
crossref_primary_10_1080_1369118X_2024_2400130
crossref_primary_10_1016_j_enbuild_2022_112629
crossref_primary_10_1111_exsy_70017
crossref_primary_10_1111_exsy_70008
crossref_primary_10_1016_j_ins_2024_121097
crossref_primary_10_3390_info14100541
crossref_primary_10_3390_ai5040130
crossref_primary_10_1007_s00170_021_08320_8
crossref_primary_10_1038_s41598_023_36249_3
crossref_primary_10_1109_TIP_2023_3246793
crossref_primary_10_3390_app12041885
crossref_primary_10_3390_jcm14176201
crossref_primary_10_1002_hyp_70163
crossref_primary_10_1016_j_engappai_2023_107829
crossref_primary_10_3390_math13183001
crossref_primary_10_1016_j_saa_2025_126068
crossref_primary_10_1016_j_future_2020_06_036
crossref_primary_10_3390_w14091384
crossref_primary_10_1016_j_buildenv_2021_108502
crossref_primary_10_1007_s10462_024_10996_9
crossref_primary_10_1016_j_future_2021_12_007
crossref_primary_10_1145_3579522
crossref_primary_10_3390_ai5040101
crossref_primary_10_3390_ai5040100
crossref_primary_10_1002_aaai_12056
crossref_primary_10_3390_app13063671
crossref_primary_10_1007_s40815_020_00998_4
crossref_primary_10_1177_0021955X241255102
crossref_primary_10_1016_j_future_2020_06_048
crossref_primary_10_1186_s40561_024_00343_4
crossref_primary_10_1016_j_engappai_2025_110324
crossref_primary_10_1016_j_cscm_2025_e04568
crossref_primary_10_1109_ACCESS_2024_3521945
crossref_primary_10_3390_jmse11112165
crossref_primary_10_1145_3555580
crossref_primary_10_1016_j_eswa_2020_114287
crossref_primary_10_3390_aerospace8080224
crossref_primary_10_1007_s10462_023_10415_5
crossref_primary_10_1109_ACCESS_2025_3555626
crossref_primary_10_1109_TVCG_2025_3562929
crossref_primary_10_3390_su16229963
crossref_primary_10_1109_ACCESS_2025_3609188
crossref_primary_10_3390_s25154647
crossref_primary_10_1051_shsconf_202521401001
crossref_primary_10_1631_FITEE_2100463
crossref_primary_10_1016_j_eswa_2022_117904
crossref_primary_10_3390_math13152436
crossref_primary_10_3390_a18090586
crossref_primary_10_3390_en16247988
crossref_primary_10_1016_j_ijhcs_2025_103505
crossref_primary_10_1145_3700749
crossref_primary_10_3390_s24010164
crossref_primary_10_3390_app131910778
crossref_primary_10_4102_sajems_v27i1_5786
crossref_primary_10_1016_j_inffus_2024_102598
crossref_primary_10_1016_j_ijinfomgt_2025_102939
crossref_primary_10_1016_j_esmorw_2025_100182
crossref_primary_10_1002_widm_1493
crossref_primary_10_1016_j_talanta_2025_128652
crossref_primary_10_1142_S0218202525500125
crossref_primary_10_1002_widm_1495
crossref_primary_10_1007_s41060_024_00636_4
crossref_primary_10_1145_3457188
crossref_primary_10_2196_71080
crossref_primary_10_1016_j_cie_2025_111407
crossref_primary_10_1016_j_inffus_2025_103718
crossref_primary_10_1145_3457187
crossref_primary_10_17803_1729_5920_2025_222_5_130_138
crossref_primary_10_1016_j_hrmr_2021_100876
crossref_primary_10_3390_rs14215331
crossref_primary_10_1002_widm_1479
crossref_primary_10_3390_en18051282
crossref_primary_10_3390_info16060435
crossref_primary_10_3390_app15158449
crossref_primary_10_1371_journal_pone_0321342
crossref_primary_10_1029_2023MS003715
crossref_primary_10_1038_s41524_021_00571_z
crossref_primary_10_1190_geo2023_0657_1
crossref_primary_10_1177_00220345221089251
crossref_primary_10_1016_j_ultrasmedbio_2025_04_009
crossref_primary_10_3390_geomatics5030033
crossref_primary_10_3389_fevo_2023_1189184
crossref_primary_10_1109_TFUZZ_2021_3112222
crossref_primary_10_1145_3632121
crossref_primary_10_1016_j_tins_2024_12_007
crossref_primary_10_1016_j_engappai_2025_110409
crossref_primary_10_1080_17480272_2023_2265349
crossref_primary_10_1038_s41598_022_20347_9
crossref_primary_10_1386_drtp_00119_7
crossref_primary_10_1109_MC_2022_3233806
crossref_primary_10_1186_s12911_021_01518_6
crossref_primary_10_1016_j_pcad_2023_09_001
crossref_primary_10_1007_s11042_024_20090_5
crossref_primary_10_1007_s10994_024_06538_7
crossref_primary_10_3390_philosophies7020035
crossref_primary_10_1016_j_eswa_2024_124710
crossref_primary_10_1109_ACCESS_2025_3599281
crossref_primary_10_3390_app132212374
crossref_primary_10_1007_s13347_024_00787_z
crossref_primary_10_1016_j_iintel_2023_100028
crossref_primary_10_1080_10494820_2023_2277761
crossref_primary_10_1007_s10606_022_09450_7
crossref_primary_10_1145_3517224
crossref_primary_10_1016_j_inoche_2024_113577
crossref_primary_10_3390_app15126893
crossref_primary_10_1016_j_watres_2024_122110
crossref_primary_10_1007_s10664_024_10594_x
crossref_primary_10_1007_s12599_025_00940_8
crossref_primary_10_1016_j_ress_2024_110285
crossref_primary_10_1016_j_jclepro_2024_142824
crossref_primary_10_1016_j_knosys_2022_109901
crossref_primary_10_1145_3689037
crossref_primary_10_1109_ACCESS_2025_3553032
crossref_primary_10_3847_1538_3881_add2f1
crossref_primary_10_3390_bioengineering12040356
crossref_primary_10_1007_s10115_023_01903_9
crossref_primary_10_1007_s44206_025_00212_8
crossref_primary_10_1080_02642069_2024_2361291
crossref_primary_10_1007_s11098_025_02299_8
crossref_primary_10_26668_IndexLawJournals_2358_1352_2022_v32i12_7547
crossref_primary_10_1093_jge_gxad058
crossref_primary_10_11616_asbi_1658320
crossref_primary_10_1016_j_enbuild_2022_112583
crossref_primary_10_1016_j_specom_2022_11_005
crossref_primary_10_1007_s10462_024_10712_7
crossref_primary_10_1080_1461670X_2025_2505001
crossref_primary_10_1017_aog_2024_33
crossref_primary_10_1016_j_eswa_2024_124733
crossref_primary_10_1109_ACCESS_2023_3236260
crossref_primary_10_1016_j_eswa_2024_124736
crossref_primary_10_1016_j_jisa_2024_103716
crossref_primary_10_3389_fpsyg_2021_713074
crossref_primary_10_1109_RBME_2023_3296938
crossref_primary_10_3233_ICA_230719
crossref_primary_10_1002_qute_202400173
crossref_primary_10_1109_ACCESS_2023_3251892
crossref_primary_10_2147_JMDH_S485724
crossref_primary_10_1145_3617380
crossref_primary_10_1016_j_compstruc_2023_107155
crossref_primary_10_3390_educsci14020172
crossref_primary_10_3390_electronics10121406
crossref_primary_10_1007_s10726_024_09912_x
crossref_primary_10_3390_s22249927
crossref_primary_10_1007_s12083_023_01507_8
crossref_primary_10_1016_j_ipm_2024_103900
crossref_primary_10_1109_ACCESS_2025_3558716
crossref_primary_10_1111_nph_70552
crossref_primary_10_1016_j_ast_2022_107993
crossref_primary_10_1109_TIM_2024_3350131
crossref_primary_10_3390_app12189181
crossref_primary_10_1007_s10462_022_10304_3
crossref_primary_10_1109_ACCESS_2024_3405788
crossref_primary_10_1038_s41467_023_43095_4
crossref_primary_10_1109_MS_2023_3321282
crossref_primary_10_2196_53207
crossref_primary_10_3389_fgene_2022_902960
crossref_primary_10_1016_j_hrmr_2021_100881
crossref_primary_10_3390_children10101655
crossref_primary_10_1109_TNNLS_2022_3160699
crossref_primary_10_1017_dap_2021_3
crossref_primary_10_1007_s10479_025_06684_8
crossref_primary_10_1109_ACCESS_2023_3329257
crossref_primary_10_22201_ceiich_24485691e_2023_31_69775
crossref_primary_10_1371_journal_pone_0305258
crossref_primary_10_1108_INTR_05_2020_0300
crossref_primary_10_1016_j_enbuild_2024_114912
crossref_primary_10_2478_jaiscr_2025_0013
crossref_primary_10_1016_j_engappai_2024_109571
crossref_primary_10_1016_j_procs_2025_08_143
crossref_primary_10_33333_rp_vol54n1_04
crossref_primary_10_1108_ITP_06_2024_0808
crossref_primary_10_1002_wene_532
crossref_primary_10_1016_j_knosys_2022_109947
crossref_primary_10_1016_j_asoc_2022_108912
crossref_primary_10_1016_j_techfore_2024_123709
crossref_primary_10_3389_feduc_2020_572367
crossref_primary_10_1007_s40685_020_00138_6
crossref_primary_10_1080_0960085X_2022_2073278
crossref_primary_10_1007_s10462_022_10246_w
crossref_primary_10_3390_su16093858
crossref_primary_10_3390_app142210413
crossref_primary_10_1016_j_ijpe_2021_108380
crossref_primary_10_1007_s40815_023_01597_9
crossref_primary_10_1177_01926233251340622
crossref_primary_10_1016_j_amf_2025_200198
crossref_primary_10_3390_app112210801
crossref_primary_10_3390_jimaging10100252
crossref_primary_10_1093_bib_bbae356
crossref_primary_10_1038_s41597_024_03062_0
crossref_primary_10_1016_j_techfore_2025_124076
crossref_primary_10_1145_3526107
crossref_primary_10_1109_ACCESS_2024_3441469
crossref_primary_10_1108_AJIM_08_2024_0606
crossref_primary_10_1007_s42454_020_00023_x
crossref_primary_10_1080_10494820_2025_2495733
crossref_primary_10_1126_scirobotics_adi6421
crossref_primary_10_1016_j_scs_2025_106365
crossref_primary_10_1038_s41598_023_46493_2
crossref_primary_10_3389_fncom_2024_1349408
crossref_primary_10_1007_s13748_024_00315_2
crossref_primary_10_1016_j_artmed_2023_102494
crossref_primary_10_1016_j_ins_2024_120616
crossref_primary_10_1007_s10994_023_06330_z
crossref_primary_10_1016_j_inffus_2021_03_009
crossref_primary_10_1080_2573234X_2024_2396366
crossref_primary_10_1145_3599974
crossref_primary_10_1002_widm_1424
crossref_primary_10_1155_2023_4459198
crossref_primary_10_1093_advances_nmac103
crossref_primary_10_1016_j_datak_2021_101946
crossref_primary_10_1038_s41598_025_09265_8
crossref_primary_10_64293_mentor_v1i2_15
crossref_primary_10_1007_s00521_024_10799_7
crossref_primary_10_1177_09610006241241306
crossref_primary_10_1108_ITP_05_2023_0431
crossref_primary_10_1007_s00704_023_04571_5
crossref_primary_10_1007_s10489_023_04810_2
crossref_primary_10_1109_ACCESS_2025_3553934
crossref_primary_10_1007_s40745_025_00617_9
crossref_primary_10_1016_j_heliyon_2023_e14379
crossref_primary_10_1016_j_knosys_2023_111298
crossref_primary_10_1021_acs_analchem_5c03126
crossref_primary_10_3390_app13031252
crossref_primary_10_1109_ACCESS_2025_3565901
crossref_primary_10_1145_3503461
crossref_primary_10_1145_3710908
crossref_primary_10_1016_j_ins_2021_11_010
crossref_primary_10_1016_j_ins_2023_01_090
crossref_primary_10_1016_j_ejrad_2024_111884
crossref_primary_10_1016_j_apenergy_2024_123960
crossref_primary_10_1080_10447318_2023_2285640
crossref_primary_10_1016_j_est_2025_117808
crossref_primary_10_1109_ACCESS_2025_3581136
crossref_primary_10_1016_j_envres_2024_120683
crossref_primary_10_1016_j_ecoinf_2025_103081
crossref_primary_10_1134_S1054661824700615
crossref_primary_10_1016_j_ijpe_2024_109286
crossref_primary_10_1109_TVCG_2025_3558074
crossref_primary_10_3390_diagnostics14060625
crossref_primary_10_3390_info14080453
crossref_primary_10_3390_app13127328
crossref_primary_10_3390_biomedicines10092157
crossref_primary_10_1016_j_eswa_2022_118348
crossref_primary_10_1016_j_istruc_2024_107732
crossref_primary_10_3390_fi16070241
crossref_primary_10_1016_j_apenergy_2024_122624
crossref_primary_10_1002_widm_1451
crossref_primary_10_1016_j_jbusres_2024_114821
crossref_primary_10_1016_j_asoc_2020_107072
crossref_primary_10_1002_aisy_202400359
crossref_primary_10_1080_10447318_2023_2209995
crossref_primary_10_3390_electronics10212660
crossref_primary_10_1002_job_2831
crossref_primary_10_1016_j_knosys_2021_107455
crossref_primary_10_1051_0004_6361_202243354
crossref_primary_10_32604_cmc_2024_059116
crossref_primary_10_1007_s00530_022_00960_4
crossref_primary_10_3917_rips1_080_0079
crossref_primary_10_3390_en18051242
crossref_primary_10_3390_info12120518
crossref_primary_10_1007_s00146_021_01239_4
crossref_primary_10_1016_j_artint_2023_104058
crossref_primary_10_3390_rs17183226
crossref_primary_10_1016_j_isci_2022_104176
crossref_primary_10_3390_laws10040093
crossref_primary_10_1016_j_heliyon_2023_e16110
crossref_primary_10_1016_j_sciaf_2023_e01799
crossref_primary_10_1016_j_mtphys_2022_100946
crossref_primary_10_1016_j_ijmedinf_2025_105914
crossref_primary_10_1007_s00521_023_08929_8
crossref_primary_10_3390_computers10110154
crossref_primary_10_3389_fmars_2023_1170587
crossref_primary_10_1109_ACCESS_2022_3180788
crossref_primary_10_1177_20552076251333480
crossref_primary_10_1016_j_ejco_2024_100091
crossref_primary_10_1155_stc_8462004
crossref_primary_10_1080_10447318_2023_2221605
crossref_primary_10_1002_capr_12764
crossref_primary_10_1007_s40120_022_00355_7
crossref_primary_10_1057_s41261_024_00233_2
crossref_primary_10_1016_j_media_2022_102471
crossref_primary_10_1016_j_jclepro_2023_137564
crossref_primary_10_1155_2023_7669696
crossref_primary_10_1016_j_autcon_2024_105651
crossref_primary_10_1038_s43588_024_00593_9
crossref_primary_10_1016_j_lindif_2024_102499
crossref_primary_10_1111_exsy_12959
crossref_primary_10_1186_s13014_022_02035_0
crossref_primary_10_1145_3527451
crossref_primary_10_1093_pnasnexus_pgad111
crossref_primary_10_3390_risks9070126
crossref_primary_10_1016_j_elerap_2021_101079
crossref_primary_10_1109_ACCESS_2023_3320042
crossref_primary_10_1142_S1793984425300067
crossref_primary_10_1016_j_joule_2022_10_016
crossref_primary_10_1155_2023_4637678
crossref_primary_10_1093_pubmed_fdae154
crossref_primary_10_1016_j_culher_2024_11_020
crossref_primary_10_3389_frobt_2025_1535082
crossref_primary_10_1016_j_frl_2023_104306
crossref_primary_10_1186_s42162_022_00241_4
crossref_primary_10_1525_elementa_2021_00064
crossref_primary_10_1080_00913367_2020_1811179
crossref_primary_10_1016_j_jmsy_2021_05_003
crossref_primary_10_3390_app12136390
crossref_primary_10_1145_3721976
crossref_primary_10_1016_j_neunet_2024_107065
crossref_primary_10_1111_1540_6229_12483
crossref_primary_10_3390_en18071568
crossref_primary_10_3390_app13063572
crossref_primary_10_1089_big_2022_0287
crossref_primary_10_1016_j_scitotenv_2022_155070
crossref_primary_10_1109_TITS_2020_3032227
crossref_primary_10_1071_WF22138
crossref_primary_10_1111_joes_70014
crossref_primary_10_1186_s12911_021_01699_0
crossref_primary_10_1007_s12369_023_01020_1
crossref_primary_10_1088_1361_6501_adfcf3
crossref_primary_10_1016_j_compeleceng_2022_108381
crossref_primary_10_1108_AJIM_11_2024_0898
crossref_primary_10_1007_s11682_022_00688_9
crossref_primary_10_3390_app14010468
crossref_primary_10_1007_s10994_025_06847_5
crossref_primary_10_1007_s10606_023_09475_6
crossref_primary_10_1016_j_procs_2024_05_164
crossref_primary_10_1007_s40593_023_00375_w
crossref_primary_10_1109_ACCESS_2025_3597575
crossref_primary_10_1080_17538947_2025_2510570
crossref_primary_10_1186_s12873_024_01135_2
crossref_primary_10_3390_met15040408
crossref_primary_10_1007_s10551_024_05894_7
crossref_primary_10_1007_s10489_025_06798_3
crossref_primary_10_1109_ACCESS_2023_3278273
crossref_primary_10_1145_3672462
crossref_primary_10_1109_ACCESS_2022_3230590
crossref_primary_10_1007_s10618_022_00889_2
crossref_primary_10_1016_j_future_2022_03_009
crossref_primary_10_1016_j_ymssp_2024_111120
crossref_primary_10_3917_qdm_229_0131
crossref_primary_10_1002_mar_22118
crossref_primary_10_1007_s43681_024_00507_5
crossref_primary_10_38124_ijsrmt_v3i2_678
crossref_primary_10_3390_foods14152663
crossref_primary_10_1007_s11042_024_19161_4
crossref_primary_10_1007_s41870_023_01367_8
crossref_primary_10_1109_ACCESS_2022_3160179
crossref_primary_10_1016_j_techfore_2025_124265
crossref_primary_10_1038_s42256_022_00558_5
crossref_primary_10_1016_j_inffus_2022_03_011
crossref_primary_10_1016_j_csbj_2024_05_014
crossref_primary_10_1007_s10618_023_00927_7
crossref_primary_10_1016_j_egyr_2024_11_075
crossref_primary_10_3389_frobt_2023_1236184
crossref_primary_10_4018_IJEGR_298216
crossref_primary_10_4018_IJT_291553
crossref_primary_10_1016_j_imavis_2024_104988
crossref_primary_10_1021_acsami_5c05529
crossref_primary_10_1038_s41598_024_56081_7
crossref_primary_10_1007_s10479_025_06534_7
crossref_primary_10_3390_foods14152679
crossref_primary_10_3390_s21165657
crossref_primary_10_1016_j_ijin_2025_07_001
crossref_primary_10_3758_s13428_023_02335_7
crossref_primary_10_1080_13600869_2025_2497633
crossref_primary_10_3390_app10144725
crossref_primary_10_1109_ACCESS_2025_3549031
crossref_primary_10_3389_frai_2024_1371502
crossref_primary_10_1016_j_eswa_2022_119150
crossref_primary_10_1016_j_knosys_2021_107162
crossref_primary_10_1038_s41746_024_01200_x
crossref_primary_10_1109_TCYB_2025_3531013
crossref_primary_10_1016_j_arth_2025_04_072
crossref_primary_10_1016_j_ejim_2023_10_005
crossref_primary_10_2478_ceej_2024_0015
crossref_primary_10_1016_j_crad_2020_11_113
crossref_primary_10_1016_j_eswa_2021_114891
crossref_primary_10_1007_s12525_023_00640_9
crossref_primary_10_1016_j_asoc_2025_112939
crossref_primary_10_3389_frhs_2025_1545864
crossref_primary_10_3390_electronics13173497
crossref_primary_10_3389_fncom_2024_1434421
crossref_primary_10_17645_mac_v11i4_7018
crossref_primary_10_4018_JGIM_354062
crossref_primary_10_1016_j_eswa_2025_128954
crossref_primary_10_1016_j_ins_2022_06_026
crossref_primary_10_1109_TCYB_2024_3487934
crossref_primary_10_1016_j_inffus_2024_102721
crossref_primary_10_48047_rzb7xq74
crossref_primary_10_3390_app14051811
crossref_primary_10_1002_ail2_40
crossref_primary_10_1007_s44163_022_00038_0
crossref_primary_10_1109_ACCESS_2022_3156942
crossref_primary_10_1109_JBHI_2021_3120178
crossref_primary_10_3390_app15137165
crossref_primary_10_1007_s11417_024_09429_x
crossref_primary_10_1049_htl2_12122
crossref_primary_10_1145_3626520
crossref_primary_10_1016_j_ribaf_2023_101940
crossref_primary_10_1109_TCSVT_2024_3405998
crossref_primary_10_1016_j_ijhcs_2025_103484
crossref_primary_10_1016_j_rcim_2023_102663
crossref_primary_10_1016_j_knosys_2022_109200
crossref_primary_10_3390_diagnostics12010040
crossref_primary_10_3390_electronics13163234
crossref_primary_10_1080_17445302_2024_2373561
crossref_primary_10_3389_fmolb_2024_1389325
crossref_primary_10_1002_ail2_77
crossref_primary_10_1109_TITS_2023_3316455
crossref_primary_10_1016_j_eswa_2025_128975
crossref_primary_10_1016_j_nanoen_2022_108084
crossref_primary_10_1109_MPRV_2022_3217408
crossref_primary_10_1016_j_jik_2025_100700
crossref_primary_10_3390_app13074267
crossref_primary_10_1007_s11831_023_09881_5
crossref_primary_10_1038_s41598_022_24315_1
crossref_primary_10_3389_fdgth_2023_1196079
crossref_primary_10_1002_ail2_64
crossref_primary_10_1007_s00477_023_02560_8
crossref_primary_10_1016_j_rser_2021_111051
crossref_primary_10_1177_02783649251336385
crossref_primary_10_3389_fdgth_2022_920662
crossref_primary_10_1038_s44222_023_00096_8
crossref_primary_10_1109_TNNLS_2025_3528321
crossref_primary_10_4000_rac_29961
crossref_primary_10_1007_s11042_024_19072_4
crossref_primary_10_1016_j_eswa_2023_120467
crossref_primary_10_1016_j_isprsjprs_2023_05_025
crossref_primary_10_1007_s10676_025_09842_5
crossref_primary_10_1142_S0219649225500091
crossref_primary_10_1016_j_cirp_2024_06_003
crossref_primary_10_3390_diagnostics12020237
crossref_primary_10_1016_j_compbiomed_2024_109001
crossref_primary_10_1177_20552076241272632
crossref_primary_10_1016_j_knosys_2023_110523
crossref_primary_10_3390_bdcc6030091
crossref_primary_10_3390_fi17030100
crossref_primary_10_1371_journal_pone_0291443
crossref_primary_10_3390_foods11101500
crossref_primary_10_1016_j_jacr_2021_02_008
crossref_primary_10_1016_j_rmal_2025_100237
crossref_primary_10_1007_s44163_023_00092_2
crossref_primary_10_1145_3670685
crossref_primary_10_1145_3577011
crossref_primary_10_1080_10447318_2024_2400388
crossref_primary_10_3390_ijms23094645
crossref_primary_10_1007_s10994_024_06583_2
crossref_primary_10_3390_math11092121
crossref_primary_10_1016_j_compenvurbsys_2024_102119
crossref_primary_10_1007_s00521_023_08639_1
crossref_primary_10_1186_s13640_024_00645_0
crossref_primary_10_1167_tvst_14_9_17
crossref_primary_10_3390_brainsci15060565
crossref_primary_10_1007_s10922_021_09606_8
crossref_primary_10_1016_j_engappai_2023_107716
crossref_primary_10_3390_cancers15245793
crossref_primary_10_1016_j_net_2025_103588
crossref_primary_10_1145_3635474
crossref_primary_10_3390_s21072514
crossref_primary_10_1029_2024WR037582
crossref_primary_10_1007_s00766_025_00437_6
crossref_primary_10_1200_EDBK_390084
crossref_primary_10_1109_MC_2021_3076851
crossref_primary_10_1177_2327857924131046
crossref_primary_10_1177_20552076241259664
crossref_primary_10_1080_10447318_2024_2400396
crossref_primary_10_1002_ail2_37
crossref_primary_10_1016_j_eswa_2024_126063
crossref_primary_10_1108_JEIM_11_2020_0436
crossref_primary_10_1007_s12525_022_00593_5
crossref_primary_10_1080_00423114_2025_2526056
crossref_primary_10_3390_su12208548
crossref_primary_10_3390_fi17030129
crossref_primary_10_3390_s23135958
crossref_primary_10_1002_advs_202404437
crossref_primary_10_1109_ACCESS_2024_3351188
crossref_primary_10_1016_j_cogsys_2025_101357
crossref_primary_10_1016_j_gpb_2022_07_003
crossref_primary_10_1016_j_neucom_2021_10_046
crossref_primary_10_1080_12460125_2023_2207268
crossref_primary_10_1093_petrology_egae036
crossref_primary_10_1007_s44163_025_00318_5
crossref_primary_10_1016_j_media_2024_103436
crossref_primary_10_1002_int_22937
crossref_primary_10_1109_TNNLS_2023_3323131
crossref_primary_10_1029_2025WR040433
crossref_primary_10_2196_32240
crossref_primary_10_1016_j_compbiomed_2023_107806
crossref_primary_10_1007_s10278_025_01585_5
crossref_primary_10_1049_rsn2_70041
crossref_primary_10_1109_ACCESS_2021_3068961
crossref_primary_10_3390_fi15030097
crossref_primary_10_1007_s10462_022_10285_3
crossref_primary_10_3390_electronics13153004
crossref_primary_10_1016_j_ecoinf_2023_102163
crossref_primary_10_1016_j_dim_2024_100082
crossref_primary_10_3389_frai_2024_1406773
crossref_primary_10_1145_3625288
crossref_primary_10_1016_j_jclepro_2024_142655
crossref_primary_10_3390_app14135950
crossref_primary_10_3390_electronics13101895
crossref_primary_10_1007_s40305_025_00612_0
crossref_primary_10_1016_j_ifacol_2022_10_041
crossref_primary_10_1109_LSENS_2024_3358619
crossref_primary_10_3892_ol_2022_13630
crossref_primary_10_1109_TFUZZ_2024_3485212
crossref_primary_10_1016_j_engappai_2025_111521
crossref_primary_10_3390_diagnostics13243631
crossref_primary_10_7232_JKIIE_2024_50_3_189
crossref_primary_10_3390_bdcc7020113
crossref_primary_10_1007_s43681_022_00143_x
crossref_primary_10_1109_TLT_2023_3239110
crossref_primary_10_1016_j_jocs_2022_101824
crossref_primary_10_3233_IDT_230320
crossref_primary_10_1016_j_future_2025_107882
crossref_primary_10_1016_j_knosys_2022_109287
crossref_primary_10_1016_j_watres_2023_120503
crossref_primary_10_1007_s13218_023_00806_9
crossref_primary_10_1109_ACCESS_2021_3112397
crossref_primary_10_3390_diagnostics13243630
crossref_primary_10_1371_journal_pcbi_1010357
crossref_primary_10_1016_j_inffus_2023_101955
crossref_primary_10_1002_aaai_12184
crossref_primary_10_3390_biotech11040046
crossref_primary_10_1016_j_compeleceng_2024_109370
crossref_primary_10_1002_ett_70090
crossref_primary_10_1016_j_engappai_2022_105687
crossref_primary_10_1108_JMP_05_2024_0379
crossref_primary_10_3390_app10093089
crossref_primary_10_1109_ACCESS_2023_3287195
crossref_primary_10_1016_j_patter_2025_101340
crossref_primary_10_1109_TAI_2021_3128132
crossref_primary_10_1007_s10586_025_05473_z
crossref_primary_10_1016_j_patter_2025_101347
crossref_primary_10_1109_OJITS_2025_3550792
crossref_primary_10_3390_electronics14071251
crossref_primary_10_3390_make6010031
crossref_primary_10_3389_fcomp_2023_1096257
crossref_primary_10_3390_a17020078
crossref_primary_10_3390_electronics14071255
crossref_primary_10_1007_s10994_023_06479_7
crossref_primary_10_1016_j_compag_2025_110354
crossref_primary_10_1016_j_jbusres_2025_115309
crossref_primary_10_1016_j_watres_2024_123080
crossref_primary_10_1016_j_inffus_2023_101943
crossref_primary_10_1016_j_neucom_2024_127961
crossref_primary_10_1016_j_knosys_2023_110552
crossref_primary_10_1109_ACCESS_2025_3602673
crossref_primary_10_3390_app15084556
crossref_primary_10_1186_s40537_022_00579_2
crossref_primary_10_1145_3592616
crossref_primary_10_1016_j_inffus_2025_102996
crossref_primary_10_1016_j_scs_2022_104050
crossref_primary_10_1109_JBHI_2024_3447583
crossref_primary_10_1016_j_health_2021_100001
crossref_primary_10_1109_ACCESS_2025_3525952
crossref_primary_10_1016_j_ejrad_2023_110786
crossref_primary_10_48175_IJARSCT_23772
crossref_primary_10_1016_j_ejrad_2023_110787
crossref_primary_10_1016_j_fss_2024_108949
crossref_primary_10_1016_j_cpet_2021_06_006
crossref_primary_10_1007_s11831_023_10033_y
crossref_primary_10_1007_s13198_025_02801_9
crossref_primary_10_1177_07439156241309874
crossref_primary_10_1016_j_inffus_2025_102981
crossref_primary_10_1088_1748_9326_ad959f
crossref_primary_10_1016_j_cmpb_2023_107719
crossref_primary_10_1016_j_neunet_2021_12_014
crossref_primary_10_1016_j_neunet_2021_12_015
crossref_primary_10_1016_j_tele_2024_102135
crossref_primary_10_1177_20552076241308298
crossref_primary_10_1016_j_egyr_2022_10_060
crossref_primary_10_1038_s42256_025_01000_2
crossref_primary_10_1007_s11222_025_10668_w
crossref_primary_10_1186_s12909_024_05352_y
crossref_primary_10_3390_urbansci8030093
crossref_primary_10_1016_j_procs_2024_10_194
crossref_primary_10_1007_s42979_022_01258_y
crossref_primary_10_1016_j_imavis_2025_105689
crossref_primary_10_32604_jcs_2024_056164
crossref_primary_10_3390_cancers14133215
crossref_primary_10_3390_info16010053
crossref_primary_10_3390_technologies13090390
crossref_primary_10_1007_s10618_021_00776_2
crossref_primary_10_1016_j_inffus_2025_102976
crossref_primary_10_1016_j_neunet_2024_106542
crossref_primary_10_3389_frai_2020_564878
crossref_primary_10_3390_jtaer20030225
crossref_primary_10_1007_s00500_023_09430_z
crossref_primary_10_1016_j_ejor_2023_09_010
crossref_primary_10_1109_ACCESS_2022_3178382
crossref_primary_10_1371_journal_pone_0321478
crossref_primary_10_1016_j_procs_2024_10_186
crossref_primary_10_1109_TNNLS_2020_3027314
crossref_primary_10_1007_s10586_025_05281_5
crossref_primary_10_1108_BIJ_02_2022_0112
crossref_primary_10_3390_fi16020046
crossref_primary_10_1016_j_tele_2024_102175
crossref_primary_10_3390_app13137432
crossref_primary_10_3390_rs15153758
crossref_primary_10_1080_01691864_2021_1955001
crossref_primary_10_1007_s44206_024_00087_1
crossref_primary_10_3389_feduc_2024_1386075
crossref_primary_10_3389_frai_2023_1099521
crossref_primary_10_1016_j_learninstruc_2024_101929
crossref_primary_10_3389_forgp_2025_1538438
crossref_primary_10_3390_app13105886
crossref_primary_10_1016_j_jairtraman_2023_102511
crossref_primary_10_1016_j_omega_2025_103335
crossref_primary_10_1016_j_eswa_2022_116857
crossref_primary_10_1515_zwf_2025_1062
crossref_primary_10_3390_app11104573
crossref_primary_10_3390_diagnostics15151950
crossref_primary_10_1080_17538947_2025_2528621
crossref_primary_10_3390_s23020634
crossref_primary_10_1016_j_scitotenv_2024_173546
crossref_primary_10_1016_j_egyr_2025_08_046
crossref_primary_10_1016_j_jretconser_2024_103933
crossref_primary_10_3390_electronics13183738
crossref_primary_10_3390_jpm12030435
crossref_primary_10_1016_j_bspc_2025_107987
crossref_primary_10_1109_ACCESS_2024_3427631
crossref_primary_10_1145_3709367
crossref_primary_10_1016_j_compbiomed_2023_106554
crossref_primary_10_1016_j_ijhcs_2021_102684
crossref_primary_10_3390_app14052209
crossref_primary_10_1016_j_psep_2022_12_018
crossref_primary_10_1016_j_knosys_2022_110189
crossref_primary_10_1109_ACCESS_2025_3558845
crossref_primary_10_1016_j_ejor_2023_09_026
crossref_primary_10_3390_fi12120226
crossref_primary_10_1016_j_energy_2022_125075
crossref_primary_10_1016_j_cag_2023_06_010
crossref_primary_10_1155_2022_6892995
crossref_primary_10_1007_s11069_020_04124_3
crossref_primary_10_1145_3618105
crossref_primary_10_1016_j_knosys_2021_107970
crossref_primary_10_1109_ACCESS_2022_3232299
crossref_primary_10_1016_j_frl_2023_104242
crossref_primary_10_1109_TFUZZ_2021_3049911
crossref_primary_10_1186_s40561_024_00335_4
crossref_primary_10_1016_j_apergo_2024_104271
crossref_primary_10_1097_RLI_0000000000000962
crossref_primary_10_1016_j_ijhcs_2022_102976
crossref_primary_10_3390_jintelligence9030046
crossref_primary_10_1108_ITSE_10_2021_0188
crossref_primary_10_1007_s10516_025_09748_3
crossref_primary_10_2196_50048
crossref_primary_10_1002_pmic_202100232
crossref_primary_10_1002_jmri_28663
crossref_primary_10_3390_app12031353
crossref_primary_10_1016_j_compbiomed_2025_110649
crossref_primary_10_1108_JHTT_03_2024_0139
crossref_primary_10_1016_j_ijhcs_2022_102941
crossref_primary_10_1007_s11356_022_22099_5
crossref_primary_10_1007_s11042_024_20016_1
crossref_primary_10_1038_s41598_024_60220_5
crossref_primary_10_1002_ana_27229
crossref_primary_10_1007_s10462_025_11342_3
crossref_primary_10_1109_TAI_2023_3266183
crossref_primary_10_1109_TNNLS_2022_3202234
crossref_primary_10_1007_s43681_020_00012_5
crossref_primary_10_3389_fmicb_2024_1393243
crossref_primary_10_1016_j_cor_2023_106268
crossref_primary_10_1007_s00500_023_08041_y
crossref_primary_10_1109_LGRS_2024_3400934
crossref_primary_10_1007_s40012_023_00381_2
crossref_primary_10_1109_ACCESS_2024_3409843
crossref_primary_10_4204_EPTCS_416_13
crossref_primary_10_1007_s43681_024_00586_4
crossref_primary_10_1007_s10994_023_06351_8
crossref_primary_10_1007_s10506_022_09327_6
crossref_primary_10_1080_10447318_2024_2405266
crossref_primary_10_3390_info14010021
crossref_primary_10_1109_TEM_2025_3591661
crossref_primary_10_3390_computation12060113
crossref_primary_10_1186_s12911_025_02890_3
crossref_primary_10_3390_data10040052
crossref_primary_10_1007_s43681_023_00278_5
crossref_primary_10_1016_j_knosys_2024_112567
crossref_primary_10_1007_s11432_023_4011_4
crossref_primary_10_1016_j_neucom_2021_09_051
crossref_primary_10_1016_j_procir_2025_01_005
crossref_primary_10_1016_j_datak_2025_102493
crossref_primary_10_1109_OJCOMS_2025_3583867
crossref_primary_10_1007_s00521_022_07159_8
crossref_primary_10_1109_MIS_2024_3383155
crossref_primary_10_1016_j_cose_2023_103297
crossref_primary_10_1016_j_ijar_2024_109206
crossref_primary_10_1016_j_jhydrol_2022_128495
crossref_primary_10_1007_s00550_021_00524_6
crossref_primary_10_1007_s11277_023_10585_z
crossref_primary_10_3389_frai_2023_1264372
crossref_primary_10_1016_j_newideapsych_2024_101077
crossref_primary_10_1038_s42256_024_00842_6
crossref_primary_10_1007_s00521_025_11583_x
crossref_primary_10_3390_make3030033
crossref_primary_10_1631_FITEE_2000347
crossref_primary_10_3390_electronics14183586
crossref_primary_10_2478_picbe_2024_0138
crossref_primary_10_3389_fnins_2022_906290
crossref_primary_10_1016_j_inffus_2024_102638
crossref_primary_10_1007_s00424_025_03076_6
crossref_primary_10_1016_j_cherd_2022_10_014
crossref_primary_10_1145_3502265
crossref_primary_10_1057_s41599_023_01579_0
crossref_primary_10_1109_JSEN_2025_3541158
crossref_primary_10_1109_ACCESS_2023_3327820
crossref_primary_10_1016_j_iswa_2023_200181
crossref_primary_10_3389_fmed_2025_1545409
crossref_primary_10_1080_10447318_2024_2348843
crossref_primary_10_1002_jor_25962
crossref_primary_10_1016_j_compenvurbsys_2021_101691
crossref_primary_10_1038_s41598_025_01854_x
crossref_primary_10_1002_bies_202100025
crossref_primary_10_3390_app13064040
crossref_primary_10_1007_s00146_025_02380_0
crossref_primary_10_3389_fonc_2025_1540195
crossref_primary_10_3390_infrastructures9120213
crossref_primary_10_3390_make3030027
crossref_primary_10_1111_tgis_13045
crossref_primary_10_1007_s41060_024_00694_8
crossref_primary_10_1016_j_inffus_2025_102928
crossref_primary_10_1016_j_jss_2022_111538
crossref_primary_10_1016_j_datak_2025_102470
crossref_primary_10_1016_j_softx_2025_102289
crossref_primary_10_1109_TII_2022_3181692
crossref_primary_10_1111_brv_13167
crossref_primary_10_3390_jimaging6060037
crossref_primary_10_1016_j_enbuild_2023_113204
crossref_primary_10_3390_computers13100252
crossref_primary_10_1007_s10845_023_02127_y
crossref_primary_10_1007_s10462_024_11007_7
crossref_primary_10_1016_j_dajour_2022_100153
crossref_primary_10_3390_app15031192
crossref_primary_10_57197_JDR_2024_0101
crossref_primary_10_1016_j_giq_2023_101803
crossref_primary_10_1109_ACCESS_2020_3048348
crossref_primary_10_1109_ACCESS_2024_3474012
crossref_primary_10_3390_app15137261
crossref_primary_10_1016_j_jmsy_2024_05_004
crossref_primary_10_1109_ACCESS_2024_3413075
crossref_primary_10_1038_s43856_024_00726_1
crossref_primary_10_1108_INTR_08_2021_0600
crossref_primary_10_1007_s13218_024_00878_1
crossref_primary_10_1016_j_heliyon_2023_e20517
crossref_primary_10_1007_s11633_022_1407_3
crossref_primary_10_1038_s41598_024_67259_4
crossref_primary_10_1080_26408066_2025_2517073
crossref_primary_10_3390_informatics9010014
crossref_primary_10_1016_j_cose_2025_104358
crossref_primary_10_1016_j_ijpe_2025_109688
crossref_primary_10_1038_s41578_022_00490_5
crossref_primary_10_1109_TGRS_2024_3493763
crossref_primary_10_1017_S1930297500003594
crossref_primary_10_1021_acsestengg_5c00356
crossref_primary_10_1029_2020WR027948
crossref_primary_10_1109_ACCESS_2025_3569575
crossref_primary_10_1038_s41746_023_00751_9
crossref_primary_10_1109_ACCESS_2021_3061424
crossref_primary_10_1007_s11191_024_00585_1
crossref_primary_10_1002_stc_3019
crossref_primary_10_1016_j_ecoinf_2025_103131
crossref_primary_10_1007_s10844_025_00940_w
crossref_primary_10_1016_j_compind_2023_104044
crossref_primary_10_1016_j_eswa_2021_114801
crossref_primary_10_1016_j_teler_2024_100116
crossref_primary_10_1007_s11227_022_04818_4
crossref_primary_10_1007_s10796_023_10406_5
crossref_primary_10_1109_TNSM_2025_3567654
crossref_primary_10_3390_s23042013
crossref_primary_10_1061_JCCEE5_CPENG_5744
crossref_primary_10_1109_ACCESS_2021_3110647
crossref_primary_10_1016_j_fsidi_2022_301403
crossref_primary_10_1109_TPAMI_2022_3225162
crossref_primary_10_3390_agronomy12112659
crossref_primary_10_1093_hr_uhac187
crossref_primary_10_1007_s10579_023_09671_2
crossref_primary_10_1371_journal_pone_0286829
crossref_primary_10_3389_feart_2022_917608
crossref_primary_10_1080_17483107_2023_2170478
crossref_primary_10_1016_j_tifs_2021_04_008
crossref_primary_10_1016_j_inffus_2025_102972
crossref_primary_10_3390_jimaging6120133
crossref_primary_10_1007_s11219_022_09613_1
crossref_primary_10_1007_s10479_025_06713_6
crossref_primary_10_1038_s41562_025_02297_0
crossref_primary_10_1007_s10111_025_00826_5
crossref_primary_10_1016_j_talanta_2024_126652
crossref_primary_10_1145_3610219
crossref_primary_10_1007_s10479_025_06570_3
crossref_primary_10_2196_64617
crossref_primary_10_17586_2226_1494_2025_25_3_373_386
crossref_primary_10_1016_j_cherd_2024_12_015
crossref_primary_10_1016_j_aap_2023_106956
crossref_primary_10_1108_JEBDE_07_2024_0019
crossref_primary_10_1145_3610206
crossref_primary_10_1016_j_bspc_2025_107910
crossref_primary_10_35699_2965_6931_2023_47533
crossref_primary_10_3917_inno_pr2_0153
crossref_primary_10_1016_j_ejor_2023_06_032
crossref_primary_10_1080_03088839_2025_2451363
crossref_primary_10_1016_j_vacuum_2022_111351
crossref_primary_10_1016_j_engappai_2024_108517
crossref_primary_10_1016_j_procs_2024_01_081
crossref_primary_10_1016_j_enbuild_2024_114876
crossref_primary_10_1145_3737445
crossref_primary_10_1631_FITEE_2200675
crossref_primary_10_1109_TNNLS_2022_3165618
crossref_primary_10_3390_jpm12040607
crossref_primary_10_1016_j_oceaneng_2023_113844
crossref_primary_10_1016_j_ecoinf_2025_103342
crossref_primary_10_1108_JOSM_05_2024_0223
crossref_primary_10_3390_en18092380
crossref_primary_10_25300_MISQ_2021_16274
crossref_primary_10_1016_j_ijinfomgt_2022_102538
crossref_primary_10_1016_j_tre_2022_102722
crossref_primary_10_1016_j_websem_2023_100807
crossref_primary_10_1145_3733837
crossref_primary_10_2174_0126662558324883241011101625
crossref_primary_10_1080_0144929X_2024_2334852
crossref_primary_10_1063_5_0226151
crossref_primary_10_1109_ACCESS_2022_3204171
crossref_primary_10_3390_make4010008
crossref_primary_10_1109_ACCESS_2024_3367602
crossref_primary_10_1016_j_engappai_2024_107982
crossref_primary_10_1016_j_websem_2023_100808
crossref_primary_10_1109_ACCESS_2023_3340626
crossref_primary_10_1007_s12053_025_10371_9
crossref_primary_10_1016_j_accinf_2025_100744
crossref_primary_10_3917_jie_pr1_0160
crossref_primary_10_1016_j_xops_2025_100804
crossref_primary_10_3390_jpm12020166
crossref_primary_10_3389_frai_2025_1609097
crossref_primary_10_1016_j_engappai_2023_106376
crossref_primary_10_1016_j_procs_2025_07_170
crossref_primary_10_1007_s11042_021_10714_5
crossref_primary_10_1111_isj_12585
crossref_primary_10_1080_08839514_2024_2318670
crossref_primary_10_1016_j_ress_2023_109659
crossref_primary_10_3390_diagnostics14070753
crossref_primary_10_1016_j_ejdp_2023_100040
crossref_primary_10_1109_ACCESS_2021_3080517
crossref_primary_10_1007_s11750_021_00594_1
crossref_primary_10_1109_TSMC_2021_3138589
crossref_primary_10_1155_int_4934696
crossref_primary_10_1109_JSYST_2020_3032609
crossref_primary_10_1080_10447318_2022_2081284
crossref_primary_10_1016_j_psep_2022_07_019
crossref_primary_10_3390_math12050635
crossref_primary_10_3390_electronics14091868
crossref_primary_10_1016_j_radonc_2020_09_008
crossref_primary_10_1038_s41598_025_92171_w
crossref_primary_10_3390_electronics10182195
crossref_primary_10_2478_bjes_2025_0008
crossref_primary_10_1016_j_asoc_2025_112832
crossref_primary_10_3390_mi12121504
crossref_primary_10_3788_CJL241363
crossref_primary_10_1016_j_jbusres_2020_11_001
crossref_primary_10_1038_s41598_025_09236_z
crossref_primary_10_3390_diagnostics13233592
crossref_primary_10_1208_s12249_022_02403_9
crossref_primary_10_3389_fpsyt_2021_574440
crossref_primary_10_1109_ACCESS_2021_3059960
crossref_primary_10_1007_s43681_022_00175_3
crossref_primary_10_1111_pbi_70208
crossref_primary_10_3390_jpm14030277
crossref_primary_10_1016_j_knosys_2025_113419
crossref_primary_10_1145_3696319
crossref_primary_10_1109_ACCESS_2024_3423425
crossref_primary_10_2196_44131
crossref_primary_10_1145_3510030
crossref_primary_10_3390_su142215273
crossref_primary_10_1145_3623399
crossref_primary_10_1016_j_compenvurbsys_2025_102322
crossref_primary_10_1061_JCCEE5_CPENG_6209
crossref_primary_10_57125_FEM_2025_09_30_01
crossref_primary_10_3390_healthcare10122440
crossref_primary_10_3390_jmse11030571
crossref_primary_10_1016_j_copsyc_2024_101839
crossref_primary_10_1057_s41599_024_02894_w
crossref_primary_10_1016_j_engappai_2025_110145
crossref_primary_10_1016_j_ijmedinf_2024_105377
crossref_primary_10_1109_TII_2024_3361489
crossref_primary_10_1111_cgf_15108
crossref_primary_10_1016_j_engappai_2025_110146
crossref_primary_10_1016_j_engappai_2025_110140
crossref_primary_10_1016_j_ajp_2022_103316
crossref_primary_10_1016_j_compbiomed_2023_107085
crossref_primary_10_1016_j_softx_2025_102347
crossref_primary_10_17721_2706_9699_2023_2_02
crossref_primary_10_3390_info13110536
crossref_primary_10_1109_LSP_2025_3554511
crossref_primary_10_1007_s41469_023_00155_9
crossref_primary_10_1080_08839514_2021_2008148
crossref_primary_10_1016_j_scitotenv_2023_168588
crossref_primary_10_1016_j_indmarman_2023_09_012
crossref_primary_10_1007_s44174_025_00320_6
crossref_primary_10_1016_j_eswa_2022_119027
crossref_primary_10_3390_a17060227
crossref_primary_10_1049_2023_6623718
crossref_primary_10_1108_DTA_12_2021_0359
crossref_primary_10_1016_j_cmpb_2024_108576
crossref_primary_10_1073_pnas_2206625119
crossref_primary_10_1016_j_indmarman_2023_09_007
crossref_primary_10_1145_3477127_3477128
crossref_primary_10_2196_28921
crossref_primary_10_1016_j_ins_2023_119549
crossref_primary_10_1108_ET_06_2024_0272
crossref_primary_10_1177_0272989X211011160
crossref_primary_10_1007_s10140_023_02135_8
crossref_primary_10_1016_j_ccell_2022_09_012
crossref_primary_10_1016_j_mineng_2025_109741
crossref_primary_10_1007_s41870_021_00694_y
crossref_primary_10_1016_j_procs_2025_07_119
crossref_primary_10_1108_CI_10_2024_0325
crossref_primary_10_1016_j_ejdp_2023_100033
crossref_primary_10_1007_s00603_024_04068_1
crossref_primary_10_1016_j_jksuci_2024_101962
crossref_primary_10_1365_s40702_022_00847_y
crossref_primary_10_1109_JSTARS_2024_3359647
crossref_primary_10_4103_tjo_tjo_8_22
crossref_primary_10_3390_math10040554
crossref_primary_10_3390_app11115098
crossref_primary_10_7717_peerj_cs_584
crossref_primary_10_1080_02642069_2024_2369322
crossref_primary_10_3389_frai_2022_824197
crossref_primary_10_1007_s12325_025_03273_w
crossref_primary_10_1016_j_jii_2025_100827
crossref_primary_10_1016_j_bspc_2023_105646
crossref_primary_10_1109_ACCESS_2023_3314336
crossref_primary_10_1016_j_compositesb_2023_111177
crossref_primary_10_1016_j_energy_2024_132094
crossref_primary_10_1016_j_eswa_2023_121620
crossref_primary_10_1007_s10489_024_05509_8
crossref_primary_10_1016_j_ijmedinf_2023_105041
crossref_primary_10_1016_j_ijmedinf_2023_105040
crossref_primary_10_1016_j_rse_2023_113550
crossref_primary_10_14254_1795_6889_2024_20_2_0
crossref_primary_10_1108_IMDS_07_2021_0419
crossref_primary_10_3389_fmed_2025_1596335
crossref_primary_10_1038_s41598_024_78778_5
crossref_primary_10_1016_j_ipm_2023_103373
crossref_primary_10_3390_smartcities7040064
crossref_primary_10_1007_s40815_021_01188_6
crossref_primary_10_1016_j_neucom_2021_01_138
crossref_primary_10_1111_exsy_13250
crossref_primary_10_1109_TAI_2022_3228834
crossref_primary_10_1145_3592762
crossref_primary_10_3390_a16090435
crossref_primary_10_1002_cctc_202200355
crossref_primary_10_1016_j_irfa_2024_103577
crossref_primary_10_1111_avsc_12660
crossref_primary_10_1016_j_smhl_2025_100540
crossref_primary_10_1145_3686927
crossref_primary_10_1016_j_jbi_2023_104367
crossref_primary_10_1186_s42162_023_00259_2
crossref_primary_10_1016_j_jmsy_2024_09_014
crossref_primary_10_2196_29386
crossref_primary_10_1007_s43681_021_00114_8
crossref_primary_10_1016_j_ijpe_2023_109137
crossref_primary_10_1016_j_jmva_2025_105444
crossref_primary_10_3390_info15040218
crossref_primary_10_3390_s22134865
crossref_primary_10_1016_j_aei_2024_102800
crossref_primary_10_3390_s25154864
crossref_primary_10_1080_00207543_2021_1951868
crossref_primary_10_1016_j_geoderma_2021_114967
crossref_primary_10_3390_network4010005
crossref_primary_10_3390_rs17061000
crossref_primary_10_1016_j_ipm_2023_103369
crossref_primary_10_1007_s11146_024_09998_9
crossref_primary_10_1016_j_neuroimage_2024_120695
crossref_primary_10_1146_annurev_statistics_040120_030919
crossref_primary_10_1371_journal_pone_0271723
crossref_primary_10_3390_electronics12122594
crossref_primary_10_1145_3519264
crossref_primary_10_1016_j_knosys_2022_109366
crossref_primary_10_1016_j_ejrh_2025_102483
crossref_primary_10_1371_journal_pone_0257426
crossref_primary_10_1016_j_eswa_2023_122986
crossref_primary_10_1007_s11263_025_02446_y
crossref_primary_10_1109_ACCESS_2024_3467062
crossref_primary_10_3390_math9212794
crossref_primary_10_1016_j_scitotenv_2024_175999
crossref_primary_10_1109_TNSM_2022_3169988
crossref_primary_10_38124_ijisrt_25jul1197
crossref_primary_10_1016_j_engappai_2025_110133
crossref_primary_10_3390_electronics14132666
crossref_primary_10_3390_math10152552
crossref_primary_10_1016_j_engappai_2025_110135
crossref_primary_10_3390_philosophies10040077
crossref_primary_10_1016_j_engappai_2025_110132
crossref_primary_10_1016_j_eswa_2023_121662
crossref_primary_10_2196_46717
crossref_primary_10_1016_j_engappai_2025_110137
crossref_primary_10_1080_00295450_2024_2411153
crossref_primary_10_1016_j_jksuci_2023_03_016
crossref_primary_10_1080_23311886_2023_2270751
crossref_primary_10_1109_COMST_2024_3387124
crossref_primary_10_1186_s40854_022_00338_5
crossref_primary_10_1016_j_ifacol_2022_09_440
crossref_primary_10_3390_app13063412
crossref_primary_10_1109_TAI_2024_3515937
crossref_primary_10_1109_ACCESS_2021_3051171
crossref_primary_10_1007_s10676_024_09778_2
crossref_primary_10_1016_j_est_2024_110614
crossref_primary_10_1016_j_ejmp_2021_04_016
crossref_primary_10_1016_j_aei_2024_102835
crossref_primary_10_1109_SR_2025_3595500
crossref_primary_10_3390_act12100391
crossref_primary_10_1016_j_jss_2023_111676
crossref_primary_10_1002_aisy_202100054
crossref_primary_10_1108_JSTPM_09_2020_0134
crossref_primary_10_1007_s10961_025_10233_7
crossref_primary_10_1109_MCOM_001_2000050
crossref_primary_10_1007_s12207_020_09389_4
crossref_primary_10_1016_j_hrmr_2022_100899
crossref_primary_10_1109_IOTM_001_2300286
crossref_primary_10_55813_gaea_rcym_v3_n2_3
crossref_primary_10_3390_s21248401
crossref_primary_10_1155_2022_7117986
crossref_primary_10_1016_j_aei_2024_102843
crossref_primary_10_1109_TIM_2025_3548240
crossref_primary_10_1007_s13347_023_00636_5
crossref_primary_10_1016_j_jnca_2022_103464
crossref_primary_10_1109_ACCESS_2024_3418900
crossref_primary_10_1007_s43681_021_00091_y
crossref_primary_10_1109_ACCESS_2021_3093824
crossref_primary_10_2196_41089
crossref_primary_10_3390_app131810068
crossref_primary_10_1155_2023_9919269
crossref_primary_10_1080_03080188_2021_1872874
crossref_primary_10_1038_s41598_024_70031_3
crossref_primary_10_3389_fpubh_2021_561873
crossref_primary_10_1007_s10506_021_09288_2
crossref_primary_10_1109_TFUZZ_2023_3243935
crossref_primary_10_3389_feduc_2025_1595209
crossref_primary_10_1016_j_compbiomed_2023_106613
crossref_primary_10_3390_biomimetics7030127
crossref_primary_10_1002_smtd_202301243
crossref_primary_10_3390_data7070093
crossref_primary_10_3390_asi8030057
crossref_primary_10_1016_j_knosys_2023_110685
crossref_primary_10_5772_acrt_15
crossref_primary_10_1109_TMI_2024_3467384
crossref_primary_10_3389_fpsyg_2023_1069426
crossref_primary_10_1007_s43681_024_00490_x
crossref_primary_10_1186_s12910_022_00746_3
crossref_primary_10_2118_204462_PA
crossref_primary_10_1145_3546872
crossref_primary_10_1007_s42600_025_00432_4
crossref_primary_10_1080_10426914_2020_1747627
crossref_primary_10_1016_j_compbiomed_2023_106625
crossref_primary_10_1016_j_addr_2023_114974
crossref_primary_10_1016_j_compbiomed_2023_106624
crossref_primary_10_1109_ACCESS_2020_3028039
crossref_primary_10_1108_SCM_11_2020_0563
crossref_primary_10_1016_j_procs_2021_08_025
crossref_primary_10_1016_j_cviu_2025_104304
crossref_primary_10_1016_j_rse_2024_114302
crossref_primary_10_1016_j_jhep_2023_01_006
crossref_primary_10_1109_TITS_2022_3207665
crossref_primary_10_3390_drones7050327
crossref_primary_10_1007_s12559_024_10332_x
crossref_primary_10_3389_fpls_2023_1257947
crossref_primary_10_1016_j_ins_2020_08_064
crossref_primary_10_4467_25444654SPP_22_011_15685
crossref_primary_10_1016_j_bspc_2024_106457
crossref_primary_10_1108_TECHS_04_2024_0033
crossref_primary_10_1186_s13059_020_02220_y
crossref_primary_10_3390_rs12091389
crossref_primary_10_1016_j_chbah_2023_100021
crossref_primary_10_1002_mp_16947
crossref_primary_10_1080_10447318_2025_2502983
crossref_primary_10_1177_14738716231216030
crossref_primary_10_1017_S1471068422000163
crossref_primary_10_1016_j_ecoinf_2023_102240
crossref_primary_10_1029_2023JD039154
crossref_primary_10_1016_j_ijdrr_2025_105798
crossref_primary_10_3390_atmos16091107
crossref_primary_10_59403_2yhh9pa
crossref_primary_10_1016_j_autcon_2022_104348
crossref_primary_10_1016_j_conengprac_2022_105304
crossref_primary_10_3390_rs17071313
crossref_primary_10_1007_s11633_024_1519_z
crossref_primary_10_1016_j_envres_2025_122069
crossref_primary_10_1177_09520767231202334
crossref_primary_10_1016_j_compag_2024_108627
crossref_primary_10_1016_j_scitotenv_2024_170330
crossref_primary_10_3390_s21134489
crossref_primary_10_3390_en18133315
crossref_primary_10_1080_24725854_2022_2100050
crossref_primary_10_1016_j_eswa_2024_124963
crossref_primary_10_1016_j_ijpe_2025_109789
crossref_primary_10_3390_plants14182841
crossref_primary_10_1080_1359432X_2023_2169140
crossref_primary_10_1016_j_ins_2022_11_144
crossref_primary_10_1016_j_neucom_2023_126267
crossref_primary_10_1016_j_atech_2025_101174
crossref_primary_10_1007_s11095_022_03448_y
crossref_primary_10_2196_72155
crossref_primary_10_3390_e23081047
crossref_primary_10_3390_diagnostics15182300
crossref_primary_10_3389_frai_2025_1526221
crossref_primary_10_1097_MAT_0000000000001275
crossref_primary_10_3390_s20226626
crossref_primary_10_1109_ACCESS_2021_3061368
crossref_primary_10_1016_j_ejrad_2022_110592
crossref_primary_10_1007_s10489_025_06790_x
crossref_primary_10_1016_j_compbiomed_2023_106668
crossref_primary_10_1016_j_ymssp_2024_111948
crossref_primary_10_1109_ACCESS_2025_3570643
crossref_primary_10_1007_s10994_021_06010_w
crossref_primary_10_1016_j_energy_2024_131583
crossref_primary_10_1039_D5CC01291K
crossref_primary_10_1016_j_inffus_2025_103524
crossref_primary_10_1080_00140139_2024_2334427
crossref_primary_10_3389_fenvs_2024_1426942
crossref_primary_10_1007_s43681_022_00145_9
crossref_primary_10_1155_2024_8885760
crossref_primary_10_3390_polym15204147
crossref_primary_10_53941_tai_2025_100009
crossref_primary_10_1007_s10270_023_01090_9
crossref_primary_10_1080_14778238_2022_2075808
crossref_primary_10_1109_MS_2024_3441101
crossref_primary_10_1016_j_retram_2025_103541
crossref_primary_10_1109_TAFFC_2023_3296373
crossref_primary_10_1080_15309576_2024_2443140
crossref_primary_10_1109_JBHI_2024_3495975
crossref_primary_10_1145_3563391
crossref_primary_10_1080_00207543_2023_2238083
crossref_primary_10_1016_j_jenvman_2024_123588
crossref_primary_10_1155_2024_4628855
crossref_primary_10_1016_j_cmpb_2023_107879
crossref_primary_10_1109_TSUSC_2024_3382157
crossref_primary_10_1016_j_ipm_2022_103061
crossref_primary_10_1016_j_ultras_2022_106776
crossref_primary_10_1038_s42256_023_00635_3
crossref_primary_10_1007_s10462_021_10088_y
crossref_primary_10_1016_j_esci_2025_100373
crossref_primary_10_3390_electronics14071311
crossref_primary_10_1007_s00766_022_00385_5
crossref_primary_10_1007_s44163_022_00030_8
crossref_primary_10_21926_obm_neurobiol_2503298
crossref_primary_10_3390_photonics11050442
crossref_primary_10_1093_jcde_qwab054
crossref_primary_10_1038_s41598_024_79139_y
crossref_primary_10_1080_10291954_2025_2523661
crossref_primary_10_59940_jismar_1577691
crossref_primary_10_1016_j_geoen_2023_212231
crossref_primary_10_3390_bdcc6040126
crossref_primary_10_1109_ACCESS_2025_3565279
crossref_primary_10_1016_j_coelec_2024_101629
crossref_primary_10_1016_j_knosys_2021_106779
crossref_primary_10_3390_systems12110463
crossref_primary_10_1029_2023WR035139
crossref_primary_10_1186_s13195_023_01225_6
crossref_primary_10_1038_s41598_021_99400_y
crossref_primary_10_63802_afs_v1_i1_80
crossref_primary_10_1109_JSTARS_2022_3195200
crossref_primary_10_1109_ACCESS_2024_3373552
crossref_primary_10_1145_3551385
crossref_primary_10_1016_j_jmapro_2023_03_043
crossref_primary_10_1186_s12859_022_04767_y
crossref_primary_10_3390_ai2010007
crossref_primary_10_3390_electronics11040610
crossref_primary_10_3389_fpubh_2022_817570
crossref_primary_10_1016_j_frl_2023_104145
crossref_primary_10_55959_MSU0130_0105_6_60_3_14
crossref_primary_10_1051_e3sconf_202561201002
crossref_primary_10_1016_j_ijhcs_2022_102839
crossref_primary_10_1016_j_future_2021_04_007
crossref_primary_10_1016_j_chbah_2023_100015
crossref_primary_10_1038_s41612_024_00638_w
crossref_primary_10_3390_math12193119
crossref_primary_10_1109_TSM_2023_3322142
crossref_primary_10_1007_s10796_021_10146_4
crossref_primary_10_1109_ACCESS_2021_3070212
crossref_primary_10_1016_j_inffus_2020_09_006
crossref_primary_10_1088_1741_2552_acae07
crossref_primary_10_1371_journal_pone_0282398
crossref_primary_10_7759_cureus_79409
crossref_primary_10_3390_s21175888
crossref_primary_10_3390_diagnostics12092084
crossref_primary_10_1145_3627820
crossref_primary_10_3390_electronics14081561
crossref_primary_10_1016_j_cie_2024_110449
crossref_primary_10_1080_10447318_2022_2062113
crossref_primary_10_3390_bdcc6040117
crossref_primary_10_3390_electronics10070871
crossref_primary_10_1080_1206212X_2024_2404082
crossref_primary_10_1109_TITS_2021_3083957
crossref_primary_10_1016_j_inffus_2020_09_003
crossref_primary_10_1016_j_jbusres_2024_114610
crossref_primary_10_1097_MOU_0000000000000884
crossref_primary_10_1007_s00500_023_08258_x
crossref_primary_10_3390_a16040177
crossref_primary_10_1155_2022_8167821
crossref_primary_10_1145_3662178
crossref_primary_10_1080_10934529_2024_2309102
crossref_primary_10_1016_j_compmedimag_2022_102171
crossref_primary_10_1016_j_jksuci_2022_10_015
crossref_primary_10_1029_2025JH000703
crossref_primary_10_1109_TVT_2024_3359426
crossref_primary_10_1016_j_neucom_2022_07_025
crossref_primary_10_1016_j_comnet_2024_110303
crossref_primary_10_1016_j_compag_2023_108387
crossref_primary_10_1038_s41592_021_01205_4
crossref_primary_10_1109_TIV_2023_3318113
crossref_primary_10_1016_j_artint_2024_104107
crossref_primary_10_1016_j_artmed_2024_103030
crossref_primary_10_1007_s10677_023_10390_4
crossref_primary_10_1177_10944281251323248
crossref_primary_10_1002_msd2_70004
crossref_primary_10_1038_s41598_025_12003_9
crossref_primary_10_1093_eurheartj_ehac238
crossref_primary_10_1007_s10462_022_10355_6
crossref_primary_10_1016_j_watres_2024_122751
crossref_primary_10_1016_j_engappai_2024_109767
crossref_primary_10_1016_j_asoc_2025_113300
crossref_primary_10_1145_3506734
crossref_primary_10_1038_s43018_025_00917_2
crossref_primary_10_1109_ACCESS_2025_3572423
crossref_primary_10_3390_app15010146
crossref_primary_10_1016_j_tele_2024_102227
crossref_primary_10_1186_s43093_025_00462_5
crossref_primary_10_1007_s12144_025_07357_2
crossref_primary_10_1093_bib_bbaf414
crossref_primary_10_1007_s41870_023_01289_5
crossref_primary_10_1145_3686164
crossref_primary_10_2196_53863
crossref_primary_10_1371_journal_pone_0300670
crossref_primary_10_1002_minf_202100315
crossref_primary_10_3390_s25020531
crossref_primary_10_1016_j_icte_2024_09_008
crossref_primary_10_3390_info14070401
crossref_primary_10_3389_frobt_2021_650325
crossref_primary_10_1016_j_compmedimag_2022_102158
crossref_primary_10_1016_j_chemolab_2024_105196
crossref_primary_10_1145_3705724
crossref_primary_10_3390_app142311288
crossref_primary_10_3390_ai6010016
crossref_primary_10_1016_j_patrec_2021_06_030
crossref_primary_10_1016_j_watres_2024_122779
crossref_primary_10_1016_j_watres_2024_122777
crossref_primary_10_1108_DTS_01_2023_0003
crossref_primary_10_1016_j_techfore_2025_124272
crossref_primary_10_51477_mejs_1640908
crossref_primary_10_2478_am_2023_0006
crossref_primary_10_1177_1071181321651063
crossref_primary_10_1002_aisy_202200236
crossref_primary_10_1186_s12911_024_02576_2
crossref_primary_10_1016_j_neucom_2021_05_109
crossref_primary_10_1057_s41599_023_02464_6
crossref_primary_10_1038_s41598_024_53169_y
crossref_primary_10_1016_j_ecss_2022_108062
crossref_primary_10_1109_TII_2022_3146552
crossref_primary_10_1002_msd2_70017
crossref_primary_10_1016_j_cag_2021_09_002
crossref_primary_10_1007_s10140_023_02121_0
crossref_primary_10_1038_s44334_024_00006_9
crossref_primary_10_1111_2041_210X_14061
crossref_primary_10_1016_j_neucom_2023_02_040
crossref_primary_10_3390_diagnostics15050612
crossref_primary_10_1016_j_eswa_2022_117230
crossref_primary_10_1155_2021_9991535
crossref_primary_10_3390_ma17164038
crossref_primary_10_1007_s00146_024_02040_9
crossref_primary_10_1007_s11747_023_00986_8
crossref_primary_10_1007_s43681_024_00485_8
crossref_primary_10_1016_j_asoc_2024_111269
crossref_primary_10_51473_rcmos_v2i2_2022_1233
crossref_primary_10_1007_s10489_024_05981_2
crossref_primary_10_1109_LRA_2022_3214789
crossref_primary_10_1145_3491209
crossref_primary_10_3390_app11136073
crossref_primary_10_1109_TAI_2022_3150647
crossref_primary_10_1016_j_iot_2022_100673
crossref_primary_10_1016_j_iot_2023_100993
crossref_primary_10_1007_s10489_024_05808_0
crossref_primary_10_4018_JGIM_372081
crossref_primary_10_1016_j_chb_2021_107095
crossref_primary_10_1016_j_inffus_2024_102782
crossref_primary_10_1016_j_jag_2024_103878
crossref_primary_10_1109_MC_2024_3354040
crossref_primary_10_1088_1742_6596_2438_1_012082
crossref_primary_10_1016_j_autcon_2024_105411
crossref_primary_10_1002_asi_24642
crossref_primary_10_3390_a15060199
crossref_primary_10_1088_2632_2153_ad16a0
Cites_doi 10.1016/S0893-6080(01)00127-7
10.1016/j.ins.2012.10.039
10.25300/MISQ/2014/38.1.04
10.32614/CRAN.package.inTrees
10.1109/DSAA.2018.00018
10.1007/s11063-006-9007-8
10.1111/j.2517-6161.1996.tb02080.x
10.1109/TPAMI.2005.78
10.1109/GlobalSIP45357.2019.8969491
10.1016/j.inffus.2017.02.007
10.32470/CCN.2018.1113-0
10.1080/09540091.2017.1310182
10.1111/geb.12335
10.1145/2594473.2594475
10.1016/j.artmed.2007.07.008
10.1089/big.2016.0051
10.1016/S0362-546X(96)00267-2
10.1016/j.neucom.2005.12.118
10.1080/01621459.1998.10473750
10.1145/1007730.1007734
10.1007/s10618-014-0368-8
10.1089/big.2017.0074
10.1023/A:1022643204877
10.1080/10618600.2014.907095
10.1016/S0304-3800(02)00204-1
10.1002/asmb.658
10.1109/MCI.2018.2881645
10.1177/2053951715622512
10.1093/bioinformatics/bth098
10.1109/CVPR.2019.00509
10.1007/s11063-011-9207-8
10.1145/3236386.3241340
10.1038/538020a
10.1016/j.inffus.2018.11.019
10.1038/nmat3568
10.1007/s00521-013-1362-6
10.23915/distill.00007
10.1016/j.artint.2018.07.007
10.18653/v1/D19-1250
10.1016/S0031-3203(98)00181-2
10.1145/2700832
10.18653/v1/D16-1011
10.1016/j.inffus.2019.05.004
10.1016/S0020-7373(87)80053-6
10.1093/icesjms/fsp105
10.1089/big.2016.0050
10.1038/s42256-019-0048-x
10.23915/distill.00010
10.1186/1758-2946-3-11
10.1109/TKDE.2007.190734
10.1109/TNNLS.2018.2886017
10.1109/TITB.2006.880553
10.1109/21.299696
10.1016/j.cub.2016.10.015
10.1016/j.dss.2011.01.013
10.1109/ACCESS.2019.2949286
10.1109/TVCG.2016.2598831
10.1214/15-AOAS848
10.1371/journal.pone.0130140
10.1093/esr/jcp006
10.1089/big.2016.0047
10.1016/j.csda.2006.11.006
10.18653/v1/D16-1044
10.1038/nmat1691
10.1016/j.inffus.2017.10.001
10.1023/A:1022699900025
10.1109/ICRA40945.2020.9196653
10.1016/j.inffus.2018.10.005
10.1016/j.aca.2007.03.023
10.32614/RJ-2018-072
10.1016/S0304-3800(02)00064-9
10.2139/ssrn.3518482
10.1109/TVCG.2019.2934262
10.1109/69.774103
10.1016/j.eswa.2011.08.040
10.1109/TNN.2005.863472
10.1016/j.inffus.2018.11.002
10.1109/59.336122
10.1023/A:1014858517172
10.1080/02331930701618740
10.3150/13-BEJSP14
10.1126/sciadv.aao5580
10.1016/j.ejor.2006.04.051
10.1007/978-3-030-53352-6_24
10.1016/j.patcog.2016.11.008
10.1007/s11229-011-0020-8
10.1007/978-1-4757-1904-8_7
10.1093/idpl/ipx005
10.1007/s10115-011-0463-8
10.1007/s11263-016-0966-6
10.1177/1471082X0901000404
10.1093/oxfordjournals.aje.a009864
10.1016/j.neucom.2014.08.081
10.1097/00001888-199805000-00024
10.18653/v1/N16-1082
10.1080/00220670209598786
10.1609/aaai.v31i1.10924
10.1109/CVPR.2018.00175
10.1177/2053951716674238
10.1109/TCDS.2016.2628365
10.1155/2010/901095
10.1186/1751-0473-3-17
10.1016/j.dsp.2017.10.011
10.1109/72.623216
10.1023/A:1008307919726
10.1007/s10044-006-0025-y
10.1111/1745-9133.12047
10.1089/big.2016.0054
10.1016/j.inffus.2018.12.001
10.1145/219717.219768
10.1007/978-3-319-46493-0_1
10.18653/v1/W17-5221
10.1109/MSP.2018.2701164
10.1016/j.cobeha.2018.12.010
10.1073/pnas.1711236115
10.1109/TKDE.2007.190610
10.1111/j.0006-341X.2000.00909.x
10.1109/72.839008
10.1016/0020-0190(76)90095-8
10.1089/big.2016.0007
10.1109/ACCESS.2019.2905015
10.1109/72.728352
10.1016/j.dss.2010.12.003
10.1007/978-3-030-01219-9_47
10.1109/CVPRW.2014.131
10.18653/v1/D16-1092
10.1089/big.2016.0048
10.1080/02664760120074979
10.1023/A:1022683529158
10.1109/TKDE.2009.191
10.1016/S1088-467X(98)00023-7
10.1021/cm100795d
10.1109/72.809084
10.1109/ACCESS.2018.2870052
10.1023/A:1012489924661
10.1093/intqhc/mzg031
10.1016/j.media.2015.06.008
10.1006/jmsc.1998.0425
10.1016/j.mineng.2012.05.008
10.1007/s10115-017-1116-3
10.1609/aimag.v38i3.2741
10.1016/j.inffus.2017.12.007
10.1016/S0893-6080(00)00026-5
10.1016/j.inffus.2018.11.007
10.1007/978-3-030-46147-8_31
10.1016/j.fss.2008.05.016
10.1109/TKDE.2017.2720168
10.1109/CVPR.2018.00915
ContentType Journal Article
Copyright 2019
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1016/j.inffus.2019.12.012
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1872-6305
EndPage 115
ExternalDocumentID oai:HAL:hal-02381211v1
10_1016_j_inffus_2019_12_012
S1566253519308103
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
ID FETCH-LOGICAL-c386t-c4cc47fde54644eb355aa1968c3c48c109f71260bf0c64e60c844b018aacd2543
ISICitedReferencesCount 5163
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000516799200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1566-2535
IngestDate Tue Oct 14 20:32:22 EDT 2025
Tue Nov 18 22:10:31 EST 2025
Sat Nov 29 07:06:43 EST 2025
Fri Feb 23 02:47:02 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Explainable Artificial Intelligence
Privacy
Data Fusion
Comprehensibility
Transparency
Interpretability
Accountability
Machine Learning
Responsible Artificial Intelligence
Deep Learning
Fairness
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c386t-c4cc47fde54644eb355aa1968c3c48c109f71260bf0c64e60c844b018aacd2543
ORCID 0000-0001-7822-0634
0000-0003-3362-9326
OpenAccessLink http://hdl.handle.net/20.500.11824/1166
PageCount 34
ParticipantIDs hal_primary_oai_HAL_hal_02381211v1
crossref_primary_10_1016_j_inffus_2019_12_012
crossref_citationtrail_10_1016_j_inffus_2019_12_012
elsevier_sciencedirect_doi_10_1016_j_inffus_2019_12_012
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
2020-06
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationTitle Information fusion
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Aditya, Sen, Druschel, Joon Oh, Benenson, Fritz, Schiele, Bhattacharjee, Wu (bib0421) 2016
Olah, Satyanarayan, Johnson, Carter, Schubert, Ye, Mordvintsev (bib0295) 2018
Schrodt, Kattge, Shan, Fazayeli, Joswig, Banerjee, Reichstein, Bönisch, Díaz, Dickie (bib0382) 2015; 24
Kim, Glassman, Johnson, Shah (bib0031) 2015
Cortez, Embrechts (bib0222) 2011
R. Guidotti, A. Monreale, S. Ruggieri, D. Pedreschi, F. Turini, F. Giannotti, Local rule-based explanations of black box decision systems, 2018.
G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network, 2015.
Utgoff (bib0181) 1989; 4
Lau, Marakkalage, Zhou, Hassan, Yuen, Zhang, Tan (bib0412) 2019; 52
Neelon, O’Malley, Normand (bib0202) 2010; 10
Sundararajan, Taly, Yan (bib0262) 2017; 70
N. Papernot, P. McDaniel, Deep k-nearest neighbors: Towards confident, interpretable and robust deep learning, 2018.
J.T. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller, Striving for simplicity: The all convolutional net, 2014.
F.J.C. Garcia, D.A. Robb, X. Liu, A. Laskov, P. Patron, H. Hastie, Explain yourself: A natural language interface for scrutable autonomous robots, 2018.
D. Smilkov, N. Thorat, B. Kim, F. Viégas, M. Wattenberg, SmoothGrad: removing noise by adding noise, 2017.
B. Biggio, I. Pillai, S.R. Bulò, D. Ariu, M. Pelillo, F. Roli, Is data clustering in adversarial settings secure?, 2018.
Fu, Ong, Keerthi, Hung, Goh (bib0098) 2004; 1
Oh, Schiele, Fritz (bib0357) 2019
Neerincx, van der Waa, Kaptein, van Diggelen (bib0065) 2018
Freitas (bib0053) 2014; 15
M.T. Ribeiro, S. Singh, C. Guestrin, Model-agnostic interpretability of machine learning, 2016.
Goudet, Kalainathan, Caillou, Guyon, Lopez-Paz, Sebag (bib0040) 2018
Domingos (bib0119) 1998; 2
Dos̃ilović, Brc̃ić, Hlupić (bib0010) 2018
O. Bastani, C. Kim, H. Bastani, Interpretability via model extraction, 2017.
Yu (bib0167) 2013; 19
G. Su, D. Wei, K.R. Varshney, D.M. Malioutov, Interpretable two-level boolean rule learning for classification, 2015.
Ribeiro, Singh, Guestrin (bib0032) 2016
Letham, Rudin, McCormick, Madigan (bib0049) 2015; 9
Staniak, Biecek (bib0141) 2018; 10
Taylan, Weber, Beck (bib0195) 2007; 56
Agrawal, Gollapudi, Halverson, Ieong (bib0405) 2009
Montavon, Lapuschkin, Binder, Samek, Müller (bib0060) 2017; 65
Johansson, Niklasson (bib0149) 2009
D. Bouchacourt, L. Denoyer, EDUCE: explaining model decisions through unsupervised concepts extraction, 2019.
Zhu, Liapis, Risi, Bidarra, Youngblood (bib0009) 2018
Jiang, Pang, Wu, Kuang (bib0189) 2012; 39
Q. Zhang, Y. Yang, Y. Liu, Y. Nian Wu, S.-C. Zhu, Unsupervised Learning of Neural Networks to Explain Neural Networks, 2018.
Zheng, Jayasumana, Romera-Paredes, Vineet, Su, Du, Huang, Torr (bib0305) 2015
Pope, Kolouri, Rostami, Martin, Hoffmann (bib0155) 2019
R. Shwartz-Ziv, N. Tishby, Opening the black box of deep neural networks via information, 2017.
D.P. Kingma, M. Welling, Auto-Encoding Variational Bayes, 2013.
Athey, Imbens (bib0041) 2015; 1050
Hosmer Jr, Lemeshow, Sturdivant (bib0176) 2013; 398
I.J. Goodfellow, N. Papernot, P.D. McDaniel, cleverhans v0.1: an adversarial machine learning library, 2016.
Wang, Fratiglioni, Frisoni, Viitanen, Winblad (bib0159) 1999; 149
Rani, Liu, Sarkar, Vanman (bib0160) 2006; 9
Miller (bib0012) 2019; 267
H. Lakkaraju, E. Kamar, R. Caruana, J. Leskovec, Interpretable & explorable approximations of black box models, 2017.
James, Witten, Hastie, Tibshirani (bib0163) 2013; 112
Martens, Provost (bib0236) 2014; 38
Lerman (bib0404) 2013; 66
Barakat, Bradley (bib0093) 2007; 19
United-Nations (bib0387) 2015
C. Dwork, C. Ilvento, Composition of fairsystems, 2018.
Wang, Yang, Li, Chen, Hu (bib0407) 2019; 51
G.D. Hager, A. Drobnis, F. Fang, R. Ghani, A. Greenwald, T. Lyons, D.C. Parkes, J. Schultz, S. Saria, S.F. Smith, M. Tambe, Artificial intelligence for social good, 2019.
D. Huk Park, L.A. Hendricks, Z. Akata, A. Rohrbach, B. Schiele, T. Darrell, M. Rohrbach, Multimodal Explanations: Justifying Decisions and Pointing to the Evidence, 2018.
Clos, Wiratunga, Massie (bib0282) 2017
Tibshirani (bib0170) 1996; 58
Bach, Binder, Müller, Samek (bib0063) 2016
Caruana, Lou, Gehrke, Koch, Sturm, Elhadad (bib0044) 2015
Zeiler, Taylor, Fergus (bib0291) 2011; 1
d’Alessandro, O’Neil, LaGatta (bib0391) 2017; 5
W.J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, B. Yu, Interpretable machine learning: definitions, methods, and applications, 2019.
Berg (bib0193) 2007; 23
J. Adebayo, J. Gilmer, I. Goodfellow, B. Kim, Local explanation methods for deep neural networks lack sensitivity to parameter values, 2018.
M. Kearns, S. Neel, A. Roth, Z.S. Wu, Preventing fairness gerrymandering: Auditing and learning for subgroup fairness, 2017.
Higgins, Matthey, Pal, Burgess, Glorot, Botvinick, Mohamed, Lerchner (bib0339) 2017
Lundberg, Lee (bib0224) 2017
Johansson, König, Niklasson (bib0321) 2005; 2
S. Sabour, N. Frosst, G. E Hinton, Dynamic Routing Between Capsules, 2017.
Xu, Ba, Kiros, Cho, Courville, Salakhudinov, Zemel, Bengio (bib0091) 2015
Santoro, Raposo, Barrett, Malinowski, Pascanu, Battaglia, Lillicrap (bib0075) 2017
Shane T. Mueller, Hoffman, Clancey, Klein (bib0016) 2019
Basu, Kumbier, Brown, Yu (bib0166) 2018; 115
A. Preece, D. Harborne, D. Braines, R. Tomsett, S. Chakraborty, Stakeholders in Explainable AI, 2018.
Rosenbaum, Hinselmann, Jahn, Zell (bib0068) 2011; 3
A. Shrikumar, P. Greenside, A. Kundaje, Learning Important Features Through Propagating Activation Differences, 2017.
T. Hailesilassie, Rule extraction algorithm for deep neural networks: A review, 2016.
B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viegas, R. Sayres, Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (TCAV), 2017.
Griffiths, Kemp, Tenenbaum (bib0201) 2008
Hoffrage, Gigerenzer (bib0178) 1998; 73
Zilke, Mencía, Janssen (bib0257) 2016
High Level Expert Group on Artificial Intelligence (bib0390) 2019
B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Object Detectors Emerge in Deep Scene CNNs, 2014.
Zhao, Xie, Xu, Sun (bib0419) 2017; 38
Datta, Sen, Zick (bib0173) 2016
Arbatli, Akin (bib0148) 1997; 30
Krishnan, Wu (bib0233) 2017
Zhou, Khosla, Lapedriza, Oliva, Torralba (bib0096) 2016
Wu, Hughes, Parbhoo, Zazzi, Roth, Doshi-Velez (bib0079) 2018
Attenberg, Ipeirotis, Provost (bib0371) 2015; 6
Jakulin, Možina, Demšar, Bratko, Zupan (bib0250) 2005
Louizos, Shalit, Mooij, Sontag, Zemel, Welling (bib0039) 2017
Curtarolo, Hart, Nardelli, Mingo, Sanvito, Levy (bib0377) 2013; 12
Krening, Harrison, Feigh, Isabell, Riedl, Thomaz (bib0070) 2017; 9
Sollich (bib0248) 2000
Manhaeve, Dumancic, Kimmig, Demeester, De Raedt (bib0300) 2018
Y. Zhang, X. Chen, Explainable Recommendation: A Survey and New Perspectives, 2018.
C. Barabas, K. Dinakar, J. Ito, M. Virza, J. Zittrain, Interventions over predictions: Reframing the ethical debate for actuarial risk assessment, 2017.
Schetinin, Fieldsend, Partridge, Coats, Krzanowski, Everson, Bailey, Hernandez (bib0054) 2007; 11
Gleicher (bib0020) 2016; 4
Bursac, Gauss, Williams, Hosmer (bib0174) 2008; 3
P. Gajane, M. Pechenizkiy, On formalizing fairness in prediction with machine learning, 2017.
A. Fukui, D. Huk Park, D. Yang, A. Rohrbach, T. Darrell, M. Rohrbach, Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding, 2016.
Caruana (bib0317) 2000
Drosou, Jagadish, Pitoura, Stoyanovich (bib0403) 2017; 5
Núñez, Angulo, Català (bib0246) 2002
Baumgartner, Koch, Can Tezcan, Xi Ang, Konukoglu (bib0366) 2018
Adebayo, Gilmer, Muelly, Goodfellow, Hardt, Kim (bib0294) 2018
X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, P. Abbeel, InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets, 2016.
Larsen, Petersen, Budtz-Jørgensen, Endahl (bib0115) 2000; 56
Martens, Baesens, Van Gestel, Vanthienen (bib0095) 2007; 183
Speicher, Heidari, Grgic-Hlaca, Gummadi, Singla, Weller, Zafar (bib0394) 2018
Zeiler, Krishnan, Taylor, Fergus (bib0142) 2010; 10
A. Lucic, H. Haned, M. de Rijke, Explaining predictions from tree-based boosting ensembles, 2019.
Ding, Jing, Yan, Yang (bib0408) 2019; 51
Gaonkar, Shinohara, Davatzikos, Initiative (bib0116) 2015; 24
Gunning (bib0007) 2017
Barocas, Hardt, Narayanan (bib0158) 2019
Nguyen, Dosovitskiy, Yosinski, Brox, Clune (bib0268) 2016
G. Marra, F. Giannini, M. Diligenti, M. Gori, Integrating learning and reasoning with deep logic models, 2019.
Sharma, Henderson, Ghosh (bib0402) 2019
Lou, Caruana, Gehrke (bib0171) 2012
Tan, Caruana, Hooker, Lou (bib0120) 2018
T. Orekondy, B. Schiele, M. Fritz, Knockoff nets: Stealing functionality of black-box models, 2018.
Zhang, Nie, Li, Wei (bib0418) 2019; 50
Jaccard (bib0175) 2001
A.S. d’Avila Garcez, M. Gori, L.C. Lamb, L. Serafini, M. Spranger, S.N. Tran, Neural-symbolic computing: An effective methodology for principled integration of machine learning and reasoning, 2019.
Kelley, Clark, Brown, Sitzia (bib0354) 2003; 15
L.H. Gilpin, D. Bau, B.Z. Yuan, A. Bajwa, M. Specter, L. Kagal, Explaining Explanations: An Overview of Interpretability of Machine Learning, 2018.
S. Wisdom, T. Powers, J. Pitton, L. Atlas, Interpretable recurrent neural networks using sequential sparse recovery, 2016.
Ahn, Lin (bib0398) 2019
Michalski (bib0022) 1983
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, Attention Is All You Need, 2017.
Lipton (bib0005) 2018; 16
E. Akyol, C. Langbort, T. Basar, Price of transparency in strategic machine learning, 2016.
Bollacker, Díaz-Rodríguez, Li (bib0309) 2019
Narodytska, Ignatiev, Pereira, Marques-Silva (bib0306) 2018
Ribeiro, Singh, Guestrin (bib0235) 2018
Guisan, Edwards Jr, Hastie (bib0198) 2002; 157
Rudin (bib0384) 2018
S. Liu, B. Kailkhura, D. Loveland, Y. Han, Generative counterfactual introspection for explainable deep learning, 2019.
Theodorou, Wortham, Bryson (bib0045) 2017; 29
Min, Simonis, Hense (bib0205) 2007; 365
Breiman (bib0286) 2017
Zemel, Wu, Swersky, Pitassi, Dwork (bib0396) 2013
Synnaeve, Bessiere (bib0204) 2011
Auret, Aldrich (bib0241) 2012; 35
Zolotas, Demiris (bib0311) 2019
Soares, Angelov (bib0399) 2019
Leslie (10.1016/j.inffus.2019.12.012_bib0383) 2019
Zeiler (10.1016/j.inffus.2019.12.012_bib0136) 2014
Arbatli (10.1016/j.inffus.2019.12.012_bib0148) 1997; 30
Pierrot (10.1016/j.inffus.2019.12.012_bib0200) 2011
Adadi (10.1016/j.inffus.2019.12.012_bib0014) 2018; 6
Craven (10.1016/j.inffus.2019.12.012_bib0021) 1996
Pearl (10.1016/j.inffus.2019.12.012_bib0161) 2009
Zeiler (10.1016/j.inffus.2019.12.012_bib0291) 2011; 1
Taylan (10.1016/j.inffus.2019.12.012_bib0195) 2007; 56
Dong (10.1016/j.inffus.2019.12.012_bib0423) 2013
Stahl (10.1016/j.inffus.2019.12.012_bib0389) 2018; 16
Soares (10.1016/j.inffus.2019.12.012_bib0399) 2019
Russell (10.1016/j.inffus.2019.12.012_bib0001) 2016
Barocas (10.1016/j.inffus.2019.12.012_bib0392) 2016; 104
Basu (10.1016/j.inffus.2019.12.012_bib0166) 2018; 115
Krishnan (10.1016/j.inffus.2019.12.012_bib0097) 1999; 32
Calabrese (10.1016/j.inffus.2019.12.012_bib0194) 2012
Baumgartner (10.1016/j.inffus.2019.12.012_bib0366) 2018
Lerman (10.1016/j.inffus.2019.12.012_bib0404) 2013; 66
Larsen (10.1016/j.inffus.2019.12.012_bib0115) 2000; 56
Letham (10.1016/j.inffus.2019.12.012_bib0049) 2015; 9
Chen (10.1016/j.inffus.2019.12.012_bib0237) 2017; 5
Barakat (10.1016/j.inffus.2019.12.012_bib0057) 2008; 2
Berk (10.1016/j.inffus.2019.12.012_bib0121) 2013; 12
Zemel (10.1016/j.inffus.2019.12.012_bib0396) 2013
Kim (10.1016/j.inffus.2019.12.012_bib0209) 2014
Berry (10.1016/j.inffus.2019.12.012_bib0337) 2007; 52
Olden (10.1016/j.inffus.2019.12.012_bib0066) 2002; 154
Zhao (10.1016/j.inffus.2019.12.012_bib0419) 2017; 38
Zhang (10.1016/j.inffus.2019.12.012_bib0078) 2019
Zeiler (10.1016/j.inffus.2019.12.012_bib0142) 2010; 10
Taha (10.1016/j.inffus.2019.12.012_bib0255) 1999; 11
Berg (10.1016/j.inffus.2019.12.012_bib0193) 2007; 23
Oh (10.1016/j.inffus.2019.12.012_bib0420) 2016
Zhang (10.1016/j.inffus.2019.12.012_bib0424) 2015
Quinlan (10.1016/j.inffus.2019.12.012_bib0191) 1987; 87
Cortez (10.1016/j.inffus.2019.12.012_bib0222) 2011
Bach (10.1016/j.inffus.2019.12.012_bib0063) 2016
Diez-Olivan (10.1016/j.inffus.2019.12.012_bib0348) 2019; 50
Biffi (10.1016/j.inffus.2019.12.012_bib0367) 2018
McAllister (10.1016/j.inffus.2019.12.012_bib0203) 1998; 55
Lau (10.1016/j.inffus.2019.12.012_bib0412) 2019; 52
Michalski (10.1016/j.inffus.2019.12.012_bib0022) 1983
Choi (10.1016/j.inffus.2019.12.012_bib0285) 2016
Kim (10.1016/j.inffus.2019.12.012_bib0210) 2016
Schmitz (10.1016/j.inffus.2019.12.012_bib0258) 1999; 10
Donahue (10.1016/j.inffus.2019.12.012_bib0274) 2015
Agrawal (10.1016/j.inffus.2019.12.012_bib0405) 2009
Tolomei (10.1016/j.inffus.2019.12.012_bib0240) 2017
Neelon (10.1016/j.inffus.2019.12.012_bib0202) 2010; 10
Tan (10.1016/j.inffus.2019.12.012_bib0120) 2018
Goodman (10.1016/j.inffus.2019.12.012_bib0003) 2017; 38
Utgoff (10.1016/j.inffus.2019.12.012_bib0181) 1989; 4
Koh (10.1016/j.inffus.2019.12.012_bib0221) 2017
Staniak (10.1016/j.inffus.2019.12.012_bib0141) 2018; 10
Sharma (10.1016/j.inffus.2019.12.012_bib0402) 2019
Zolotas (10.1016/j.inffus.2019.12.012_bib0311) 2019
Liu (10.1016/j.inffus.2019.12.012_bib0270) 2016; 23
Ramírez-Gallego (10.1016/j.inffus.2019.12.012_bib0413) 2018; 42
Loyola-González (10.1016/j.inffus.2019.12.012_bib0307) 2019; 7
Ding (10.1016/j.inffus.2019.12.012_bib0410) 2019; 51
Towell (10.1016/j.inffus.2019.12.012_bib0252) 1993; 13
Ruppert (10.1016/j.inffus.2019.12.012_bib0165) 1987
Tickle (10.1016/j.inffus.2019.12.012_bib0038) 1998; 9
Mahendran (10.1016/j.inffus.2019.12.012_bib0137) 2015
Donadello (10.1016/j.inffus.2019.12.012_bib0298) 2018
Harbers (10.1016/j.inffus.2019.12.012_bib0050) 2010; 2
Guisan (10.1016/j.inffus.2019.12.012_bib0198) 2002; 157
Buciluǎ (10.1016/j.inffus.2019.12.012_bib0289) 2006
Hardt (10.1016/j.inffus.2019.12.012_bib0393) 2016
Etchells (10.1016/j.inffus.2019.12.012_bib0073) 2006; 17
Lipton (10.1016/j.inffus.2019.12.012_bib0005) 2018; 16
Ras (10.1016/j.inffus.2019.12.012_bib0062) 2018
Edwards (10.1016/j.inffus.2019.12.012_bib0089) 2017; 16
Zhu (10.1016/j.inffus.2019.12.012_bib0009) 2018
Montavon (10.1016/j.inffus.2019.12.012_bib0018) 2018; 73
Burrell (10.1016/j.inffus.2019.12.012_bib0109) 2016; 3
Hooker (10.1016/j.inffus.2019.12.012_bib0219) 2004
Yuan (10.1016/j.inffus.2019.12.012_bib0048) 2019; 30
Synnaeve (10.1016/j.inffus.2019.12.012_bib0204) 2011
Cassandra (10.1016/j.inffus.2019.12.012_bib0207) 1996; 2
Du (10.1016/j.inffus.2019.12.012_bib0326) 2017
Aung (10.1016/j.inffus.2019.12.012_bib0051) 2007
Sun (10.1016/j.inffus.2019.12.012_bib0417) 2013; 23
Xu (10.1016/j.inffus.2019.12.012_bib0379) 2015
Thrun (10.1016/j.inffus.2019.12.012_bib0253) 1994
Ribeiro (10.1016/j.inffus.2019.12.012_bib0032) 2016
Gunning (10.1016/j.inffus.2019.12.012_bib0007) 2017
Vellido (10.1016/j.inffus.2019.12.012_bib0026) 2012; 12
Zheng (10.1016/j.inffus.2019.12.012_bib0305) 2015
Núñez (10.1016/j.inffus.2019.12.012_bib0127) 2006; 24
Donadello (10.1016/j.inffus.2019.12.012_bib0297) 2017
Schrodt (10.1016/j.inffus.2019.12.012_bib0382) 2015; 24
Goldstein (10.1016/j.inffus.2019.12.012_bib0238) 2015; 24
Wachter (10.1016/j.inffus.2019.12.012_bib0355) 2017; 7
Sundararajan (10.1016/j.inffus.2019.12.012_bib0262) 2017; 70
Oh (10.1016/j.inffus.2019.12.012_bib0357) 2019
Lu (10.1016/j.inffus.2019.12.012_bib0331) 2016
Biran (10.1016/j.inffus.2019.12.012_bib0015) 2017; 8
Casalicchio (10.1016/j.inffus.2019.12.012_bib0239) 2018
Domingos (10.1016/j.inffus.2019.12.012_bib0119) 1998; 2
Green (10.1016/j.inffus.2019.12.012_bib0099) 2018
Curtarolo (10.1016/j.inffus.2019.12.012_bib0377) 2013; 12
Zhou (10.1016/j.inffus.2019.12.012_bib0083) 2003; 16
Huysmans (10.1016/j.inffus.2019.12.012_bib0092) 2011; 51
Craven (10.1016/j.inffus.2019.12.012_bib0147) 1994
Drosou (10.1016/j.inffus.2019.12.012_bib0403) 2017; 5
Speicher (10.1016/j.inffus.2019.12.012_bib0394) 2018
Sollich (10.1016/j.inffus.2019.12.012_bib0247) 2002; 46
Setiono (10.1016/j.inffus.2019.12.012_bib0254) 2000; 12
Shane T. Mueller (10.1016/j.inffus.2019.12.012_bib0016) 2019
Xiao (10.1016/j.inffus.2019.12.012_bib0278) 2015
Montavon (10.1016/j.inffus.2019.12.012_bib0060) 2017; 65
Zhou (10.1016/j.inffus.2019.12.012_bib0108) 2008; 159
Landecker (10.1016/j.inffus.2019.12.012_bib0249) 2013
Pope (10.1016/j.inffus.2019.12.012_bib0155) 2019
Wang (10.1016/j.inffus.2019.12.012_bib0407) 2019; 51
Weiss (10.1016/j.inffus.2019.12.012_bib0370) 2004; 6
McMahan (10.1016/j.inffus.2019.12.012_bib0415) 2017
Peng (10.1016/j.inffus.2019.12.012_bib0076) 2002; 43
Bellini (10.1016/j.inffus.2019.12.012_bib0313) 2018
10.1016/j.inffus.2019.12.012_bib0319
Sollich (10.1016/j.inffus.2019.12.012_bib0248) 2000
Fernandez (10.1016/j.inffus.2019.12.012_bib0019) 2019; 14
10.1016/j.inffus.2019.12.012_bib0312
Zhang (10.1016/j.inffus.2019.12.012_bib0397) 2018
10.1016/j.inffus.2019.12.012_bib0314
10.1016/j.inffus.2019.12.012_bib0315
10.1016/j.inffus.2019.12.012_bib0318
Üstün (10.1016/j.inffus.2019.12.012_bib0077) 2007; 595
10.1016/j.inffus.2019.12.012_bib0308
Navia-Vázquez (10.1016/j.inffus.2019.12.012_bib0134) 2006; 69
10.1016/j.inffus.2019.12.012_bib0302
10.1016/j.inffus.2019.12.012_bib0303
Seo (10.1016/j.inffus.2019.12.012_bib0114) 2017
Hastie (10.1016/j.inffus.2019.12.012_bib0124) 2017
10.1016/j.inffus.2019.12.012_bib0310
Núñez (10.1016/j.inffus.2019.12.012_bib0246) 2002
Pan (10.1016/j.inffus.2019.12.012_bib0425) 2009; 22
Benitez (10.1016/j.inffus.2019.12.012_bib0320) 1997; 8
Kanehira (10.1016/j.inffus.2019.12.012_bib0139) 2019
Núñez (10.1016/j.inffus.2019.12.012_bib0244) 2006; 24
Lopez-Paz (10.1016/j.inffus.2019.12.012_bib0042) 2017
Martens (10.1016/j.inffus.2019.12.012_bib0055) 2011; 51
Zhang (10.1016/j.inffus.2019.12.012_bib0074) 2017
10.1016/j.inffus.2019.12.012_bib0414
Donadello (10.1016/j.inffus.2019.12.012_bib0301) 2019
10.1016/j.inffus.2019.12.012_bib0416
Wu (10.1016/j.inffus.2019.12.012_bib0079) 2018
Nefeslioglu (10.1016/j.inffus.2019.12.012_bib0185) 2010; 2010
Bau (10.1016/j.inffus.2019.12.012_bib0125) 2017
Tsukimoto (10.1016/j.inffus.2019.12.012_bib0256) 2000; 11
Kelley (10.1016/j.inffus.2019.12.012_bib0354) 2003; 15
Rokach (10.1016/j.inffus.2019.12.012_bib0183) 2014; 69
Ribeiro (10.1016/j.inffus.2019.12.012_bib0235) 2018
Lundberg (10.1016/j.inffus.2019.12.012_bib0224) 2017
Varshney (10.1016/j.inffus.2019.12.012_bib0369) 2017; 5
Goudet (10.1016/j.inffus.2019.12.012_bib0040) 2018
Che (10.1016/j.inffus.2019.12.012_bib0056) 2016; 2016
Henelius (10.1016/j.inffus.2019.12.012_bib0228) 2014; 28
Aditya (10.1016/j.inffus.2019.12.012_bib0421) 2016
Olah (10.1016/j.inffus.2019.12.012_bib0295) 2018
Neerincx (10.1016/j.inffus.2019.12.012_bib0065) 2018
Min (10.1016/j.inffus.2019.12.012_bib0205) 2007; 365
Dong (10.1016/j.inffus.2019.12.012_bib0111) 2017
Attenberg (10.1016/j.inffus.2019.12.012_bib0371) 2015; 6
Haasdonk (10.1016/j.inffus.2019.12.012_bib0102) 2005; 27
10.1016/j.inffus.2019.12.012_bib0356
Manhaeve (10.1016/j.inffus.2019.12.012_bib0300) 2018
10.1016/j.inffus.2019.12.012_bib0358
10.1016/j.inffus.2019.12.012_bib0117
10.1016/j.inffus.2019.12.012_bib0359
10.1016/j.inffus.2019.12.012_bib0118
10.1016/j.inffus.2019.12.012_bib0360
Mood (10.1016/j.inffus.2019.12.012_bib0179) 2010; 26
10.1016/j.inffus.2019.12.012_bib0363
10.1016/j.inffus.2019.12.012_bib0122
10.1016/j.inffus.2019.12.012_bib0123
Martens (10.1016/j.inffus.2019.12.012_bib0236) 2014; 38
Adler (10.1016/j.inffus.2019.12.012_bib0220) 2018; 54
Jaccard (10.1016/j.inffus.2019.12.012_bib0175) 2001
Johansson (10.1016/j.inffus.2019.12.012_bib0149) 2009
Rothery (10.1016/j.inffus.2019.12.012_bib0199) 2001; 28
Konig (10.1016/j.inffus.2019.12.012_bib0212) 2008
Johansson (10.1016/j.inffus.2019.12.012_bib0190) 2004
Griffiths (10.1016/j.inffus.2019.12.012_bib0201) 2008
Miller (10.1016/j.inffus.2019.12.012_bib0012) 2019; 267
Jakulin (10.1016/j.inffus.2019.12.012_bib0250) 2005
Bursac (10.1016/j.inffus.2019.12.012_bib0174) 2008; 3
Hyvärinen (10.1016/j.inffus.2019.12.012_bib0336) 2000; 13
10.1016/j.inffus.2019.12.012_bib0344
Smirnov (10.1016/j.inffus.2019.12.012_bib0409) 2019; 52
10.1016/j.inffus.2019.12.012_bib0345
10.1016/j.inffus.2019.12.012_bib0104
10.1016/j.inffus.2019.12.012_bib0226
10.1016/j.inffus.2019.12.012_bib0347
Tan (10.1016/j.inffus.2019.12.012_bib0069) 2014
10.1016/j.inffus.2019.12.012_bib0107
10.1016/j.inffus.2019.12.012_bib0349
10.1016/j.inffus.2019.12.012_
References_xml – volume: 12
  start-page: 191
  year: 2013
  ident: bib0377
  article-title: The high-throughput highway to computational materials design
  publication-title: Nature materials
– start-page: 83
  year: 1983
  end-page: 134
  ident: bib0022
  article-title: A theory and methodology of inductive learning
  publication-title: Machine learning
– volume: 17
  start-page: 374
  year: 2006
  end-page: 384
  ident: bib0073
  article-title: Orthogonal search-based rule extraction (OSRE) for trained neural networks: a practical and efficient approach
  publication-title: IEEE Transactions on Neural Networks
– reference: M. Karl, M. Soelch, J. Bayer, P. van der Smagt, Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data, 2016.
– start-page: 457
  year: 2016
  end-page: 473
  ident: bib0257
  article-title: Deepred–rule extraction from deep neural networks
  publication-title: International Conference on Discovery Science
– reference: S. Wisdom, T. Powers, J. Pitton, L. Atlas, Interpretable recurrent neural networks using sequential sparse recovery, 2016.
– year: 2005
  ident: bib0034
  article-title: Explainable artificial intelligence for training and tutoring
  publication-title: Technical Report
– start-page: 1529
  year: 2015
  end-page: 1537
  ident: bib0305
  article-title: Conditional random fields as recurrent neural networks
  publication-title: Proceedings of the IEEE international conference on computer vision
– start-page: 2048
  year: 2015
  end-page: 2057
  ident: bib0091
  article-title: Show, attend and tell: Neural image caption generation with visual attention
  publication-title: International Conference on Machine Learning
– reference: G. Su, D. Wei, K.R. Varshney, D.M. Malioutov, Interpretable two-level boolean rule learning for classification, 2015.
– year: 2019
  ident: bib0016
  article-title: Explanation in Human-AI Systems: A Literature Meta-Review Synopsis of Key Ideas and Publications and Bibliography for Explainable AI
  publication-title: Technical Report
– start-page: 559
  year: 2004
  end-page: 570
  ident: bib0188
  article-title: An KNN model-based approach and its application in text categorization
  publication-title: International Conference on Intelligent Text Processing and Computational Linguistics
– volume: 115
  start-page: 1943
  year: 2018
  end-page: 1948
  ident: bib0166
  article-title: Iterative random forests to discover predictive and stable high-order interactions
  publication-title: Proceedings of the National Academy of Sciences
– start-page: 325
  year: 2013
  end-page: 333
  ident: bib0396
  article-title: Learning fair representations
  publication-title: International Conference on Machine Learning
– volume: 51
  start-page: 129
  year: 2019
  end-page: 144
  ident: bib0410
  article-title: A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion
  publication-title: Information Fusion
– reference: T. Lei, R. Barzilay, T. Jaakkola, Rationalizing neural predictions, 2016.
– reference: C. Dwork, C. Ilvento, Composition of fairsystems, 2018.
– year: 2019
  ident: bib0390
  article-title: Ethics Guidelines for Trustworthy AI
  publication-title: Technical Report
– start-page: 203
  year: 2019
  end-page: 233
  ident: bib0309
  article-title: Extending knowledge graphs with subjective influence networks for personalized fashion
  publication-title: Designing Cognitive Cities
– reference: H. Lakkaraju, E. Kamar, R. Caruana, J. Leskovec, Interpretable & explorable approximations of black box models, 2017.
– reference: J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, H. Lipson, Understanding neural networks through deep visualization, 2015.
– volume: 3
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib0109
  article-title: How the machine ‘thinks’: Understanding opacity in machine learning algorithms
  publication-title: Big Data & Society
– reference: O. Bastani, C. Kim, H. Bastani, Interpretability via model extraction, 2017.
– start-page: 2280
  year: 2016
  end-page: 2288
  ident: bib0210
  article-title: Examples are not enough, learn to criticize! criticism for interpretability
  publication-title: Advances in Neural Information Processing Systems
– start-page: 2271
  year: 2016
  end-page: 2275
  ident: bib0063
  article-title: Controlling explanatory heatmap resolution and semantics via decomposition depth
  publication-title: IEEE International Conference on Image Processing (ICIP)
– volume: 1355
  start-page: 1
  year: 2010
  ident: bib0130
  article-title: Understanding representations learned in deep architectures
  publication-title: Department dInformatique et Recherche Operationnelle, University of Montreal, QC, Canada, Tech. Rep
– volume: 16
  start-page: 3
  year: 2003
  end-page: 15
  ident: bib0083
  article-title: Extracting symbolic rules from trained neural network ensembles
  publication-title: AI Communications
– volume: 225
  start-page: 1
  year: 2013
  end-page: 17
  ident: bib0223
  article-title: Using sensitivity analysis and visualization techniques to open black box data mining models
  publication-title: Information Sciences
– start-page: 204
  year: 2018
  end-page: 214
  ident: bib0065
  article-title: Using perceptual and cognitive explanations for enhanced human-agent team performance
  publication-title: International Conference on Engineering Psychology and Cognitive Ergonomics
– volume: 5
  start-page: 197
  year: 2017
  end-page: 212
  ident: bib0237
  article-title: Enhancing transparency and control when drawing data-driven inferences about individuals
  publication-title: Big data
– volume: P-88
  start-page: 17
  year: 2006
  end-page: 32
  ident: bib0346
  article-title: Design and Implementation of a Backward-In-Time Debugger
  publication-title: NODe 2006
– volume: 43
  start-page: 259
  year: 2002
  end-page: 293
  ident: bib0076
  article-title: The use and interpretation of logistic regression in higher education journals: 1988–1999
  publication-title: Research in Higher Education
– volume: 52
  start-page: 155
  year: 2007
  end-page: 173
  ident: bib0337
  article-title: Algorithms and applications for approximate nonnegative matrix factorization
  publication-title: Computational Statistics & Data Analysis
– reference: C. Wadsworth, F. Vera, C. Piech, Achieving fairness through adversarial learning: an application to recidivism prediction, 2018.
– year: 2017
  ident: bib0293
  article-title: Feature visualization.
  publication-title: Distill
– volume: 104
  start-page: 671
  year: 2016
  ident: bib0392
  article-title: Big data’s disparate impact
  publication-title: Calif. L. Rev.
– volume: 23
  start-page: 2031
  year: 2013
  end-page: 2038
  ident: bib0417
  article-title: A survey of multi-view machine learning
  publication-title: Neural computing and applications
– volume: 15
  start-page: 261
  year: 2003
  end-page: 266
  ident: bib0354
  article-title: Good practice in the conduct and reporting of survey research
  publication-title: International Journal for Quality in Health Care
– reference: B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viegas, R. Sayres, Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (TCAV), 2017.
– start-page: 37
  year: 1994
  end-page: 45
  ident: bib0147
  article-title: Using sampling and queries to extract rules from trained neural networks
  publication-title: Machine learning proceedings 1994
– start-page: 3315
  year: 2016
  end-page: 3323
  ident: bib0393
  article-title: Equality of opportunity in supervised learning
  publication-title: Advances in neural information processing systems
– volume: 11
  start-page: 312
  year: 2007
  end-page: 319
  ident: bib0054
  article-title: Confident interpretation of bayesian decision tree ensembles for clinical applications
  publication-title: IEEE Transactions on Information Technology in Biomedicine
– volume: 24
  start-page: 1
  year: 2006
  end-page: 18
  ident: bib0127
  article-title: Rule-based learning systems for support vector machines
  publication-title: Neural Processing Letters
– volume: 38
  start-page: 73
  year: 2014
  end-page: 100
  ident: bib0236
  article-title: Explaining data-driven document classifications
  publication-title: MIS Quarterly
– volume: 3
  start-page: 1870
  year: 2001
  end-page: 1875
  ident: bib0259
  article-title: Rule extraction from neural networks via decision tree induction
  publication-title: IJCNN’01. International Joint Conference on Neural Networks. Proceedings (Cat. No. 01CH37222)
– volume: 6
  start-page: 52138
  year: 2018
  end-page: 52160
  ident: bib0014
  article-title: Peeking inside the black-box: A survey on explainable artificial intelligence (XAI)
  publication-title: IEEE Access
– reference: R. Shwartz-Ziv, N. Tishby, Opening the black box of deep neural networks via information, 2017.
– reference: J. Konečný, H.B. McMahan, D. Ramage, P. Richtárik, Federated optimization: Distributed machine learning for on-device intelligence, 2016.
– volume: 10
  start-page: 1392
  year: 1999
  end-page: 1401
  ident: bib0258
  article-title: ANN-DT: an algorithm for extraction of decision trees from artificial neural networks
  publication-title: IEEE Transactions on Neural Networks
– volume: 50
  start-page: 92
  year: 2019
  end-page: 111
  ident: bib0348
  article-title: Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0
  publication-title: Information Fusion
– volume: 3
  year: 2016
  ident: bib0373
  article-title: Critical data studies: An introduction
  publication-title: Big Data & Society
– reference: F.J.C. Garcia, D.A. Robb, X. Liu, A. Laskov, P. Patron, H. Hastie, Explain yourself: A natural language interface for scrutable autonomous robots, 2018.
– reference: A. Karpathy, J. Johnson, L. Fei-Fei, Visualizing and understanding recurrent networks, 2015.
– reference: M. Cornia, L. Baraldi, R. Cucchiara, Smart: Training shallow memory-aware transformers for robotic explainability, 2019.
– reference: L.H. Gilpin, D. Bau, B.Z. Yuan, A. Bajwa, M. Specter, L. Kagal, Explaining Explanations: An Overview of Interpretability of Machine Learning, 2018.
– start-page: 5686
  year: 2016
  end-page: 5697
  ident: bib0067
  article-title: Interacting with predictions: Visual inspection of black-box machine learning models
  publication-title: CHI Conference on Human Factors in Computing Systems
– volume: 267
  start-page: 1
  year: 2019
  end-page: 38
  ident: bib0012
  article-title: Explanation in artificial intelligence: Insights from the social sciences
  publication-title: Artif. Intell.
– reference: A. Slavin Ross, M.C. Hughes, F. Doshi-Velez, Right for the Right Reasons: Training Differentiable Models by Constraining their Explanations, 2017.
– volume: 14
  start-page: 69
  year: 2019
  end-page: 81
  ident: bib0019
  article-title: Evolutionary fuzzy systems for explainable artificial intelligence: Why, when, what for, and where to?
  publication-title: IEEE Computational Intelligence Magazine
– volume: 26
  start-page: 67
  year: 2010
  end-page: 82
  ident: bib0179
  article-title: Logistic regression: Why we cannot do what we think we can do, and what we can do about it
  publication-title: European sociological review
– volume: 35
  start-page: 131
  year: 2012
  end-page: 150
  ident: bib0082
  article-title: Reverse engineering the neural networks for rule extraction in classification problems
  publication-title: Neural Processing Letters
– volume: 23
  start-page: 91
  year: 2016
  end-page: 100
  ident: bib0270
  article-title: Towards better analysis of deep convolutional neural networks
  publication-title: IEEE transactions on visualization and computer graphics
– start-page: 335
  year: 2005
  end-page: 340
  ident: bib0094
  article-title: Fuzzy rule extraction from support vector machines
  publication-title: International Conference on Hybrid Intelligent Systems
– reference: A. Holzinger, C. Biemann, C.S. Pattichis, D.B. Kell, What do we need to build explainable Ai systems for the medical domain?, 2017.
– reference: J. Frankle, M. Carbin, The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, 2018.
– volume: 5
  start-page: 153
  year: 2017
  end-page: 163
  ident: bib0100
  article-title: Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
  publication-title: Big Data
– volume: 50
  start-page: 158
  year: 2019
  end-page: 167
  ident: bib0418
  article-title: Feature selection with multi-view data: A survey
  publication-title: Information Fusion
– start-page: 617
  year: 2015
  end-page: 623
  ident: bib0266
  article-title: Improving the interpretability of deep neural networks with stimulated learning
  publication-title: 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU)
– reference: J.T. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller, Striving for simplicity: The all convolutional net, 2014.
– volume: 55
  start-page: 1031
  year: 1998
  end-page: 1060
  ident: bib0203
  article-title: Bayesian stock assessment: a review and example application using the logistic model
  publication-title: ICES Journal of Marine Science
– reference: A. Das, H. Agrawal, C.L. Zitnick, D. Parikh, D. Batra, Human Attention in Visual Question Answering: Do Humans and Deep Networks Look at the Same Regions?, 2016.
– start-page: 297
  year: 2017
  end-page: 305
  ident: bib0114
  article-title: Interpretable convolutional neural networks with dual local and global attention for review rating prediction
  publication-title: Proceedings of the Eleventh ACM Conference on Recommender Systems
– volume: 38
  start-page: 43
  year: 2017
  end-page: 54
  ident: bib0419
  article-title: Multi-view learning overview: Recent progress and new challenges
  publication-title: Information Fusion
– start-page: 6261
  year: 2019
  end-page: 6270
  ident: bib0078
  article-title: Interpreting CNNs via decision trees
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1670
  year: 2018
  end-page: 1678
  ident: bib0079
  article-title: Beyond sparsity: Tree regularization of deep models for interpretability
  publication-title: AAAI Conference on Artificial Intelligence
– reference: S.H. Welling, H.H. Refsgaard, P.B. Brockhoff, L.H. Clemmensen, Forest floor visualizations of random forests, 2016.
– year: 2015
  ident: bib0387
  article-title: Transforming our World: the 2030 Agenda for Sustainable Development
  publication-title: Technical Report
– start-page: 61
  year: 2005
  end-page: 70
  ident: bib0106
  article-title: Rule extraction from trained support vector machines
  publication-title: Pacific-Asia Conference on Knowledge Discovery and Data Mining
– volume: 44
  start-page: 78
  year: 2018
  end-page: 96
  ident: bib0365
  article-title: A practical tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models, software and guidelines
  publication-title: Information Fusion
– reference: X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, P. Abbeel, InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets, 2016.
– start-page: 623
  year: 2013
  end-page: 631
  ident: bib0090
  article-title: Accurate intelligible models with pairwise interactions
  publication-title: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– year: 2015
  ident: bib0031
  article-title: iBCM: Interactive Bayesian case model empowering humans via intuitive interaction
  publication-title: Technical Report
– volume: 27
  start-page: 221
  year: 1987
  end-page: 234
  ident: bib0132
  article-title: Simplifying decision trees
  publication-title: International journal of man-machine studies
– start-page: 289
  year: 2016
  end-page: 297
  ident: bib0331
  article-title: Hierarchical question-image co-attention for visual question answering
  publication-title: Proceedings of the 30th International Conference on Neural Information Processing Systems
– volume: 42
  start-page: 51
  year: 2018
  end-page: 61
  ident: bib0413
  article-title: Big data: Tutorial and guidelines on information and process fusion for analytics algorithms with mapreduce
  publication-title: Information Fusion
– start-page: 8603
  year: 2019
  end-page: 8611
  ident: bib0139
  article-title: Learning to explain with complemental examples
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: Y. Zhang, X. Chen, Explainable Recommendation: A Survey and New Perspectives, 2018.
– volume: 7
  start-page: 36322
  year: 2019
  end-page: 36333
  ident: bib0364
  article-title: Recent progress on generative adversarial networks (gans): A survey
  publication-title: IEEE Access
– volume: 149
  start-page: 640
  year: 1999
  end-page: 644
  ident: bib0159
  article-title: Smoking and the occurence of alzheimer’s disease: Cross-sectional and longitudinal data in a population-based study
  publication-title: American journal of epidemiology
– start-page: 220
  year: 2019
  end-page: 229
  ident: bib0426
  article-title: Model cards for model reporting
  publication-title: Proceedings of the Conference on Fairness, Accountability, and Transparency
– reference: H. Chen, S. Lundberg, S.-I. Lee, Explaining models by propagating shapley values of local components, 2019.
– start-page: 347
  year: 2001
  end-page: 361
  ident: bib0406
  article-title: Similarity vs. diversity
  publication-title: International conference on case-based reasoning
– reference: B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Object Detectors Emerge in Deep Scene CNNs, 2014.
– reference: R. Guidotti, A. Monreale, S. Ruggieri, D. Pedreschi, F. Turini, F. Giannotti, Local rule-based explanations of black box decision systems, 2018.
– reference: D. Linsley, D. Shiebler, S. Eberhardt, T. Serre, Global-and-local attention networks for visual recognition, 2018.
– reference: D.W. Apley, Visualizing the effects of predictor variables in black box supervised learning models, 2016.
– reference: J. Adebayo, J. Gilmer, I. Goodfellow, B. Kim, Local explanation methods for deep neural networks lack sensitivity to parameter values, 2018.
– reference: G.D. Hager, A. Drobnis, F. Fang, R. Ghani, A. Greenwald, T. Lyons, D.C. Parkes, J. Schultz, S. Saria, S.F. Smith, M. Tambe, Artificial intelligence for social good, 2019.
– start-page: 658
  year: 2004
  end-page: 663
  ident: bib0190
  article-title: The truth is in there-rule extraction from opaque models using genetic programming.
  publication-title: FLAIRS Conference
– volume: 56
  start-page: 675
  year: 2007
  end-page: 698
  ident: bib0195
  article-title: New approaches to regression by generalized additive models and continuous optimization for modern applications in finance, science and technology
  publication-title: Optimization
– start-page: 3156
  year: 2017
  end-page: 3164
  ident: bib0277
  article-title: Residual attention network for image classification
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 9097
  year: 2019
  end-page: 9107
  ident: bib0138
  article-title: Interpretable and fine-grained visual explanations for convolutional neural networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2017
  ident: bib0339
  article-title: beta-vae: Learning basic visual concepts with a constrained variational framework
  publication-title: ICLR
– reference: S. Sabour, N. Frosst, G. E Hinton, Dynamic Routing Between Capsules, 2017.
– start-page: 19
  year: 2018
  end-page: 36
  ident: bib0062
  article-title: Explanation methods in deep learning: Users, values, concerns and challenges
  publication-title: Explainable and Interpretable Models in Computer Vision and Machine Learning
– year: 2017
  ident: bib0286
  article-title: Classification and regression trees
– start-page: 3387
  year: 2016
  end-page: 3395
  ident: bib0268
  article-title: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 87
  start-page: 304
  year: 1987
  end-page: 307
  ident: bib0191
  article-title: Generating production rules from decision trees.
  publication-title: ijcai
– volume: 73
  start-page: 1
  year: 2018
  end-page: 15
  ident: bib0018
  article-title: Methods for interpreting and understanding deep neural networks
  publication-title: Digital Signal Processing
– start-page: 842
  year: 2015
  end-page: 850
  ident: bib0278
  article-title: The application of two-level attention models in deep convolutional neural network for fine-grained image classification
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2008
  ident: bib0201
  article-title: Bayesian models of cognition.
– volume: 32
  start-page: 1999
  year: 1999
  end-page: 2009
  ident: bib0097
  article-title: Extracting decision trees from trained neural networks
  publication-title: Pattern Recognition
– start-page: 465
  year: 2017
  end-page: 474
  ident: bib0240
  article-title: Interpretable predictions of tree-based ensembles via actionable feature tweaking
  publication-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 4967
  year: 2017
  end-page: 4976
  ident: bib0075
  article-title: A simple neural network module for relational reasoning
  publication-title: Advances in Neural Information Processing Systems
– start-page: 19
  year: 2017
  ident: bib0282
  article-title: Towards explainable text classification by jointly learning lexicon and modifier terms
  publication-title: IJCAI-17 Workshop on Explainable AI (XAI)
– year: 2018
  ident: bib0298
  publication-title: Semantic image interpretation-integration of numerical data and logical knowledge for cognitive vision
– start-page: 1177
  year: 2007
  end-page: 1186
  ident: bib0051
  article-title: Comparing analytical decision support models through boolean rule extraction: A case study of ovarian tumour malignancy
  publication-title: International Symposium on Neural Networks
– reference: W.J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, B. Yu, Interpretable machine learning: definitions, methods, and applications, 2019.
– reference: A. Polino, R. Pascanu, D. Alistarh, Model compression via distillation and quantization, 2018.
– reference: D. Bouchacourt, L. Denoyer, EDUCE: explaining model decisions through unsupervised concepts extraction, 2019.
– volume: 3
  start-page: 17
  year: 2008
  ident: bib0174
  article-title: Purposeful selection of variables in logistic regression
  publication-title: Source code for biology and medicine
– start-page: 5116
  year: 2017
  end-page: 5120
  ident: bib0088
  article-title: Logic meets probability: Towards explainable AI systems for uncertain worlds
  publication-title: International Joint Conference on Artificial Intelligence
– start-page: 537
  year: 2017
  end-page: 543
  ident: bib0214
  article-title: Local interpretable model-agnostic explanations for music content analysis.
  publication-title: ISMIR
– volume: 2016
  start-page: 371
  year: 2016
  ident: bib0056
  article-title: Interpretable deep models for ICU outcome prediction
  publication-title: AMIA Annual Symposium Proceedings
– reference: D. Huk Park, L.A. Hendricks, Z. Akata, A. Rohrbach, B. Schiele, T. Darrell, M. Rohrbach, Multimodal Explanations: Justifying Decisions and Pointing to the Evidence, 2018.
– year: 2016
  ident: bib0269
  article-title: Convergent learning: Do different neural networks learn the same representations?
  publication-title: ICLR
– reference: A. Agrawal, J. Lu, S. Antol, M. Mitchell, C.L. Zitnick, D. Batra, D. Parikh, VQA: Visual Question Answering, 2015.
– volume: 73
  start-page: 538
  year: 1998
  end-page: 540
  ident: bib0178
  article-title: Using natural frequencies to improve diagnostic inferences
  publication-title: Academic medicine
– reference: A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, Attention Is All You Need, 2017.
– volume: 10
  start-page: 421
  year: 2010
  end-page: 439
  ident: bib0202
  article-title: A bayesian model for repeated measures zero-inflated count data with application to outpatient psychiatric service use
  publication-title: Statistical modelling
– start-page: 119
  year: 2018
  end-page: 120
  ident: bib0036
  article-title: Explanations and expectations: Trust building in automated vehicles
  publication-title: Companion of the ACM/IEEE International Conference on Human-Robot Interaction
– volume: 30
  start-page: 1639
  year: 1997
  end-page: 1648
  ident: bib0148
  article-title: Rule extraction from trained neural networks using genetic algorithms
  publication-title: Nonlinear Analysis: Theory, Methods & Applications
– reference: J.J. Thiagarajan, B. Kailkhura, P. Sattigeri, K.N. Ramamurthy, Treeview: Peeking into deep neural networks via feature-space partitioning, 2016.
– start-page: 598
  year: 2016
  end-page: 617
  ident: bib0173
  article-title: Algorithmic transparency via quantitative input influence: Theory and experiments with learning systems
  publication-title: 2016 IEEE symposium on security and privacy (SP)
– start-page: 193
  year: 2014
  end-page: 218
  ident: bib0103
  article-title: Interpreting random forest classification models using a feature contribution method
  publication-title: Integration of Reusable Systems
– volume: 8
  start-page: 1156
  year: 1997
  end-page: 1164
  ident: bib0320
  article-title: Are artificial neural networks black boxes?
  publication-title: IEEE Trans. Neural Networks
– start-page: 303
  year: 2018
  end-page: 310
  ident: bib0120
  article-title: Distill-and-compare: Auditing black-box models using transparent model distillation
  publication-title: AAAI/ACM Conference on AI, Ethics, and Society
– volume: 54
  start-page: 95
  year: 2018
  end-page: 122
  ident: bib0220
  article-title: Auditing black-box models for indirect influence
  publication-title: Knowledge and Information Systems
– volume: 24
  start-page: 190
  year: 2015
  end-page: 204
  ident: bib0116
  article-title: Interpreting support vector machine models for multivariate group wise analysis in neuroimaging
  publication-title: Medical image analysis
– reference: G. Marra, F. Giannini, M. Diligenti, M. Gori, Integrating learning and reasoning with deep logic models, 2019.
– volume: 157
  start-page: 89
  year: 2002
  end-page: 100
  ident: bib0198
  article-title: Generalized linear and generalized additive models in studies of species distributions: setting the scene
  publication-title: Ecological Modelling
– volume: 5
  start-page: 15
  year: 1976
  end-page: 17
  ident: bib0180
  article-title: Constructing optimal binary decision trees is Np-complete
  publication-title: Information processing letters
– volume: 1
  start-page: 81
  year: 1986
  end-page: 106
  ident: bib0182
  article-title: Induction of decision trees
  publication-title: Machine learning
– year: 2019
  ident: bib0301
  article-title: Persuasive explanation of reasoning inferences on dietary data
  publication-title: First Workshop on Semantic Explainability @ ISWC 2019
– reference: I.T. Jolliffe, Principal Component Analysis and Factor Analysis, Springer New York, pp. 115–128.
– reference: S.M. Lundberg, G.G. Erion, S.-I. Lee, Consistent individualized feature attribution for tree ensembles, 2018.
– volume: 11
  start-page: 377
  year: 2000
  end-page: 389
  ident: bib0256
  article-title: Extracting rules from trained neural networks
  publication-title: IEEE Transactions on Neural Networks
– start-page: 464
  year: 2018
  end-page: 471
  ident: bib0367
  article-title: Learning interpretable anatomical features through deep generative models: Application to cardiac remodeling
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 519
  year: 2015
  end-page: 527
  ident: bib0379
  article-title: Robust transmural electrophysiological imaging: Integrating sparse and dynamic physiological models into ecg-based inference
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 190
  start-page: 379
  year: 2013
  end-page: 396
  ident: bib0023
  article-title: General theories of explanation: buyer beware
  publication-title: Synthese
– volume: 13
  start-page: 71
  year: 1993
  end-page: 101
  ident: bib0252
  article-title: Extracting refined rules from knowledge-based neural networks
  publication-title: Machine Learning
– volume: 1
  start-page: 6
  year: 2011
  ident: bib0291
  article-title: Adaptive deconvolutional networks for mid and high level feature learning.
  publication-title: ICCV
– start-page: 6276
  year: 2019
  end-page: 6282
  ident: bib0351
  article-title: Counterfactuals in explainable artificial intelligence (XAI): Evidence from human reasoning
  publication-title: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19
– volume: 27
  start-page: 62
  year: 2017
  end-page: 67
  ident: bib0381
  article-title: View-tolerant face recognition and hebbian learning imply mirror-symmetric neural tuning to head orientation
  publication-title: Current Biology
– volume: 35
  start-page: 27
  year: 2012
  end-page: 42
  ident: bib0241
  article-title: Interpretation of nonlinear relationships between process variables by use of random forests
  publication-title: Minerals Engineering
– reference: S. Mohseni, N. Zarei, E.D. Ragan, A multidisciplinary survey and framework for design and evaluation of explainable ai systems, 2018.
– start-page: 2239
  year: 2018
  end-page: 2248
  ident: bib0394
  article-title: A unified approach to quantifying algorithmic unfairness: Measuring individual group unfairness via inequality indices
  publication-title: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery Data Mining
– year: 2019
  ident: bib0402
  article-title: Certifai: Counterfactual explanations for robustness, transparency, interpretability, and fairness of artificial intelligence models
  publication-title: arXiv preprint arXiv:1905.07857
– volume: 11
  start-page: 1803
  year: 2010
  end-page: 1831
  ident: bib0230
  article-title: How to explain individual classification decisions
  publication-title: Journal of Machine Learning Research
– reference: C. Rudin, Please stop explaining black box models for high stakes decisions, 2018.
– reference: G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network, 2015.
– start-page: 427
  year: 2015
  end-page: 436
  ident: bib0273
  article-title: Deep neural networks are easily fooled: High confidence predictions for unrecognizable images
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– reference: A. Radford, R. Jozefowicz, I. Sutskever, Learning to generate reviews and discovering sentiment, 2017.
– volume: 51
  start-page: 782
  year: 2011
  end-page: 793
  ident: bib0055
  article-title: Performance of classification models from a user perspective
  publication-title: Decision Support Systems
– volume: 10
  start-page: 395
  year: 2018
  end-page: 409
  ident: bib0141
  article-title: Explanations of Model Predictions with live and breakDown Packages
  publication-title: The R Journal
– year: 2019
  ident: bib0169
  article-title: Towards explainable neural-symbolic visual reasoning
  publication-title: NeSy Workshop IJCAI 2019, Macau, China
– volume: 33
  start-page: 1
  year: 2012
  end-page: 33
  ident: bib0395
  article-title: Data preprocessing techniques for classification without discrimination
  publication-title: Knowledge and Information Systems
– start-page: 1245
  year: 2013
  end-page: 1248
  ident: bib0423
  article-title: Big data integration
  publication-title: 2013 IEEE 29th international conference on data engineering (ICDE)
– volume: 3
  start-page: 605
  year: 2013
  end-page: 610
  ident: bib0186
  article-title: Application of k-nearest neighbor (knn) approach for predicting economic events: Theoretical background
  publication-title: International Journal of Engineering Research and Applications
– reference: A. Shrikumar, P. Greenside, A. Kundaje, Learning Important Features Through Propagating Activation Differences, 2017.
– start-page: 235
  year: 2016
  end-page: 248
  ident: bib0421
  article-title: I-pic: A platform for privacy-compliant image capture
  publication-title: Proceedings of the 14th annual international conference on mobile systems, applications, and services
– volume: 26
  year: 2013
  ident: bib0162
  article-title: Applied predictive modeling
– reference: D. Smilkov, N. Thorat, B. Kim, F. Viégas, M. Wattenberg, SmoothGrad: removing noise by adding noise, 2017.
– reference: T. Hailesilassie, Rule extraction algorithm for deep neural networks: A review, 2016.
– volume: 8
  start-page: 1041
  year: 2014
  end-page: 1052
  ident: bib0197
  article-title: A modified geosite assessment model (M-GAM) and its application on the lazar canyon area (serbia)
  publication-title: International journal of environmental research
– reference: M. Garnelo, K. Arulkumaran, M. Shanahan, Towards deep symbolic reinforcement learning, 2016.
– reference: C. Barabas, K. Dinakar, J. Ito, M. Virza, J. Zittrain, Interventions over predictions: Reframing the ethical debate for actuarial risk assessment, 2017.
– volume: 12
  start-page: 15
  year: 2000
  end-page: 25
  ident: bib0254
  article-title: FERNN: An algorithm for fast extraction of rules from neural networks
  publication-title: Applied Intelligence
– volume: 160
  start-page: 53
  year: 2015
  end-page: 62
  ident: bib0361
  article-title: Support vector machines under adversarial label contamination
  publication-title: Neurocomputing
– reference: T. Lesort, M. Seurin, X. Li, N. Díaz-Rodríguez, D. Filliat, Unsupervised state representation learning with robotic priors: a robustness benchmark, 2017.
– volume: 39
  start-page: 1503
  year: 2012
  end-page: 1509
  ident: bib0189
  article-title: An improved k-nearest-neighbor algorithm for text categorization
  publication-title: Expert Systems with Applications
– reference: A. Weller, Challenges for transparency, 2017.
– start-page: 618
  year: 2017
  end-page: 626
  ident: bib0292
  article-title: Grad-cam: Visual explanations from deep networks via gradient-based localization
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 495
  year: 2017
  end-page: 496
  ident: bib0124
  article-title: MIRIAM: a multimodal chat-based interface for autonomous systems
  publication-title: ACM International Conference on Multimodal Interaction
– reference: K. Xu, D.H. Park, C. Yi, C. Sutton, Interpreting deep classifier by visual distillation of dark knowledge, 2018.
– start-page: 4765
  year: 2017
  end-page: 4774
  ident: bib0224
  article-title: A unified approach to interpreting model predictions
  publication-title: Advances in Neural Information Processing Systems
– start-page: 40
  year: 2015
  ident: bib0424
  article-title: comobile: Real-time human mobility modeling at urban scale using multi-view learning
  publication-title: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems
– year: 2009
  ident: bib0161
  article-title: Causality
– start-page: 387
  year: 2013
  end-page: 402
  ident: bib0362
  article-title: Evasion attacks against machine learning at test time
  publication-title: Proceedings of the 2013th European Conference on Machine Learning and Knowledge Discovery in Databases - Volume Part III
– year: 2018
  ident: bib0002
  article-title: The future of work: robots, AI, and automation
– reference: S. Hara, K. Hayashi, Making tree ensembles interpretable, 2016.
– start-page: 1135
  year: 2016
  end-page: 1144
  ident: bib0032
  article-title: Why should I trust you?: Explaining the predictions of any classifier
  publication-title: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 27
  start-page: 482
  year: 2005
  end-page: 492
  ident: bib0102
  article-title: Feature space interpretation of SVMs with indefinite kernels
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 24
  start-page: 44
  year: 2015
  end-page: 65
  ident: bib0238
  article-title: Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation
  publication-title: Journal of Computational and Graphical Statistics
– year: 2018
  ident: bib0037
  article-title: Working with beliefs: AI transparency in the enterprise.
  publication-title: Workshops of the ACM Conference on Intelligent User Interfaces
– reference: N. Frosst, G. Hinton, Distilling a neural network into a soft decision tree, 2017.
– start-page: 2217
  year: 2018
  end-page: 2226
  ident: bib0242
  article-title: Stacking with auxiliary features for visual question answering
  publication-title: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)
– volume: 66
  start-page: 55
  year: 2013
  ident: bib0404
  article-title: Big data and its exclusions
  publication-title: Stan. L. Rev. Online
– reference: I.J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing adversarial examples, 2014.
– volume: 51
  start-page: 42
  year: 2019
  end-page: 57
  ident: bib0411
  article-title: Data fusion in cyber-physical-social systems: State-of-the-art and perspectives
  publication-title: Information Fusion
– volume: 12
  start-page: 513
  year: 2013
  end-page: 544
  ident: bib0121
  article-title: Statistical procedures for forecasting criminal behavior: A comparative assessment
  publication-title: Criminology & Public Policy
– start-page: 32
  year: 2013
  end-page: 38
  ident: bib0249
  article-title: Interpreting individual classifications of hierarchical networks
  publication-title: 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)
– reference: D. Doran, S. Schulz, T.R. Besold, What does explainable AI really mean? a new conceptualization of perspectives, 2017.
– reference: M.T. Keane, E.M. Kenny, The Twin-System Approach as One Generic Solution for XAI: An Overview of ANN-CBR Twins for Explaining Deep Learning, 2019.
– reference: W. Shang, A. Trott, S. Zheng, C. Xiong, R. Socher, Learning world graphs to accelerate hierarchical reinforcement learning, 2019.
– reference: R. Traoré, H. Caselles-Dupré, T. Lesort, T. Sun, G. Cai, N.D. Rodríguez, D. Filliat, DisCoRL: Continual reinforcement learning via policy distillation, 2019.
– volume: 16
  start-page: 26
  year: 2018
  end-page: 33
  ident: bib0389
  article-title: Ethics and privacy in ai and big data: Implementing responsible research and innovation
  publication-title: IEEE Security & Privacy
– start-page: 410
  year: 2011
  end-page: 415
  ident: bib0200
  article-title: Short-term electricity load forecasting with generalized additive models
  publication-title: 16th Intelligent System Applications to Power Systems Conference, ISAP 2011
– volume: 20
  start-page: 589
  year: 2008
  end-page: 600
  ident: bib0234
  article-title: Explaining classifications for individual instances
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: P.-J. Kindermans, K.T. Schütt, M. Alber, K.-R. Müller, D. Erhan, B. Kim, S. Dähne, Learning how to explain neural networks: Patternnet and patternattribution, 2017.
– volume: 22
  start-page: 1345
  year: 2009
  end-page: 1359
  ident: bib0425
  article-title: A survey on transfer learning
  publication-title: IEEE Transactions on knowledge and data engineering
– volume: 183
  start-page: 1466
  year: 2007
  end-page: 1476
  ident: bib0095
  article-title: Comprehensible credit scoring models using rule extraction from support vector machines
  publication-title: European Journal of Operational Research
– reference: P. Hall, On the Art and Science of Machine Learning Explanations, 2018.
– reference: W. Samek, T. Wiegand, K.-R. Müller, Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models, 2017.
– volume: 7
  start-page: 76
  year: 2017
  end-page: 99
  ident: bib0355
  article-title: Why a right to explanation of automated decision-making does not exist in the general data protection regulation
  publication-title: International Data Privacy Law
– reference: B. Biggio, I. Pillai, S.R. Bulò, D. Ariu, M. Pelillo, F. Roli, Is data clustering in adversarial settings secure?, 2018.
– start-page: 1885
  year: 2017
  end-page: 1894
  ident: bib0221
  article-title: Understanding black-box predictions via influence functions
  publication-title: Proceedings of the 34th International Conference on Machine Learning-Volume 70
– volume: 66
  start-page: 1417
  year: 2009
  end-page: 1424
  ident: bib0196
  article-title: Application of a generalized additive model (GAM) to reveal relationships between environmental factors and distributions of pelagic fish and krill: a case study in sendai bay, Japan
  publication-title: ICES Journal of Marine Science
– reference: R.R. Hoffman, S.T. Mueller, G. Klein, J. Litman, Metrics for explainable ai: Challenges and prospects, 2018.
– volume: 38
  start-page: 50
  year: 2017
  end-page: 57
  ident: bib0003
  article-title: European union regulations on algorithmic decision-making and a “right to explanation”
  publication-title: AI Magazine
– volume: 10
  start-page: e0130140
  year: 2015
  ident: bib0072
  article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation
  publication-title: PloS one
– volume: 30
  start-page: 2805
  year: 2019
  end-page: 2824
  ident: bib0048
  article-title: Adversarial examples: Attacks and defenses for deep learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– reference: Y. Zhang, B. Wallace, A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification, 2015.
– year: 2019
  ident: bib0158
  article-title: Fairness and Machine Learning
– reference: K. Burns, L.A. Hendricks, K. Saenko, T. Darrell, A. Rohrbach, Women also Snowboard: Overcoming Bias in Captioning Models, 2018.
– volume: 69
  year: 2014
  ident: bib0183
  article-title: Data mining with decision trees: theory and applications
– reference: E. Akyol, C. Langbort, T. Basar, Price of transparency in strategic machine learning, 2016.
– start-page: 24
  year: 2018
  end-page: 31
  ident: bib0313
  article-title: Knowledge-aware autoencoders for explainable recommender systems
  publication-title: Proceedings of the 3rd Workshop on Deep Learning for Recommender Systems
– reference: A.S. d’Avila Garcez, M. Gori, L.C. Lamb, L. Serafini, M. Spranger, S.N. Tran, Neural-symbolic computing: An effective methodology for principled integration of machine learning and reasoning, 2019.
– start-page: 3749
  year: 2018
  end-page: 3759
  ident: bib0300
  article-title: DeepProbLog: Neural probabilistic logic programming
  publication-title: Advances in Neural Information Processing Systems 31
– start-page: 4842
  year: 2018
  end-page: 4852
  ident: bib0101
  article-title: Fairness through computationally-bounded awareness
  publication-title: Advances in Neural Information Processing Systems
– year: 2008
  ident: bib0028
  article-title: Elements of Argumentation
– volume: 159
  start-page: 3091
  year: 2008
  end-page: 3131
  ident: bib0108
  article-title: Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling
  publication-title: Fuzzy Sets and Systems
– volume: 22
  start-page: 3762
  year: 2010
  end-page: 3767
  ident: bib0375
  article-title: Finding nature’s missing ternary oxide compounds using machine learning and density functional theory
  publication-title: Chemistry of Materials
– volume: 19
  start-page: 729
  year: 2007
  end-page: 741
  ident: bib0093
  article-title: Rule extraction from support vector machines: A sequential covering approach
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: L. Rieger, C. Singh, W.J. Murdoch, B. Yu, Interpretations are useful: penalizing explanations to align neural networks with prior knowledge, 2019.
– volume: 15
  start-page: 237
  year: 2002
  end-page: 246
  ident: bib0260
  article-title: A methodology to explain neural network classification
  publication-title: Neural networks
– reference: A. Fukui, D. Huk Park, D. Yang, A. Rohrbach, T. Darrell, M. Rohrbach, Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding, 2016.
– start-page: 2921
  year: 2016
  end-page: 2929
  ident: bib0096
  article-title: Learning deep features for discriminative localization
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 39
  year: 2018
  end-page: 80
  ident: bib0040
  article-title: Learning functional causal models with generative neural networks
  publication-title: Explainable and Interpretable Models in Computer Vision and Machine Learning
– year: 2019
  ident: bib0398
  article-title: Fairsight: Visual analytics for fairness in decision making
  publication-title: IEEE transactions on visualization and computer graphics
– volume: 56
  start-page: 909
  year: 2000
  end-page: 914
  ident: bib0115
  article-title: Interpreting parameters in the logistic regression model with random effects
  publication-title: Biometrics
– volume: 6
  start-page: 7
  year: 2004
  end-page: 19
  ident: bib0370
  article-title: Mining with rarity: a unifying framework
  publication-title: ACM Sigkdd Explorations Newsletter
– start-page: 1952
  year: 2014
  end-page: 1960
  ident: bib0209
  article-title: The bayesian case model: A generative approach for case-based reasoning and prototype classification
  publication-title: Advances in Neural Information Processing Systems
– volume: 9
  start-page: 1057
  year: 1998
  end-page: 1068
  ident: bib0038
  article-title: The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks
  publication-title: IEEE Transactions on Neural Networks
– year: 2007
  ident: bib0206
  article-title: Bayesian econometric methods
– reference: M.T. Ribeiro, S. Singh, C. Guestrin, Model-agnostic interpretability of machine learning, 2016.
– start-page: 1313
  year: 2017
  end-page: 1320
  ident: bib0074
  article-title: Plan explicability and predictability for robot task planning
  publication-title: 2017 IEEE International Conference on Robotics and Automation (ICRA)
– year: 2019
  ident: bib0383
  article-title: Understanding artificial intelligence ethics and safety
– reference: H.F. Tan, G. Hooker, M.T. Wells, Tree space prototypes: Another look at making tree ensembles interpretable, 2016.
– reference: W.J. Murdoch, A. Szlam, Automatic rule extraction from long short term memory networks, 2017.
– year: 2018
  ident: bib0295
  article-title: The building blocks of interpretability
  publication-title: Distill
– start-page: 107
  year: 2002
  end-page: 112
  ident: bib0126
  article-title: Rule extraction from support vector machines.
  publication-title: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN)
– start-page: 1
  year: 2018
  end-page: 8
  ident: bib0009
  article-title: Explainable AI for designers: A human-centered perspective on mixed-initiative co-creation
  publication-title: 2018 IEEE Conference on Computational Intelligence and Games (CIG)
– year: 2019
  ident: bib0399
  article-title: Fair-by-design explainable models for prediction of recidivism
  publication-title: arXiv preprint arXiv:1910.02043
– volume: 112
  year: 2013
  ident: bib0163
  article-title: An introduction to statistical learning
– volume: 29
  start-page: 17
  year: 2019
  end-page: 23
  ident: bib0352
  article-title: Reconciling deep learning with symbolic artificial intelligence: representing objects and relations
  publication-title: Current Opinion in Behavioral Sciences
– volume: 4
  start-page: 75
  year: 2016
  end-page: 88
  ident: bib0020
  article-title: A framework for considering comprehensibility in modeling
  publication-title: Big data
– start-page: 121
  year: 2019
  end-page: 144
  ident: bib0357
  article-title: Towards reverse-engineering black-box neural networks
  publication-title: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning
– start-page: 349
  year: 2000
  end-page: 355
  ident: bib0248
  article-title: Probabilistic methods for support vector machines
  publication-title: Advances in neural information processing systems
– volume: 20
  start-page: 1638
  year: 2004
  end-page: 1640
  ident: bib0187
  article-title: Application of the GA/KNN method to SELDI proteomics data
  publication-title: Bioinformatics
– reference: Y. Goyal, A. Mohapatra, D. Parikh, D. Batra, Towards transparent AI systems: Interpreting visual question answering models, 2016.
– volume: 7
  start-page: 154096
  year: 2019
  end-page: 154113
  ident: bib0307
  article-title: Black-box vs. white-box: Understanding their advantages and weaknesses from a practical point of view
  publication-title: IEEE Access
– start-page: 818
  year: 2014
  end-page: 833
  ident: bib0136
  article-title: Visualizing and understanding convolutional networks
  publication-title: European conference on computer vision
– volume: 19
  start-page: 1484
  year: 2013
  end-page: 1500
  ident: bib0167
  article-title: Stability
  publication-title: Bernoulli
– year: 2017
  ident: bib0326
  article-title: Self-driving car steering angle prediction based on image recognition
  publication-title: Technical Report
– reference: F. Petroni, T. Rocktäschel, P. Lewis, A. Bakhtin, Y. Wu, A.H. Miller, S. Riedel, Language models as knowledge bases?, 2019.
– start-page: 4306
  year: 2017
  end-page: 4314
  ident: bib0111
  article-title: Improving interpretability of deep neural networks with semantic information
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 586
  year: 2016
  end-page: 594
  ident: bib0172
  article-title: Deep learning without poor local minima
  publication-title: Advances in neural information processing systems
– reference: K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno, D. Song, Robust physical-world attacks on deep learning models, 2017.
– volume: 538
  start-page: 20
  year: 2016
  ident: bib0004
  article-title: Can we open the black box of AI?
  publication-title: Nature News
– volume: 41
  start-page: 161
  year: 2007
  end-page: 175
  ident: bib0245
  article-title: A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue
  publication-title: Artificial Intelligence in Medicine
– volume: 51
  start-page: 129
  year: 2019
  end-page: 144
  ident: bib0408
  article-title: A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion
  publication-title: Information Fusion
– volume: 365
  start-page: 2103
  year: 2007
  end-page: 2116
  ident: bib0205
  article-title: Probabilistic climate change predictions applying bayesian model averaging
  publication-title: Philosophical transactions of the royal society of london a: mathematical, physical and engineering sciences
– reference: G.J. Katuwal, R. Chen, Machine learning model interpretability for precision medicine, 2016.
– volume: 6
  start-page: 1
  year: 2015
  ident: bib0371
  article-title: Beat the machine: Challenging humans to find a predictive model’s “unknown unknowns”
  publication-title: Journal of Data and Information Quality (JDIQ)
– start-page: 19
  year: 2016
  end-page: 35
  ident: bib0420
  article-title: Faceless person recognition: Privacy implications in social media
  publication-title: Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, Proceedings, Part III
– reference: F. Doshi-Velez, B. Kim, Towards a rigorous science of interpretable machine learning, 2017.
– start-page: 9505
  year: 2018
  end-page: 9515
  ident: bib0294
  article-title: Sanity checks for saliency maps
  publication-title: Advances in Neural Information Processing Systems
– volume: 7
  start-page: 39
  year: 1994
  end-page: 59
  ident: bib0316
  article-title: Case-based reasoning: Foundational issues
  publication-title: Methodological Variations, and System Approaches
– reference: A. Shrikumar, P. Greenside, A. Shcherbina, A. Kundaje, Not just a black box: Learning important features through propagating activation differences, 2016.
– year: 2012
  ident: bib0194
  article-title: Estimating bank loans loss given default by generalized additive models
  publication-title: UCD Geary Institute Discussion Paper Series, WP2012/24
– year: 2018
  ident: bib0099
  article-title: “Fair” risk assessments: A precarious approach for criminal justice reform
  publication-title: 5th Workshop on Fairness, Accountability, and Transparency in Machine Learning
– volume: 9
  start-page: 44
  year: 2017
  end-page: 55
  ident: bib0070
  article-title: Learning from explanations using sentiment and advice in RL
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– reference: J. Fjeld, H. Hilligoss, N. Achten, M.L. Daniel, J. Feldman, S. Kagay, Principled artificial intelligence: A map of ethical and rights-based approaches, 2019.
– reference: F. Rossi, AI Ethics for Enterprise AI, 2019.
– volume: 51
  start-page: 141
  year: 2011
  end-page: 154
  ident: bib0092
  article-title: An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models
  publication-title: Decision Support Systems
– start-page: 4762
  year: 2017
  end-page: 4763
  ident: bib0059
  article-title: Explainable agency for intelligent autonomous systems
  publication-title: AAAI Conference on Artificial Intelligence
– start-page: 142
  year: 2002
  end-page: 147
  ident: bib0246
  article-title: Support vector machines with symbolic interpretation
  publication-title: VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.
– volume: 15
  start-page: 1
  year: 2014
  end-page: 10
  ident: bib0053
  article-title: Comprehensible classification models: a position paper
  publication-title: ACM SIGKDD explorations newsletter
– volume: 2
  start-page: 187
  year: 1998
  end-page: 202
  ident: bib0119
  article-title: Knowledge discovery via multiple models
  publication-title: Intelligent Data Analysis
– volume: 16
  start-page: 18
  year: 2017
  ident: bib0089
  article-title: Slave to the algorithm: Why a right to an explanation is probably not the remedy you are looking for
  publication-title: Duke L. & Tech. Rev.
– reference: I.J. Goodfellow, N. Papernot, P.D. McDaniel, cleverhans v0.1: an adversarial machine learning library, 2016.
– reference: J. Moeyersoms, B. d’Alessandro, F. Provost, D. Martens, Explaining classification models built on high-dimensional sparse data, 2016.
– volume: 69
  start-page: 1754
  year: 2006
  end-page: 1759
  ident: bib0134
  article-title: Support vector machine interpretation
  publication-title: Neurocomputing
– volume: 13
  start-page: 411
  year: 2000
  end-page: 430
  ident: bib0336
  article-title: Oja, e.: Independent component analysis: Algorithms and applications. neural networks 13(4-5), 411-430
  publication-title: Neural networks
– volume: 38
  start-page: 54
  year: 1995
  end-page: 64
  ident: bib0192
  article-title: Applications of machine learning and rule induction
  publication-title: Communications of the ACM
– volume: 24
  start-page: 1
  year: 2006
  end-page: 18
  ident: bib0244
  article-title: Rule-based learning systems for support vector machines
  publication-title: Neural Processing Letters
– reference: N. Papernot, P. McDaniel, Deep k-nearest neighbors: Towards confident, interpretable and robust deep learning, 2018.
– reference: R. Benjamins, A. Barbado, D. Sierra, Responsible AI by design, 2019.
– reference: K. Simonyan, A. Vedaldi, A. Zisserman, Deep inside convolutional networks: Visualising image classification models and saliency maps, 2013.
– volume: 12
  start-page: 163
  year: 2012
  end-page: 172
  ident: bib0026
  article-title: Making machine learning models interpretable.
  publication-title: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN)
– start-page: 101
  year: 1998
  end-page: 104
  ident: bib0112
  article-title: Interpretable boosted naïve bayes classification.
  publication-title: ACM SIGKDD Conference on Knowledge Discovery and Data Mining
– start-page: 6541
  year: 2017
  end-page: 6549
  ident: bib0125
  article-title: Network dissection: Quantifying interpretability of deep visual representations
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 3
  start-page: 11
  year: 2011
  ident: bib0068
  article-title: Interpreting linear support vector machine models with heat map molecule coloring
  publication-title: Journal of Cheminformatics
– volume: 154
  start-page: 135
  year: 2002
  end-page: 150
  ident: bib0066
  article-title: Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks
  publication-title: Ecological modelling
– volume: 5
  start-page: 73
  year: 2017
  end-page: 84
  ident: bib0403
  article-title: Diversity in big data: A review
  publication-title: Big data
– volume: 2
  start-page: 125
  year: 2010
  end-page: 132
  ident: bib0050
  article-title: Design and evaluation of explainable BDI agents
  publication-title: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology
– start-page: 971
  year: 2008
  end-page: 974
  ident: bib0212
  article-title: G-rex: A versatile framework for evolutionary data mining
  publication-title: 2008 IEEE International Conference on Data Mining Workshops
– volume: 595
  start-page: 299
  year: 2007
  end-page: 309
  ident: bib0077
  article-title: Visualisation and interpretation of support vector regression models
  publication-title: Analytica Chimica Acta
– start-page: 210
  year: 2018
  end-page: 215
  ident: bib0010
  article-title: Explainable artificial intelligence: A survey
  publication-title: 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)
– start-page: 5188
  year: 2015
  end-page: 5196
  ident: bib0137
  article-title: Understanding deep image representations by inverting them
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 6979
  year: 2017
  end-page: 6987
  ident: bib0042
  article-title: Discovering causal signals in images
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 23
  start-page: 129
  year: 2007
  end-page: 143
  ident: bib0193
  article-title: Bankruptcy prediction by generalized additive models
  publication-title: Applied Stochastic Models in Business and Industry
– start-page: 281
  year: 2011
  end-page: 288
  ident: bib0204
  article-title: A bayesian model for opening prediction in RTS games with application to starcraft
  publication-title: Computational Intelligence and Games (CIG), 2011 IEEE Conference on
– year: 2016
  ident: bib0001
  article-title: Artificial intelligence: a modern approach
– reference: Z. Che, S. Purushotham, R. Khemani, Y. Liu, Distilling knowledge from deep networks with applications to healthcare domain, 2015.
– reference: J. Konečnỳ, H.B. McMahan, F.X. Yu, P. Richtárik, A.T. Suresh, D. Bacon, Federated learning: Strategies for improving communication efficiency, 2016.
– start-page: 655
  year: 2018
  end-page: 670
  ident: bib0239
  article-title: Visualizing the feature importance for black box models
  publication-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases
– volume: 28
  start-page: 1503
  year: 2014
  end-page: 1529
  ident: bib0228
  article-title: A peek into the black box: exploring classifiers by randomization
  publication-title: Data mining and knowledge discovery
– reference: L. Arras, G. Montavon, K.-R. Müller, W. Samek, Explaining recurrent neural network predictions in sentiment analysis, 2017.
– volume: 24
  start-page: 1114
  year: 1994
  end-page: 1124
  ident: bib0251
  article-title: Rule generation from neural networks
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 2
  start-page: 963
  year: 1996
  end-page: 972
  ident: bib0207
  article-title: Acting under uncertainty: Discrete bayesian models for mobile-robot navigation
  publication-title: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS’96
– reference: V. Krakovna, F. Doshi-Velez, Increasing the interpretability of recurrent neural networks using hidden markov models, 2016.
– start-page: 3504
  year: 2016
  end-page: 3512
  ident: bib0285
  article-title: Retain: An interpretable predictive model for healthcare using reverse time attention mechanism
  publication-title: Advances in Neural Information Processing Systems
– year: 2017
  ident: bib0007
  article-title: Explainable artificial intelligence (xAI)
  publication-title: Technical Report
– reference: A. Sharif Razavian, H. Azizpour, J. Sullivan, S. Carlsson, CNN Features off-the-shelf: an Astounding Baseline for Recognition, 2014.
– volume: 36
  start-page: 36
  year: 2017
  end-page: 40
  ident: bib0086
  article-title: Explainable AI: Beware of inmates running the asylum
  publication-title: International Joint Conference on Artificial Intelligence, Workshop on Explainable AI (XAI)
– volume: 9
  start-page: 58
  year: 2006
  end-page: 69
  ident: bib0160
  article-title: An empirical study of machine learning techniques for affect recognition in human–robot interaction
  publication-title: Pattern Analysis and Applications
– start-page: 161
  year: 2019
  end-page: 170
  ident: bib0401
  article-title: Fairwashing: the risk of rationalization
  publication-title: International Conference on Machine Learning
– reference: C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R. Fergus, Intriguing properties of neural networks, 2013.
– volume: 398
  year: 2013
  ident: bib0176
  article-title: Applied logistic regression
– start-page: 535
  year: 2006
  end-page: 541
  ident: bib0289
  article-title: Model compression
  publication-title: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 132
  year: 2014
  end-page: 143
  ident: bib0069
  article-title: Unsupervised feature construction and knowledge extraction from genome-wide assays of breast cancer with denoising autoencoders
  publication-title: Pacific Symposium on Biocomputing Co-Chairs
– volume: 2
  start-page: 1672
  year: 2008
  end-page: 1675
  ident: bib0057
  article-title: Eclectic rule-extraction from support vector machines
  publication-title: International Journal of Computer, Electrical, Automation, Control and Information Engineering
– reference: Y. Zhou, G. Hooker, Interpreting models via single tree approximation, 2016.
– start-page: 238
  year: 2009
  end-page: 244
  ident: bib0149
  article-title: Evolving decision trees using oracle guides
  publication-title: 2009 IEEE Symposium on Computational Intelligence and Data Mining
– volume: 1
  start-page: 295
  year: 2004
  end-page: 300
  ident: bib0211
  article-title: Accuracy vs. comprehensibility in data mining models
  publication-title: Proceedings of the seventh international conference on information fusion
– volume: 5
  start-page: 641
  year: 2006
  ident: bib0376
  article-title: Predicting crystal structure by merging data mining with quantum mechanics
  publication-title: Nature materials
– volume: 5
  start-page: 85
  year: 2017
  end-page: 97
  ident: bib0372
  article-title: Critique and contribute: A practice-based framework for improving critical data studies and data science
  publication-title: Big data
– start-page: 6967
  year: 2017
  end-page: 6976
  ident: bib0227
  article-title: Real time image saliency for black box classifiers
  publication-title: Advances in Neural Information Processing Systems
– reference: Q. Zhang, Y. Yang, Y. Liu, Y. Nian Wu, S.-C. Zhu, Unsupervised Learning of Neural Networks to Explain Neural Networks, 2018.
– volume: 16
  start-page: 30:31
  year: 2018
  end-page: 30:57
  ident: bib0005
  article-title: The mythos of model interpretability
  publication-title: Queue
– start-page: 8309
  year: 2018
  end-page: 8319
  ident: bib0366
  article-title: Visual feature attribution using wasserstein gans
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 1987
  ident: bib0165
  article-title: Robust statistics: The approach based on influence functions
– start-page: 108
  year: 2005
  end-page: 117
  ident: bib0250
  article-title: Nomograms for visualizing support vector machines
  publication-title: Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining
– reference: S. Liu, B. Kailkhura, D. Loveland, Y. Han, Generative counterfactual introspection for explainable deep learning, 2019.
– volume: 2010
  year: 2010
  ident: bib0185
  article-title: Assessment of landslide susceptibility by decision trees in the metropolitan area of istanbul, turkey
  publication-title: Mathematical Problems in Engineering
– start-page: 341
  year: 2011
  end-page: 348
  ident: bib0222
  article-title: Opening black box data mining models using sensitivity analysis
  publication-title: 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)
– start-page: 32
  year: 2005
  end-page: 40
  ident: bib0105
  article-title: Rule extraction from linear support vector machines
  publication-title: ACM SIGKDD International Conference on Knowledge Discovery in Data Mining
– reference: D.P. Kingma, M. Welling, Auto-Encoding Variational Bayes, 2013.
– start-page: 3429
  year: 2017
  end-page: 3437
  ident: bib0085
  article-title: Interpretable explanations of black boxes by meaningful perturbation
  publication-title: IEEE International Conference on Computer Vision
– year: 2001
  ident: bib0175
  article-title: Interaction effects in logistic regression: Quantitative applications in the social sciences
– volume: 29
  start-page: 230
  year: 2017
  end-page: 241
  ident: bib0045
  article-title: Designing and implementing transparency for real time inspection of autonomous robots
  publication-title: Connection Science
– start-page: 10772
  year: 2019
  end-page: 10781
  ident: bib0155
  article-title: Explainability methods for graph convolutional neural networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 335
  year: 2018
  end-page: 340
  ident: bib0397
  article-title: Mitigating unwanted biases with adversarial learning
  publication-title: Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society
– volume: 9
  start-page: 1350
  year: 2015
  end-page: 1371
  ident: bib0049
  article-title: Interpretable classifiers using rules and bayesian analysis: Building a better stroke prediction model
  publication-title: The Annals of Applied Statistics
– volume: 52
  start-page: 31
  year: 2019
  end-page: 40
  ident: bib0409
  article-title: Knowledge fusion patterns: A survey
  publication-title: Information Fusion
– volume: 8
  start-page: 1
  year: 2017
  ident: bib0015
  article-title: Explanation and justification in machine learning: A survey
  publication-title: IJCAI-17 workshop on explainable AI (XAI)
– volume: 4
  start-page: eaao5580
  year: 2018
  ident: bib0400
  article-title: The accuracy, fairness, and limits of predicting recidivism
  publication-title: Science advances
– reference: A. Lucic, H. Haned, M. de Rijke, Explaining predictions from tree-based boosting ensembles, 2019.
– volume: 11
  start-page: 1
  year: 2010
  end-page: 18
  ident: bib0225
  article-title: An efficient explanation of individual classifications using game theory
  publication-title: Journal of Machine Learning Research
– year: 2008
  ident: bib0027
  article-title: Cambridge advanced learner’s dictionary
– start-page: 8827
  year: 2018
  end-page: 8836
  ident: bib0113
  article-title: Interpretable convolutional neural networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 5
  start-page: 246
  year: 2017
  end-page: 255
  ident: bib0369
  article-title: On the safety of machine learning: Cyber-physical systems, decision sciences, and data products
  publication-title: Big data
– start-page: 295
  year: 2018
  end-page: 303
  ident: bib0087
  article-title: Explainable AI: the new 42?
  publication-title: International Cross-Domain Conference for Machine Learning and Knowledge Extraction
– start-page: 150
  year: 2012
  end-page: 158
  ident: bib0171
  article-title: Intelligible models for classification and regression
  publication-title: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 70
  start-page: 3319
  year: 2017
  end-page: 3328
  ident: bib0262
  article-title: Axiomatic attribution for deep networks
  publication-title: International Conference on Machine Learning
– start-page: 4
  year: 2017
  ident: bib0233
  article-title: Palm: Machine learning explanations for iterative debugging
  publication-title: Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics
– start-page: 575
  year: 2004
  end-page: 580
  ident: bib0219
  article-title: Discovering additive structure in black box functions
  publication-title: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining
– start-page: 1362
  year: 2018
  end-page: 1368
  ident: bib0306
  article-title: Learning optimal decision trees with SAT
  publication-title: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18
– volume: 5
  start-page: 120
  year: 2017
  end-page: 134
  ident: bib0391
  article-title: Conscientious classification: A data scientist’s guide to discrimination-aware classification
  publication-title: Big data
– volume: 65
  start-page: 211
  year: 2017
  end-page: 222
  ident: bib0060
  article-title: Explaining nonlinear classification decisions with deep taylor decomposition
  publication-title: Pattern Recognition
– reference: P. Gajane, M. Pechenizkiy, On formalizing fairness in prediction with machine learning, 2017.
– volume: 46
  start-page: 21
  year: 2002
  end-page: 52
  ident: bib0247
  article-title: Bayesian methods for support vector machines: Evidence and predictive class probabilities
  publication-title: Machine learning
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bib0170
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
– reference: E. Tjoa, C. Guan, A survey on explainable artificial intelligence (XAI): Towards medical XAI, 2019.
– start-page: 2625
  year: 2015
  end-page: 2634
  ident: bib0274
  article-title: Long-term recurrent convolutional networks for visual recognition and description
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 1596
  year: 2017
  end-page: 1602
  ident: bib0297
  article-title: Logic tensor networks for semantic image interpretation
  publication-title: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI
– year: 1996
  ident: bib0217
  publication-title: Extracting Comprehensible Models from Trained Neural Networks
– reference: M. Lin, Q. Chen, S. Yan, Network in network, 2013.
– reference: M. Fox, D. Long, D. Magazzeni, Explainable planning, 2017.
– start-page: 1721
  year: 2015
  end-page: 1730
  ident: bib0044
  article-title: Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission
  publication-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– year: 2018
  ident: bib0384
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
– start-page: 155
  year: 2018
  end-page: 172
  ident: bib0243
  article-title: Ensembling visual explanations
  publication-title: Explainable and Interpretable Models in Computer Vision and Machine Learning
– volume: 51
  start-page: 42
  year: 2019
  end-page: 57
  ident: bib0407
  article-title: Data fusion in cyber-physical-social systems: State-of-the-art and perspectives
  publication-title: Information Fusion
– start-page: 553
  year: 2018
  end-page: 569
  ident: bib0422
  article-title: A hybrid model for identity obfuscation by face replacement
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– volume: 96
  start-page: 3
  year: 2002
  end-page: 14
  ident: bib0177
  article-title: An introduction to logistic regression analysis and reporting
  publication-title: The journal of educational research
– reference: A. Preece, D. Harborne, D. Braines, R. Tomsett, S. Chakraborty, Stakeholders in Explainable AI, 2018.
– reference: Q. Zhang, R. Cao, Y. Nian Wu, S.-C. Zhu, Growing Interpretable Part Graphs on ConvNets via Multi-Shot Learning, 2016.
– volume: 52
  start-page: 357
  year: 2019
  end-page: 374
  ident: bib0412
  article-title: A survey of data fusion in smart city applications
  publication-title: Information Fusion
– volume: 2
  start-page: 7pp.
  year: 2005
  ident: bib0321
  article-title: Automatically balancing accuracy and comprehensibility in predictive modeling
  publication-title: Proceedings of the 8th International Conference on Information Fusion
– start-page: 229
  year: 2009
  end-page: 238
  ident: bib0378
  article-title: Active model with orthotropic hyperelastic material for cardiac image analysis
  publication-title: International Conference on Functional Imaging and Modeling of the Heart
– volume: 24
  start-page: 1510
  year: 2015
  end-page: 1521
  ident: bib0382
  article-title: Bhpmf–a hierarchical bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography
  publication-title: Global Ecology and Biogeography
– volume: 28
  start-page: 897
  year: 2001
  end-page: 909
  ident: bib0199
  article-title: Application of generalized additive models to butterfly transect count data
  publication-title: Journal of Applied Statistics
– volume: 51
  start-page: 93:1
  year: 2018
  end-page: 93:42
  ident: bib0017
  article-title: A survey of methods for explaining black box models
  publication-title: ACM Computing Surveys
– reference: M. Kearns, S. Neel, A. Roth, Z.S. Wu, Preventing fairness gerrymandering: Auditing and learning for subgroup fairness, 2017.
– reference: H. Deng, Interpreting tree ensembles with intrees, 2014.
– reference: R.R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, D. Batra, Grad-CAM: Why did you say that?, 2016.
– volume: 10
  start-page: 7
  year: 2010
  ident: bib0142
  article-title: Deconvolutional networks.
  publication-title: CVPR
– volume: 9
  start-page: 1417
  year: 1994
  end-page: 1426
  ident: bib0184
  article-title: Decision trees for real-time transient stability prediction
  publication-title: IEEE Transactions on Power Systems
– start-page: 2946
  year: 2016
  end-page: 2954
  ident: bib0304
  article-title: Composing graphical models with neural networks for structured representations and fast inference
  publication-title: Advances in Neural Information Processing Systems 29
– start-page: 303
  year: 2000
  end-page: 308
  ident: bib0317
  article-title: Case-based explanation for artificial neural nets
  publication-title: Artificial Neural Networks in Medicine and Biology, Proceedings of the ANNIMAB-1 Conference
– reference: C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, N. Shazeer, C. Hawthorne, A.M. Dai, M.D. Hoffman, D. Eck, Music transformer: Generating music with long-term structure, 2018.
– start-page: 1273
  year: 2017
  end-page: 1282
  ident: bib0415
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Artificial Intelligence and Statistics
– start-page: 6446
  year: 2017
  end-page: 6456
  ident: bib0039
  article-title: Causal effect inference with deep latent-variable models
  publication-title: Advances in Neural Information Processing Systems
– reference: L.A. Hendricks, Z. Akata, M. Rohrbach, J. Donahue, B. Schiele, T. Darrell, Generating Visual Explanations, 2016.
– reference: T. Orekondy, B. Schiele, M. Fritz, Knockoff nets: Stealing functionality of black-box models, 2018.
– volume: 29
  start-page: 2318
  year: 2017
  end-page: 2331
  ident: bib0374
  article-title: Theory-guided data science: A new paradigm for scientific discovery from data
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 1
  start-page: 291
  year: 2004
  end-page: 296
  ident: bib0098
  article-title: Extracting the knowledge embedded in support vector machines
  publication-title: IEEE International Joint Conference on Neural Networks
– start-page: 1527
  year: 2018
  end-page: 1535
  ident: bib0235
  article-title: Anchors: High-precision model-agnostic explanations
  publication-title: AAAI Conference on Artificial Intelligence
– volume: 1050
  year: 2015
  ident: bib0041
  article-title: Machine learning methods for estimating heterogeneous causal effects
  publication-title: stat
– volume: 4
  start-page: 161
  year: 1989
  end-page: 186
  ident: bib0181
  article-title: Incremental induction of decision trees
  publication-title: Machine learning
– reference: J. Adebayo, L. Kagal, Iterative orthogonal feature projection for diagnosing bias in black-box models, 2016.
– start-page: 5
  year: 2009
  end-page: 14
  ident: bib0405
  article-title: Diversifying search results
  publication-title: Proceedings of the second ACM international conference on web search and data mining
– reference: M.T. Ribeiro, S. Singh, C. Guestrin, Nothing else matters: Model-agnostic explanations by identifying prediction invariance, 2016.
– year: 2019
  ident: bib0311
  article-title: Towards explainable shared control using augmented reality
– start-page: 505
  year: 1994
  end-page: 512
  ident: bib0253
  article-title: Extracting rules from artificial neural networks with distributed representations
  publication-title: Proceedings of the 7th International Conference on Neural Information Processing Systems
– reference: J. Li, X. Chen, E. Hovy, D. Jurafsky, Visualizing and understanding neural models in NLP, 2015.
– reference: R.G. Krishnan, U. Shalit, D. Sontag, Deep Kalman Filters, 2015.
– volume: 11
  start-page: 448
  year: 1999
  end-page: 463
  ident: bib0255
  article-title: Symbolic interpretation of artificial neural networks
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: M. Ancona, E. Ceolini, C. Öztireli, M. Gross, Towards better understanding of gradient-based attribution methods for Deep Neural Networks, 2017.
– reference: A. Henelius, K. Puolamäki, A. Ukkonen, Interpreting classifiers through attribute interactions in datasets, 2017.
– volume: 93
  start-page: 935
  year: 1998
  end-page: 948
  ident: bib0208
  article-title: Bayesian cart model search
  publication-title: Journal of the American Statistical Association
– year: 1996
  ident: bib0021
  article-title: Extracting comprehensible models from trained neural networks
  publication-title: Technical Report
– reference: J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features in deep neural networks?, 2014.
– ident: 10.1016/j.inffus.2019.12.012_bib0008
– ident: 10.1016/j.inffus.2019.12.012_bib0329
– volume: 15
  start-page: 237
  issue: 2
  year: 2002
  ident: 10.1016/j.inffus.2019.12.012_bib0260
  article-title: A methodology to explain neural network classification
  publication-title: Neural networks
  doi: 10.1016/S0893-6080(01)00127-7
– ident: 10.1016/j.inffus.2019.12.012_bib0341
– ident: 10.1016/j.inffus.2019.12.012_bib0043
– start-page: 1952
  year: 2014
  ident: 10.1016/j.inffus.2019.12.012_bib0209
  article-title: The bayesian case model: A generative approach for case-based reasoning and prototype classification
– start-page: 2280
  year: 2016
  ident: 10.1016/j.inffus.2019.12.012_bib0210
  article-title: Examples are not enough, learn to criticize! criticism for interpretability
– volume: 225
  start-page: 1
  year: 2013
  ident: 10.1016/j.inffus.2019.12.012_bib0223
  article-title: Using sensitivity analysis and visualization techniques to open black box data mining models
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2012.10.039
– year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0383
– start-page: 3315
  year: 2016
  ident: 10.1016/j.inffus.2019.12.012_bib0393
  article-title: Equality of opportunity in supervised learning
– start-page: 519
  year: 2015
  ident: 10.1016/j.inffus.2019.12.012_bib0379
  article-title: Robust transmural electrophysiological imaging: Integrating sparse and dynamic physiological models into ecg-based inference
– ident: 10.1016/j.inffus.2019.12.012_bib0146
– ident: 10.1016/j.inffus.2019.12.012_bib0123
– start-page: 3749
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0300
  article-title: DeepProbLog: Neural probabilistic logic programming
– volume: 38
  start-page: 73
  issue: 1
  year: 2014
  ident: 10.1016/j.inffus.2019.12.012_bib0236
  article-title: Explaining data-driven document classifications
  publication-title: MIS Quarterly
  doi: 10.25300/MISQ/2014/38.1.04
– year: 2008
  ident: 10.1016/j.inffus.2019.12.012_bib0027
– ident: 10.1016/j.inffus.2019.12.012_bib0118
  doi: 10.32614/CRAN.package.inTrees
– start-page: 289
  year: 2016
  ident: 10.1016/j.inffus.2019.12.012_bib0331
  article-title: Hierarchical question-image co-attention for visual question answering
– start-page: 8309
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0366
  article-title: Visual feature attribution using wasserstein gans
– ident: 10.1016/j.inffus.2019.12.012_bib0013
  doi: 10.1109/DSAA.2018.00018
– volume: 24
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.inffus.2019.12.012_bib0127
  article-title: Rule-based learning systems for support vector machines
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-006-9007-8
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.inffus.2019.12.012_bib0170
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: 10.1016/j.inffus.2019.12.012_bib0284
– volume: 27
  start-page: 482
  issue: 4
  year: 2005
  ident: 10.1016/j.inffus.2019.12.012_bib0102
  article-title: Feature space interpretation of SVMs with indefinite kernels
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2005.78
– ident: 10.1016/j.inffus.2019.12.012_bib0368
  doi: 10.1109/GlobalSIP45357.2019.8969491
– volume: 38
  start-page: 43
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0419
  article-title: Multi-view learning overview: Recent progress and new challenges
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2017.02.007
– start-page: 335
  year: 2005
  ident: 10.1016/j.inffus.2019.12.012_bib0094
  article-title: Fuzzy rule extraction from support vector machines
– ident: 10.1016/j.inffus.2019.12.012_bib0107
  doi: 10.32470/CCN.2018.1113-0
– ident: 10.1016/j.inffus.2019.12.012_bib0330
– ident: 10.1016/j.inffus.2019.12.012_bib0272
– start-page: 427
  year: 2015
  ident: 10.1016/j.inffus.2019.12.012_bib0273
  article-title: Deep neural networks are easily fooled: High confidence predictions for unrecognizable images
– start-page: 101
  year: 1998
  ident: 10.1016/j.inffus.2019.12.012_bib0112
  article-title: Interpretable boosted naïve bayes classification.
– volume: 11
  start-page: 1803
  issue: Jun
  year: 2010
  ident: 10.1016/j.inffus.2019.12.012_bib0230
  article-title: How to explain individual classification decisions
  publication-title: Journal of Machine Learning Research
– start-page: 1273
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0415
  article-title: Communication-efficient learning of deep networks from decentralized data
– start-page: 32
  year: 2005
  ident: 10.1016/j.inffus.2019.12.012_bib0105
  article-title: Rule extraction from linear support vector machines
– start-page: 535
  year: 2006
  ident: 10.1016/j.inffus.2019.12.012_bib0289
  article-title: Model compression
– ident: 10.1016/j.inffus.2019.12.012_bib0318
– start-page: 325
  year: 2013
  ident: 10.1016/j.inffus.2019.12.012_bib0396
  article-title: Learning fair representations
– volume: 29
  start-page: 230
  issue: 3
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0045
  article-title: Designing and implementing transparency for real time inspection of autonomous robots
  publication-title: Connection Science
  doi: 10.1080/09540091.2017.1310182
– start-page: 658
  year: 2004
  ident: 10.1016/j.inffus.2019.12.012_bib0190
  article-title: The truth is in there-rule extraction from opaque models using genetic programming.
– start-page: 842
  year: 2015
  ident: 10.1016/j.inffus.2019.12.012_bib0278
  article-title: The application of two-level attention models in deep convolutional neural network for fine-grained image classification
– volume: 24
  start-page: 1510
  issue: 12
  year: 2015
  ident: 10.1016/j.inffus.2019.12.012_bib0382
  article-title: Bhpmf–a hierarchical bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography
  publication-title: Global Ecology and Biogeography
  doi: 10.1111/geb.12335
– volume: 15
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.inffus.2019.12.012_bib0053
  article-title: Comprehensible classification models: a position paper
  publication-title: ACM SIGKDD explorations newsletter
  doi: 10.1145/2594473.2594475
– start-page: 3504
  year: 2016
  ident: 10.1016/j.inffus.2019.12.012_bib0285
  article-title: Retain: An interpretable predictive model for healthcare using reverse time attention mechanism
– ident: 10.1016/j.inffus.2019.12.012_bib0363
– volume: 41
  start-page: 161
  issue: 2
  year: 2007
  ident: 10.1016/j.inffus.2019.12.012_bib0245
  article-title: A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2007.07.008
– volume: 7
  start-page: 39
  issue: 1
  year: 1994
  ident: 10.1016/j.inffus.2019.12.012_bib0316
  article-title: Case-based reasoning: Foundational issues
  publication-title: Methodological Variations, and System Approaches
– ident: 10.1016/j.inffus.2019.12.012_bib0388
– volume: 5
  start-page: 246
  issue: 3
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0369
  article-title: On the safety of machine learning: Cyber-physical systems, decision sciences, and data products
  publication-title: Big data
  doi: 10.1089/big.2016.0051
– start-page: 83
  year: 1983
  ident: 10.1016/j.inffus.2019.12.012_bib0022
  article-title: A theory and methodology of inductive learning
– ident: 10.1016/j.inffus.2019.12.012_bib0261
– ident: 10.1016/j.inffus.2019.12.012_bib0145
– start-page: 108
  year: 2005
  ident: 10.1016/j.inffus.2019.12.012_bib0250
  article-title: Nomograms for visualizing support vector machines
– volume: 1
  start-page: 6
  year: 2011
  ident: 10.1016/j.inffus.2019.12.012_bib0291
  article-title: Adaptive deconvolutional networks for mid and high level feature learning.
– start-page: 6979
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0042
  article-title: Discovering causal signals in images
– start-page: 1721
  year: 2015
  ident: 10.1016/j.inffus.2019.12.012_bib0044
  article-title: Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission
– volume: 30
  start-page: 1639
  issue: 3
  year: 1997
  ident: 10.1016/j.inffus.2019.12.012_bib0148
  article-title: Rule extraction from trained neural networks using genetic algorithms
  publication-title: Nonlinear Analysis: Theory, Methods & Applications
  doi: 10.1016/S0362-546X(96)00267-2
– volume: 69
  start-page: 1754
  issue: 13-15
  year: 2006
  ident: 10.1016/j.inffus.2019.12.012_bib0134
  article-title: Support vector machine interpretation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.118
– volume: 93
  start-page: 935
  issue: 443
  year: 1998
  ident: 10.1016/j.inffus.2019.12.012_bib0208
  article-title: Bayesian cart model search
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1998.10473750
– ident: 10.1016/j.inffus.2019.12.012_bib0213
– volume: 6
  start-page: 7
  issue: 1
  year: 2004
  ident: 10.1016/j.inffus.2019.12.012_bib0370
  article-title: Mining with rarity: a unifying framework
  publication-title: ACM Sigkdd Explorations Newsletter
  doi: 10.1145/1007730.1007734
– start-page: 4842
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0101
  article-title: Fairness through computationally-bounded awareness
– year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0390
  article-title: Ethics Guidelines for Trustworthy AI
– volume: 2
  start-page: 963
  year: 1996
  ident: 10.1016/j.inffus.2019.12.012_bib0207
  article-title: Acting under uncertainty: Discrete bayesian models for mobile-robot navigation
– volume: 28
  start-page: 1503
  issue: 5-6
  year: 2014
  ident: 10.1016/j.inffus.2019.12.012_bib0228
  article-title: A peek into the black box: exploring classifiers by randomization
  publication-title: Data mining and knowledge discovery
  doi: 10.1007/s10618-014-0368-8
– volume: 5
  start-page: 197
  issue: 3
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0237
  article-title: Enhancing transparency and control when drawing data-driven inferences about individuals
  publication-title: Big data
  doi: 10.1089/big.2017.0074
– volume: 2
  start-page: 1672
  issue: 5
  year: 2008
  ident: 10.1016/j.inffus.2019.12.012_bib0057
  article-title: Eclectic rule-extraction from support vector machines
  publication-title: International Journal of Computer, Electrical, Automation, Control and Information Engineering
– ident: 10.1016/j.inffus.2019.12.012_bib0328
– volume: 16
  start-page: 3
  issue: 1
  year: 2003
  ident: 10.1016/j.inffus.2019.12.012_bib0083
  article-title: Extracting symbolic rules from trained neural network ensembles
  publication-title: AI Communications
– volume: 1
  start-page: 81
  issue: 1
  year: 1986
  ident: 10.1016/j.inffus.2019.12.012_bib0182
  article-title: Induction of decision trees
  publication-title: Machine learning
  doi: 10.1023/A:1022643204877
– volume: 24
  start-page: 44
  issue: 1
  year: 2015
  ident: 10.1016/j.inffus.2019.12.012_bib0238
  article-title: Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2014.907095
– ident: 10.1016/j.inffus.2019.12.012_bib0340
– volume: 157
  start-page: 89
  issue: 2-3
  year: 2002
  ident: 10.1016/j.inffus.2019.12.012_bib0198
  article-title: Generalized linear and generalized additive models in studies of species distributions: setting the scene
  publication-title: Ecological Modelling
  doi: 10.1016/S0304-3800(02)00204-1
– volume: 23
  start-page: 129
  issue: 2
  year: 2007
  ident: 10.1016/j.inffus.2019.12.012_bib0193
  article-title: Bankruptcy prediction by generalized additive models
  publication-title: Applied Stochastic Models in Business and Industry
  doi: 10.1002/asmb.658
– ident: 10.1016/j.inffus.2019.12.012_bib0263
– volume: 14
  start-page: 69
  issue: 1
  year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0019
  article-title: Evolutionary fuzzy systems for explainable artificial intelligence: Why, when, what for, and where to?
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2018.2881645
– volume: 3
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.inffus.2019.12.012_bib0109
  article-title: How the machine ‘thinks’: Understanding opacity in machine learning algorithms
  publication-title: Big Data & Society
  doi: 10.1177/2053951715622512
– ident: 10.1016/j.inffus.2019.12.012_bib0030
– start-page: 559
  year: 2004
  ident: 10.1016/j.inffus.2019.12.012_bib0188
  article-title: An KNN model-based approach and its application in text categorization
– volume: 20
  start-page: 1638
  issue: 10
  year: 2004
  ident: 10.1016/j.inffus.2019.12.012_bib0187
  article-title: Application of the GA/KNN method to SELDI proteomics data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth098
– year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0286
– ident: 10.1016/j.inffus.2019.12.012_bib0356
  doi: 10.1109/CVPR.2019.00509
– year: 2016
  ident: 10.1016/j.inffus.2019.12.012_bib0001
– ident: 10.1016/j.inffus.2019.12.012_bib0064
– ident: 10.1016/j.inffus.2019.12.012_bib0327
– volume: 10
  start-page: 7
  year: 2010
  ident: 10.1016/j.inffus.2019.12.012_bib0142
  article-title: Deconvolutional networks.
– ident: 10.1016/j.inffus.2019.12.012_bib0157
– volume: 35
  start-page: 131
  issue: 2
  year: 2012
  ident: 10.1016/j.inffus.2019.12.012_bib0082
  article-title: Reverse engineering the neural networks for rule extraction in classification problems
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-011-9207-8
– volume: 16
  start-page: 30:31
  issue: 3
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0005
  article-title: The mythos of model interpretability
  publication-title: Queue
  doi: 10.1145/3236386.3241340
– start-page: 537
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0214
  article-title: Local interpretable model-agnostic explanations for music content analysis.
– start-page: 1135
  year: 2016
  ident: 10.1016/j.inffus.2019.12.012_bib0032
  article-title: Why should I trust you?: Explaining the predictions of any classifier
– year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0169
  article-title: Towards explainable neural-symbolic visual reasoning
– ident: 10.1016/j.inffus.2019.12.012_bib0296
– year: 2005
  ident: 10.1016/j.inffus.2019.12.012_bib0034
  article-title: Explainable artificial intelligence for training and tutoring
– start-page: 2921
  year: 2016
  ident: 10.1016/j.inffus.2019.12.012_bib0096
  article-title: Learning deep features for discriminative localization
– ident: 10.1016/j.inffus.2019.12.012_bib0135
– volume: 538
  start-page: 20
  issue: 7623
  year: 2016
  ident: 10.1016/j.inffus.2019.12.012_bib0004
  article-title: Can we open the black box of AI?
  publication-title: Nature News
  doi: 10.1038/538020a
– volume: 50
  start-page: 158
  year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0418
  article-title: Feature selection with multi-view data: A survey
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2018.11.019
– start-page: 193
  year: 2014
  ident: 10.1016/j.inffus.2019.12.012_bib0103
  article-title: Interpreting random forest classification models using a feature contribution method
– start-page: 8603
  year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0139
  article-title: Learning to explain with complemental examples
– volume: 12
  start-page: 191
  issue: 3
  year: 2013
  ident: 10.1016/j.inffus.2019.12.012_bib0377
  article-title: The high-throughput highway to computational materials design
  publication-title: Nature materials
  doi: 10.1038/nmat3568
– volume: 23
  start-page: 2031
  issue: 7-8
  year: 2013
  ident: 10.1016/j.inffus.2019.12.012_bib0417
  article-title: A survey of multi-view machine learning
  publication-title: Neural computing and applications
  doi: 10.1007/s00521-013-1362-6
– year: 2017
  ident: 10.1016/j.inffus.2019.12.012_sbref0221
  article-title: Feature visualization.
  publication-title: Distill
  doi: 10.23915/distill.00007
– volume: 70
  start-page: 3319
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0262
  article-title: Axiomatic attribution for deep networks
– volume: 267
  start-page: 1
  year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0012
  article-title: Explanation in artificial intelligence: Insights from the social sciences
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2018.07.007
– volume: 24
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.inffus.2019.12.012_bib0244
  article-title: Rule-based learning systems for support vector machines
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-006-9007-8
– ident: 10.1016/j.inffus.2019.12.012_bib0308
  doi: 10.18653/v1/D19-1250
– volume: 32
  start-page: 1999
  issue: 12
  year: 1999
  ident: 10.1016/j.inffus.2019.12.012_bib0097
  article-title: Extracting decision trees from trained neural networks
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(98)00181-2
– volume: 6
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.inffus.2019.12.012_bib0371
  article-title: Beat the machine: Challenging humans to find a predictive model’s “unknown unknowns”
  publication-title: Journal of Data and Information Quality (JDIQ)
  doi: 10.1145/2700832
– start-page: 1362
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0306
  article-title: Learning optimal decision trees with SAT
– start-page: 971
  year: 2008
  ident: 10.1016/j.inffus.2019.12.012_bib0212
  article-title: G-rex: A versatile framework for evolutionary data mining
– year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0339
  article-title: beta-vae: Learning basic visual concepts with a constrained variational framework
– volume: 51
  start-page: 93:1
  issue: 5
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0017
  article-title: A survey of methods for explaining black box models
  publication-title: ACM Computing Surveys
– ident: 10.1016/j.inffus.2019.12.012_bib0052
– ident: 10.1016/j.inffus.2019.12.012_bib0150
  doi: 10.18653/v1/D16-1011
– ident: 10.1016/j.inffus.2019.12.012_bib0143
– start-page: 2271
  year: 2016
  ident: 10.1016/j.inffus.2019.12.012_bib0063
  article-title: Controlling explanatory heatmap resolution and semantics via decomposition depth
– volume: 52
  start-page: 357
  year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0412
  article-title: A survey of data fusion in smart city applications
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2019.05.004
– start-page: 24
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0313
  article-title: Knowledge-aware autoencoders for explainable recommender systems
– volume: 27
  start-page: 221
  issue: 3
  year: 1987
  ident: 10.1016/j.inffus.2019.12.012_bib0132
  article-title: Simplifying decision trees
  publication-title: International journal of man-machine studies
  doi: 10.1016/S0020-7373(87)80053-6
– volume: 66
  start-page: 1417
  issue: 6
  year: 2009
  ident: 10.1016/j.inffus.2019.12.012_bib0196
  article-title: Application of a generalized additive model (GAM) to reveal relationships between environmental factors and distributions of pelagic fish and krill: a case study in sendai bay, Japan
  publication-title: ICES Journal of Marine Science
  doi: 10.1093/icesjms/fsp105
– volume: 5
  start-page: 85
  issue: 2
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0372
  article-title: Critique and contribute: A practice-based framework for improving critical data studies and data science
  publication-title: Big data
  doi: 10.1089/big.2016.0050
– ident: 10.1016/j.inffus.2019.12.012_bib0347
  doi: 10.1038/s42256-019-0048-x
– year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0295
  article-title: The building blocks of interpretability
  publication-title: Distill
  doi: 10.23915/distill.00010
– ident: 10.1016/j.inffus.2019.12.012_bib0006
– volume: 3
  start-page: 11
  issue: 1
  year: 2011
  ident: 10.1016/j.inffus.2019.12.012_bib0068
  article-title: Interpreting linear support vector machine models with heat map molecule coloring
  publication-title: Journal of Cheminformatics
  doi: 10.1186/1758-2946-3-11
– volume: 20
  start-page: 589
  issue: 5
  year: 2008
  ident: 10.1016/j.inffus.2019.12.012_bib0234
  article-title: Explaining classifications for individual instances
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2007.190734
– ident: 10.1016/j.inffus.2019.12.012_bib0029
– start-page: 161
  year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0401
  article-title: Fairwashing: the risk of rationalization
– volume: 30
  start-page: 2805
  issue: 9
  year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0048
  article-title: Adversarial examples: Attacks and defenses for deep learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2018.2886017
– volume: 11
  start-page: 312
  issue: 3
  year: 2007
  ident: 10.1016/j.inffus.2019.12.012_bib0054
  article-title: Confident interpretation of bayesian decision tree ensembles for clinical applications
  publication-title: IEEE Transactions on Information Technology in Biomedicine
  doi: 10.1109/TITB.2006.880553
– ident: 10.1016/j.inffus.2019.12.012_bib0281
– volume: 24
  start-page: 1114
  issue: 8
  year: 1994
  ident: 10.1016/j.inffus.2019.12.012_bib0251
  article-title: Rule generation from neural networks
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/21.299696
– start-page: 3429
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0085
  article-title: Interpretable explanations of black boxes by meaningful perturbation
– ident: 10.1016/j.inffus.2019.12.012_bib0310
– start-page: 281
  year: 2011
  ident: 10.1016/j.inffus.2019.12.012_bib0204
  article-title: A bayesian model for opening prediction in RTS games with application to starcraft
– volume: 3
  start-page: 605
  issue: 5
  year: 2013
  ident: 10.1016/j.inffus.2019.12.012_bib0186
  article-title: Application of k-nearest neighbor (knn) approach for predicting economic events: Theoretical background
  publication-title: International Journal of Engineering Research and Applications
– volume: 27
  start-page: 62
  issue: 1
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0381
  article-title: View-tolerant face recognition and hebbian learning imply mirror-symmetric neural tuning to head orientation
  publication-title: Current Biology
  doi: 10.1016/j.cub.2016.10.015
– start-page: 586
  year: 2016
  ident: 10.1016/j.inffus.2019.12.012_bib0172
  article-title: Deep learning without poor local minima
– volume: P-88
  start-page: 17
  year: 2006
  ident: 10.1016/j.inffus.2019.12.012_bib0346
  article-title: Design and Implementation of a Backward-In-Time Debugger
– volume: 51
  start-page: 782
  issue: 4
  year: 2011
  ident: 10.1016/j.inffus.2019.12.012_bib0055
  article-title: Performance of classification models from a user perspective
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2011.01.013
– ident: 10.1016/j.inffus.2019.12.012_bib0156
– start-page: 655
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0239
  article-title: Visualizing the feature importance for black box models
– start-page: 229
  year: 2009
  ident: 10.1016/j.inffus.2019.12.012_bib0378
  article-title: Active model with orthotropic hyperelastic material for cardiac image analysis
– start-page: 349
  year: 2000
  ident: 10.1016/j.inffus.2019.12.012_bib0248
  article-title: Probabilistic methods for support vector machines
– volume: 7
  start-page: 154096
  year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0307
  article-title: Black-box vs. white-box: Understanding their advantages and weaknesses from a practical point of view
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2949286
– ident: 10.1016/j.inffus.2019.12.012_bib0131
– ident: 10.1016/j.inffus.2019.12.012_bib0216
– year: 1987
  ident: 10.1016/j.inffus.2019.12.012_bib0165
– start-page: 617
  year: 2015
  ident: 10.1016/j.inffus.2019.12.012_bib0266
  article-title: Improving the interpretability of deep neural networks with stimulated learning
– start-page: 1313
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0074
  article-title: Plan explicability and predictability for robot task planning
– volume: 23
  start-page: 91
  issue: 1
  year: 2016
  ident: 10.1016/j.inffus.2019.12.012_bib0270
  article-title: Towards better analysis of deep convolutional neural networks
  publication-title: IEEE transactions on visualization and computer graphics
  doi: 10.1109/TVCG.2016.2598831
– volume: 9
  start-page: 1350
  issue: 3
  year: 2015
  ident: 10.1016/j.inffus.2019.12.012_bib0049
  article-title: Interpretable classifiers using rules and bayesian analysis: Building a better stroke prediction model
  publication-title: The Annals of Applied Statistics
  doi: 10.1214/15-AOAS848
– volume: 10
  start-page: e0130140
  issue: 7
  year: 2015
  ident: 10.1016/j.inffus.2019.12.012_bib0072
  article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation
  publication-title: PloS one
  doi: 10.1371/journal.pone.0130140
– year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0301
  article-title: Persuasive explanation of reasoning inferences on dietary data
– volume: 26
  start-page: 67
  issue: 1
  year: 2010
  ident: 10.1016/j.inffus.2019.12.012_bib0179
  article-title: Logistic regression: Why we cannot do what we think we can do, and what we can do about it
  publication-title: European sociological review
  doi: 10.1093/esr/jcp006
– ident: 10.1016/j.inffus.2019.12.012_bib0283
– start-page: 4765
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0224
  article-title: A unified approach to interpreting model predictions
– year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0326
  article-title: Self-driving car steering angle prediction based on image recognition
– start-page: 40
  year: 2015
  ident: 10.1016/j.inffus.2019.12.012_bib0424
  article-title: comobile: Real-time human mobility modeling at urban scale using multi-view learning
– year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0002
– start-page: 6276
  year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0351
  article-title: Counterfactuals in explainable artificial intelligence (XAI): Evidence from human reasoning
– volume: 5
  start-page: 153
  issue: 2
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0100
  article-title: Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
  publication-title: Big Data
  doi: 10.1089/big.2016.0047
– start-page: 19
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0282
  article-title: Towards explainable text classification by jointly learning lexicon and modifier terms
– start-page: 1177
  year: 2007
  ident: 10.1016/j.inffus.2019.12.012_bib0051
  article-title: Comparing analytical decision support models through boolean rule extraction: A case study of ovarian tumour malignancy
– start-page: 2239
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0394
  article-title: A unified approach to quantifying algorithmic unfairness: Measuring individual group unfairness via inequality indices
– start-page: 210
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0010
  article-title: Explainable artificial intelligence: A survey
– ident: 10.1016/j.inffus.2019.12.012_bib0133
– volume: 52
  start-page: 155
  year: 2007
  ident: 10.1016/j.inffus.2019.12.012_bib0337
  article-title: Algorithms and applications for approximate nonnegative matrix factorization
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2006.11.006
– year: 2009
  ident: 10.1016/j.inffus.2019.12.012_bib0161
– start-page: 341
  year: 2011
  ident: 10.1016/j.inffus.2019.12.012_bib0222
  article-title: Opening black box data mining models using sensitivity analysis
– ident: 10.1016/j.inffus.2019.12.012_bib0154
– volume: 87
  start-page: 304
  year: 1987
  ident: 10.1016/j.inffus.2019.12.012_bib0191
  article-title: Generating production rules from decision trees.
– start-page: 303
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0120
  article-title: Distill-and-compare: Auditing black-box models using transparent model distillation
– ident: 10.1016/j.inffus.2019.12.012_bib0122
– volume: 1
  start-page: 295
  year: 2004
  ident: 10.1016/j.inffus.2019.12.012_bib0211
  article-title: Accuracy vs. comprehensibility in data mining models
– ident: 10.1016/j.inffus.2019.12.012_bib0386
– volume: 1355
  start-page: 1
  year: 2010
  ident: 10.1016/j.inffus.2019.12.012_bib0130
  article-title: Understanding representations learned in deep architectures
  publication-title: Department dInformatique et Recherche Operationnelle, University of Montreal, QC, Canada, Tech. Rep
– ident: 10.1016/j.inffus.2019.12.012_bib0344
  doi: 10.18653/v1/D16-1044
– start-page: 6541
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0125
  article-title: Network dissection: Quantifying interpretability of deep visual representations
– start-page: 335
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0397
  article-title: Mitigating unwanted biases with adversarial learning
– start-page: 32
  year: 2013
  ident: 10.1016/j.inffus.2019.12.012_bib0249
  article-title: Interpreting individual classifications of hierarchical networks
– volume: 5
  start-page: 641
  issue: 8
  year: 2006
  ident: 10.1016/j.inffus.2019.12.012_bib0376
  article-title: Predicting crystal structure by merging data mining with quantum mechanics
  publication-title: Nature materials
  doi: 10.1038/nmat1691
– start-page: 37
  year: 1994
  ident: 10.1016/j.inffus.2019.12.012_bib0147
  article-title: Using sampling and queries to extract rules from trained neural networks
– start-page: 107
  year: 2002
  ident: 10.1016/j.inffus.2019.12.012_bib0126
  article-title: Rule extraction from support vector machines.
– volume: 42
  start-page: 51
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0413
  article-title: Big data: Tutorial and guidelines on information and process fusion for analytics algorithms with mapreduce
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2017.10.001
– start-page: 6446
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0039
  article-title: Causal effect inference with deep latent-variable models
– volume: 4
  start-page: 161
  issue: 2
  year: 1989
  ident: 10.1016/j.inffus.2019.12.012_bib0181
  article-title: Incremental induction of decision trees
  publication-title: Machine learning
  doi: 10.1023/A:1022699900025
– start-page: 1529
  year: 2015
  ident: 10.1016/j.inffus.2019.12.012_bib0305
  article-title: Conditional random fields as recurrent neural networks
– ident: 10.1016/j.inffus.2019.12.012_bib0215
– ident: 10.1016/j.inffus.2019.12.012_bib0315
  doi: 10.1109/ICRA40945.2020.9196653
– ident: 10.1016/j.inffus.2019.12.012_bib0144
– ident: 10.1016/j.inffus.2019.12.012_bib0084
– ident: 10.1016/j.inffus.2019.12.012_bib0271
– start-page: 2217
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0242
  article-title: Stacking with auxiliary features for visual question answering
– volume: 50
  start-page: 92
  year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0348
  article-title: Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2018.10.005
– volume: 595
  start-page: 299
  issue: 1-2
  year: 2007
  ident: 10.1016/j.inffus.2019.12.012_bib0077
  article-title: Visualisation and interpretation of support vector regression models
  publication-title: Analytica Chimica Acta
  doi: 10.1016/j.aca.2007.03.023
– ident: 10.1016/j.inffus.2019.12.012_bib0342
– ident: 10.1016/j.inffus.2019.12.012_bib0319
– ident: 10.1016/j.inffus.2019.12.012_bib0110
– volume: 10
  start-page: 395
  issue: 2
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0141
  article-title: Explanations of Model Predictions with live and breakDown Packages
  publication-title: The R Journal
  doi: 10.32614/RJ-2018-072
– ident: 10.1016/j.inffus.2019.12.012_bib0117
– ident: 10.1016/j.inffus.2019.12.012_bib0358
– year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0007
  article-title: Explainable artificial intelligence (xAI)
– start-page: 1527
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0235
  article-title: Anchors: High-precision model-agnostic explanations
– volume: 154
  start-page: 135
  issue: 1-2
  year: 2002
  ident: 10.1016/j.inffus.2019.12.012_bib0066
  article-title: Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks
  publication-title: Ecological modelling
  doi: 10.1016/S0304-3800(02)00064-9
– ident: 10.1016/j.inffus.2019.12.012_bib0385
  doi: 10.2139/ssrn.3518482
– ident: 10.1016/j.inffus.2019.12.012_bib0232
– year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0398
  article-title: Fairsight: Visual analytics for fairness in decision making
  publication-title: IEEE transactions on visualization and computer graphics
  doi: 10.1109/TVCG.2019.2934262
– volume: 11
  start-page: 448
  issue: 3
  year: 1999
  ident: 10.1016/j.inffus.2019.12.012_bib0255
  article-title: Symbolic interpretation of artificial neural networks
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/69.774103
– volume: 39
  start-page: 1503
  issue: 1
  year: 2012
  ident: 10.1016/j.inffus.2019.12.012_bib0189
  article-title: An improved k-nearest-neighbor algorithm for text categorization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.08.040
– start-page: 155
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0243
  article-title: Ensembling visual explanations
– volume: 17
  start-page: 374
  issue: 2
  year: 2006
  ident: 10.1016/j.inffus.2019.12.012_bib0073
  article-title: Orthogonal search-based rule extraction (OSRE) for trained neural networks: a practical and efficient approach
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2005.863472
– ident: 10.1016/j.inffus.2019.12.012_bib0312
– volume: 51
  start-page: 42
  year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0411
  article-title: Data fusion in cyber-physical-social systems: State-of-the-art and perspectives
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2018.11.002
– year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0016
  article-title: Explanation in Human-AI Systems: A Literature Meta-Review Synopsis of Key Ideas and Publications and Bibliography for Explainable AI
– start-page: 5686
  year: 2016
  ident: 10.1016/j.inffus.2019.12.012_bib0067
  article-title: Interacting with predictions: Visual inspection of black-box machine learning models
– ident: 10.1016/j.inffus.2019.12.012_bib0164
– volume: 9
  start-page: 1417
  issue: 3
  year: 1994
  ident: 10.1016/j.inffus.2019.12.012_bib0184
  article-title: Decision trees for real-time transient stability prediction
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/59.336122
– start-page: 347
  year: 2001
  ident: 10.1016/j.inffus.2019.12.012_bib0406
  article-title: Similarity vs. diversity
– start-page: 121
  year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0357
  article-title: Towards reverse-engineering black-box neural networks
– volume: 43
  start-page: 259
  issue: 3
  year: 2002
  ident: 10.1016/j.inffus.2019.12.012_bib0076
  article-title: The use and interpretation of logistic regression in higher education journals: 1988–1999
  publication-title: Research in Higher Education
  doi: 10.1023/A:1014858517172
– year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0384
– ident: 10.1016/j.inffus.2019.12.012_bib0324
– start-page: 1885
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0221
  article-title: Understanding black-box predictions via influence functions
– ident: 10.1016/j.inffus.2019.12.012_bib0267
– year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0402
  article-title: Certifai: Counterfactual explanations for robustness, transparency, interpretability, and fairness of artificial intelligence models
  publication-title: arXiv preprint arXiv:1905.07857
– volume: 56
  start-page: 675
  issue: 5-6
  year: 2007
  ident: 10.1016/j.inffus.2019.12.012_bib0195
  article-title: New approaches to regression by generalized additive models and continuous optimization for modern applications in finance, science and technology
  publication-title: Optimization
  doi: 10.1080/02331930701618740
– ident: 10.1016/j.inffus.2019.12.012_bib0061
– volume: 1
  start-page: 291
  year: 2004
  ident: 10.1016/j.inffus.2019.12.012_bib0098
  article-title: Extracting the knowledge embedded in support vector machines
– volume: 51
  start-page: 42
  year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0407
  article-title: Data fusion in cyber-physical-social systems: State-of-the-art and perspectives
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2018.11.002
– start-page: 5188
  year: 2015
  ident: 10.1016/j.inffus.2019.12.012_bib0137
  article-title: Understanding deep image representations by inverting them
– ident: 10.1016/j.inffus.2019.12.012_bib0290
– volume: 19
  start-page: 1484
  issue: 4
  year: 2013
  ident: 10.1016/j.inffus.2019.12.012_bib0167
  article-title: Stability
  publication-title: Bernoulli
  doi: 10.3150/13-BEJSP14
– year: 2001
  ident: 10.1016/j.inffus.2019.12.012_bib0175
– ident: 10.1016/j.inffus.2019.12.012_bib0140
– volume: 3
  start-page: 1870
  year: 2001
  ident: 10.1016/j.inffus.2019.12.012_bib0259
  article-title: Rule extraction from neural networks via decision tree induction
– volume: 4
  start-page: eaao5580
  issue: 1
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0400
  article-title: The accuracy, fairness, and limits of predicting recidivism
  publication-title: Science advances
  doi: 10.1126/sciadv.aao5580
– volume: 183
  start-page: 1466
  issue: 3
  year: 2007
  ident: 10.1016/j.inffus.2019.12.012_bib0095
  article-title: Comprehensible credit scoring models using rule extraction from support vector machines
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.04.051
– start-page: 387
  year: 2013
  ident: 10.1016/j.inffus.2019.12.012_bib0362
  article-title: Evasion attacks against machine learning at test time
– ident: 10.1016/j.inffus.2019.12.012_bib0226
  doi: 10.1007/978-3-030-53352-6_24
– volume: 65
  start-page: 211
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0060
  article-title: Explaining nonlinear classification decisions with deep taylor decomposition
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2016.11.008
– ident: 10.1016/j.inffus.2019.12.012_bib0323
– start-page: 9505
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0294
  article-title: Sanity checks for saliency maps
– volume: 190
  start-page: 379
  issue: 3
  year: 2013
  ident: 10.1016/j.inffus.2019.12.012_bib0023
  article-title: General theories of explanation: buyer beware
  publication-title: Synthese
  doi: 10.1007/s11229-011-0020-8
– ident: 10.1016/j.inffus.2019.12.012_bib0153
– ident: 10.1016/j.inffus.2019.12.012_bib0335
  doi: 10.1007/978-1-4757-1904-8_7
– volume: 7
  start-page: 76
  issue: 2
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0355
  article-title: Why a right to explanation of automated decision-making does not exist in the general data protection regulation
  publication-title: International Data Privacy Law
  doi: 10.1093/idpl/ipx005
– volume: 33
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.inffus.2019.12.012_bib0395
  article-title: Data preprocessing techniques for classification without discrimination
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-011-0463-8
– ident: 10.1016/j.inffus.2019.12.012_bib0343
  doi: 10.1007/s11263-016-0966-6
– ident: 10.1016/j.inffus.2019.12.012_bib0414
– volume: 10
  start-page: 421
  issue: 4
  year: 2010
  ident: 10.1016/j.inffus.2019.12.012_bib0202
  article-title: A bayesian model for repeated measures zero-inflated count data with application to outpatient psychiatric service use
  publication-title: Statistical modelling
  doi: 10.1177/1471082X0901000404
– volume: 149
  start-page: 640
  issue: 7
  year: 1999
  ident: 10.1016/j.inffus.2019.12.012_bib0159
  article-title: Smoking and the occurence of alzheimer’s disease: Cross-sectional and longitudinal data in a population-based study
  publication-title: American journal of epidemiology
  doi: 10.1093/oxfordjournals.aje.a009864
– volume: 66
  start-page: 55
  year: 2013
  ident: 10.1016/j.inffus.2019.12.012_bib0404
  article-title: Big data and its exclusions
  publication-title: Stan. L. Rev. Online
– ident: 10.1016/j.inffus.2019.12.012_bib0128
– year: 2007
  ident: 10.1016/j.inffus.2019.12.012_bib0206
– start-page: 4
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0233
  article-title: Palm: Machine learning explanations for iterative debugging
– start-page: 495
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0124
  article-title: MIRIAM: a multimodal chat-based interface for autonomous systems
– year: 2016
  ident: 10.1016/j.inffus.2019.12.012_bib0269
  article-title: Convergent learning: Do different neural networks learn the same representations?
– start-page: 4967
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0075
  article-title: A simple neural network module for relational reasoning
– start-page: 39
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0040
  article-title: Learning functional causal models with generative neural networks
– volume: 160
  start-page: 53
  issue: C
  year: 2015
  ident: 10.1016/j.inffus.2019.12.012_bib0361
  article-title: Support vector machines under adversarial label contamination
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.08.081
– start-page: 5116
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0088
  article-title: Logic meets probability: Towards explainable AI systems for uncertain worlds
– year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0399
  article-title: Fair-by-design explainable models for prediction of recidivism
  publication-title: arXiv preprint arXiv:1910.02043
– volume: 73
  start-page: 538
  issue: 5
  year: 1998
  ident: 10.1016/j.inffus.2019.12.012_bib0178
  article-title: Using natural frequencies to improve diagnostic inferences
  publication-title: Academic medicine
  doi: 10.1097/00001888-199805000-00024
– start-page: 203
  year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0309
  article-title: Extending knowledge graphs with subjective influence networks for personalized fashion
– ident: 10.1016/j.inffus.2019.12.012_bib0265
  doi: 10.18653/v1/N16-1082
– ident: 10.1016/j.inffus.2019.12.012_bib0151
– ident: 10.1016/j.inffus.2019.12.012_bib0345
– volume: 8
  start-page: 1
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0015
  article-title: Explanation and justification in machine learning: A survey
– start-page: 9097
  year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0138
  article-title: Interpretable and fine-grained visual explanations for convolutional neural networks
– volume: 96
  start-page: 3
  issue: 1
  year: 2002
  ident: 10.1016/j.inffus.2019.12.012_bib0177
  article-title: An introduction to logistic regression analysis and reporting
  publication-title: The journal of educational research
  doi: 10.1080/00220670209598786
– ident: 10.1016/j.inffus.2019.12.012_bib0279
  doi: 10.1609/aaai.v31i1.10924
– ident: 10.1016/j.inffus.2019.12.012_bib0359
  doi: 10.1109/CVPR.2018.00175
– volume: 2
  start-page: 125
  year: 2010
  ident: 10.1016/j.inffus.2019.12.012_bib0050
  article-title: Design and evaluation of explainable BDI agents
– volume: 2
  start-page: 7pp.
  year: 2005
  ident: 10.1016/j.inffus.2019.12.012_bib0321
  article-title: Automatically balancing accuracy and comprehensibility in predictive modeling
– ident: 10.1016/j.inffus.2019.12.012_bib0071
– volume: 3
  issue: 2
  year: 2016
  ident: 10.1016/j.inffus.2019.12.012_sbref0261
  article-title: Critical data studies: An introduction
  publication-title: Big Data & Society
  doi: 10.1177/2053951716674238
– start-page: 61
  year: 2005
  ident: 10.1016/j.inffus.2019.12.012_bib0106
  article-title: Rule extraction from trained support vector machines
– start-page: 1
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0009
  article-title: Explainable AI for designers: A human-centered perspective on mixed-initiative co-creation
  publication-title: 2018 IEEE Conference on Computational Intelligence and Games (CIG)
– volume: 9
  start-page: 44
  issue: 1
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0070
  article-title: Learning from explanations using sentiment and advice in RL
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
  doi: 10.1109/TCDS.2016.2628365
– volume: 2010
  year: 2010
  ident: 10.1016/j.inffus.2019.12.012_bib0185
  article-title: Assessment of landslide susceptibility by decision trees in the metropolitan area of istanbul, turkey
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2010/901095
– ident: 10.1016/j.inffus.2019.12.012_bib0024
– ident: 10.1016/j.inffus.2019.12.012_bib0416
– volume: 3
  start-page: 17
  issue: 1
  year: 2008
  ident: 10.1016/j.inffus.2019.12.012_bib0174
  article-title: Purposeful selection of variables in logistic regression
  publication-title: Source code for biology and medicine
  doi: 10.1186/1751-0473-3-17
– start-page: 303
  year: 2000
  ident: 10.1016/j.inffus.2019.12.012_bib0317
  article-title: Case-based explanation for artificial neural nets
– volume: 16
  start-page: 18
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0089
  article-title: Slave to the algorithm: Why a right to an explanation is probably not the remedy you are looking for
  publication-title: Duke L. & Tech. Rev.
– year: 2012
  ident: 10.1016/j.inffus.2019.12.012_bib0194
  article-title: Estimating bank loans loss given default by generalized additive models
  publication-title: UCD Geary Institute Discussion Paper Series, WP2012/24
– start-page: 464
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0367
  article-title: Learning interpretable anatomical features through deep generative models: Application to cardiac remodeling
– volume: 73
  start-page: 1
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0018
  article-title: Methods for interpreting and understanding deep neural networks
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2017.10.011
– start-page: 2625
  year: 2015
  ident: 10.1016/j.inffus.2019.12.012_bib0274
  article-title: Long-term recurrent convolutional networks for visual recognition and description
– ident: 10.1016/j.inffus.2019.12.012_bib0334
– volume: 398
  year: 2013
  ident: 10.1016/j.inffus.2019.12.012_bib0176
– volume: 8
  start-page: 1156
  issue: 5
  year: 1997
  ident: 10.1016/j.inffus.2019.12.012_bib0320
  article-title: Are artificial neural networks black boxes?
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.623216
– volume: 12
  start-page: 15
  issue: 1
  year: 2000
  ident: 10.1016/j.inffus.2019.12.012_bib0254
  article-title: FERNN: An algorithm for fast extraction of rules from neural networks
  publication-title: Applied Intelligence
  doi: 10.1023/A:1008307919726
– ident: 10.1016/j.inffus.2019.12.012_bib0058
– volume: 9
  start-page: 58
  issue: 1
  year: 2006
  ident: 10.1016/j.inffus.2019.12.012_bib0160
  article-title: An empirical study of machine learning techniques for affect recognition in human–robot interaction
  publication-title: Pattern Analysis and Applications
  doi: 10.1007/s10044-006-0025-y
– ident: 10.1016/j.inffus.2019.12.012_bib0025
– volume: 12
  start-page: 513
  issue: 3
  year: 2013
  ident: 10.1016/j.inffus.2019.12.012_bib0121
  article-title: Statistical procedures for forecasting criminal behavior: A comparative assessment
  publication-title: Criminology & Public Policy
  doi: 10.1111/1745-9133.12047
– start-page: 8827
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0113
  article-title: Interpretable convolutional neural networks
– ident: 10.1016/j.inffus.2019.12.012_bib0129
– start-page: 457
  year: 2016
  ident: 10.1016/j.inffus.2019.12.012_bib0257
  article-title: Deepred–rule extraction from deep neural networks
– volume: 5
  start-page: 73
  issue: 2
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0403
  article-title: Diversity in big data: A review
  publication-title: Big data
  doi: 10.1089/big.2016.0054
– volume: 51
  start-page: 129
  year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0410
  article-title: A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2018.12.001
– volume: 38
  start-page: 54
  issue: 11
  year: 1995
  ident: 10.1016/j.inffus.2019.12.012_bib0192
  article-title: Applications of machine learning and rule induction
  publication-title: Communications of the ACM
  doi: 10.1145/219717.219768
– ident: 10.1016/j.inffus.2019.12.012_bib0276
  doi: 10.1007/978-3-319-46493-0_1
– ident: 10.1016/j.inffus.2019.12.012_bib0280
  doi: 10.18653/v1/W17-5221
– volume: 26
  year: 2013
  ident: 10.1016/j.inffus.2019.12.012_bib0162
– start-page: 6967
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0227
  article-title: Real time image saliency for black box classifiers
– volume: 16
  start-page: 26
  issue: 3
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0389
  article-title: Ethics and privacy in ai and big data: Implementing responsible research and innovation
  publication-title: IEEE Security & Privacy
  doi: 10.1109/MSP.2018.2701164
– volume: 112
  year: 2013
  ident: 10.1016/j.inffus.2019.12.012_bib0163
– ident: 10.1016/j.inffus.2019.12.012_bib0322
– ident: 10.1016/j.inffus.2019.12.012_bib0047
– start-page: 10772
  year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0155
  article-title: Explainability methods for graph convolutional neural networks
– year: 1996
  ident: 10.1016/j.inffus.2019.12.012_bib0021
  article-title: Extracting comprehensible models from trained neural networks
– year: 2015
  ident: 10.1016/j.inffus.2019.12.012_bib0031
  article-title: iBCM: Interactive Bayesian case model empowering humans via intuitive interaction
– ident: 10.1016/j.inffus.2019.12.012_bib0152
– start-page: 3387
  year: 2016
  ident: 10.1016/j.inffus.2019.12.012_bib0268
  article-title: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks
– start-page: 6261
  year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0078
  article-title: Interpreting CNNs via decision trees
– volume: 12
  start-page: 163
  year: 2012
  ident: 10.1016/j.inffus.2019.12.012_bib0026
  article-title: Making machine learning models interpretable.
– start-page: 204
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0065
  article-title: Using perceptual and cognitive explanations for enhanced human-agent team performance
– year: 1996
  ident: 10.1016/j.inffus.2019.12.012_sbref0167
– start-page: 119
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0036
  article-title: Explanations and expectations: Trust building in automated vehicles
– ident: 10.1016/j.inffus.2019.12.012_bib0081
– start-page: 598
  year: 2016
  ident: 10.1016/j.inffus.2019.12.012_bib0173
  article-title: Algorithmic transparency via quantitative input influence: Theory and experiments with learning systems
– start-page: 19
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0062
  article-title: Explanation methods in deep learning: Users, values, concerns and challenges
– ident: 10.1016/j.inffus.2019.12.012_bib0287
– volume: 51
  start-page: 129
  year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0408
  article-title: A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2018.12.001
– ident: 10.1016/j.inffus.2019.12.012_bib0046
– start-page: 1596
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0297
  article-title: Logic tensor networks for semantic image interpretation
  publication-title: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI
– ident: 10.1016/j.inffus.2019.12.012_bib0264
– volume: 2016
  start-page: 371
  year: 2016
  ident: 10.1016/j.inffus.2019.12.012_bib0056
  article-title: Interpretable deep models for ICU outcome prediction
– ident: 10.1016/j.inffus.2019.12.012_bib0350
– start-page: 19
  year: 2016
  ident: 10.1016/j.inffus.2019.12.012_bib0420
  article-title: Faceless person recognition: Privacy implications in social media
– volume: 29
  start-page: 17
  year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0352
  article-title: Reconciling deep learning with symbolic artificial intelligence: representing objects and relations
  publication-title: Current Opinion in Behavioral Sciences
  doi: 10.1016/j.cobeha.2018.12.010
– volume: 115
  start-page: 1943
  issue: 8
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0166
  article-title: Iterative random forests to discover predictive and stable high-order interactions
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1711236115
– start-page: 238
  year: 2009
  ident: 10.1016/j.inffus.2019.12.012_bib0149
  article-title: Evolving decision trees using oracle guides
– volume: 19
  start-page: 729
  issue: 6
  year: 2007
  ident: 10.1016/j.inffus.2019.12.012_bib0093
  article-title: Rule extraction from support vector machines: A sequential covering approach
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2007.190610
– start-page: 410
  year: 2011
  ident: 10.1016/j.inffus.2019.12.012_bib0200
  article-title: Short-term electricity load forecasting with generalized additive models
– ident: 10.1016/j.inffus.2019.12.012_bib0229
– ident: 10.1016/j.inffus.2019.12.012_bib0349
– start-page: 575
  year: 2004
  ident: 10.1016/j.inffus.2019.12.012_bib0219
  article-title: Discovering additive structure in black box functions
– ident: 10.1016/j.inffus.2019.12.012_bib0303
– start-page: 2048
  year: 2015
  ident: 10.1016/j.inffus.2019.12.012_bib0091
  article-title: Show, attend and tell: Neural image caption generation with visual attention
– volume: 36
  start-page: 36
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0086
  article-title: Explainable AI: Beware of inmates running the asylum
– start-page: 5
  year: 2009
  ident: 10.1016/j.inffus.2019.12.012_bib0405
  article-title: Diversifying search results
– volume: 56
  start-page: 909
  issue: 3
  year: 2000
  ident: 10.1016/j.inffus.2019.12.012_bib0115
  article-title: Interpreting parameters in the logistic regression model with random effects
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2000.00909.x
– start-page: 465
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0240
  article-title: Interpretable predictions of tree-based ensembles via actionable feature tweaking
– start-page: 142
  year: 2002
  ident: 10.1016/j.inffus.2019.12.012_bib0246
  article-title: Support vector machines with symbolic interpretation
– volume: 11
  start-page: 377
  issue: 2
  year: 2000
  ident: 10.1016/j.inffus.2019.12.012_bib0256
  article-title: Extracting rules from trained neural networks
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.839008
– ident: 10.1016/j.inffus.2019.12.012_bib0338
– volume: 11
  start-page: 1
  issue: Jan
  year: 2010
  ident: 10.1016/j.inffus.2019.12.012_bib0225
  article-title: An efficient explanation of individual classifications using game theory
  publication-title: Journal of Machine Learning Research
– start-page: 553
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0422
  article-title: A hybrid model for identity obfuscation by face replacement
– ident: 10.1016/j.inffus.2019.12.012_bib0218
– year: 2015
  ident: 10.1016/j.inffus.2019.12.012_bib0387
  article-title: Transforming our World: the 2030 Agenda for Sustainable Development
– volume: 5
  start-page: 15
  issue: 1
  year: 1976
  ident: 10.1016/j.inffus.2019.12.012_bib0180
  article-title: Constructing optimal binary decision trees is Np-complete
  publication-title: Information processing letters
  doi: 10.1016/0020-0190(76)90095-8
– year: 2019
  ident: 10.1016/j.inffus.2019.12.012_sbref0113
– year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0311
– volume: 4
  start-page: 75
  issue: 2
  year: 2016
  ident: 10.1016/j.inffus.2019.12.012_bib0020
  article-title: A framework for considering comprehensibility in modeling
  publication-title: Big data
  doi: 10.1089/big.2016.0007
– volume: 1050
  issue: 5
  year: 2015
  ident: 10.1016/j.inffus.2019.12.012_bib0041
  article-title: Machine learning methods for estimating heterogeneous causal effects
  publication-title: stat
– volume: 104
  start-page: 671
  year: 2016
  ident: 10.1016/j.inffus.2019.12.012_bib0392
  article-title: Big data’s disparate impact
  publication-title: Calif. L. Rev.
– ident: 10.1016/j.inffus.2019.12.012_bib0035
– volume: 7
  start-page: 36322
  year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0364
  article-title: Recent progress on generative adversarial networks (gans): A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2905015
– ident: 10.1016/j.inffus.2019.12.012_bib0380
– volume: 9
  start-page: 1057
  issue: 6
  year: 1998
  ident: 10.1016/j.inffus.2019.12.012_bib0038
  article-title: The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.728352
– ident: 10.1016/j.inffus.2019.12.012_bib0275
– volume: 51
  start-page: 141
  issue: 1
  year: 2011
  ident: 10.1016/j.inffus.2019.12.012_bib0092
  article-title: An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2010.12.003
– ident: 10.1016/j.inffus.2019.12.012_bib0080
– volume: 69
  year: 2014
  ident: 10.1016/j.inffus.2019.12.012_bib0183
– volume: 8
  start-page: 1041
  issue: 4
  year: 2014
  ident: 10.1016/j.inffus.2019.12.012_bib0197
  article-title: A modified geosite assessment model (M-GAM) and its application on the lazar canyon area (serbia)
  publication-title: International journal of environmental research
– start-page: 297
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0114
  article-title: Interpretable convolutional neural networks with dual local and global attention for review rating prediction
– ident: 10.1016/j.inffus.2019.12.012_bib0168
  doi: 10.1007/978-3-030-01219-9_47
– start-page: 818
  year: 2014
  ident: 10.1016/j.inffus.2019.12.012_bib0136
  article-title: Visualizing and understanding convolutional networks
– start-page: 220
  year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0426
  article-title: Model cards for model reporting
– start-page: 4762
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0059
  article-title: Explainable agency for intelligent autonomous systems
– ident: 10.1016/j.inffus.2019.12.012_bib0033
– ident: 10.1016/j.inffus.2019.12.012_bib0325
  doi: 10.1109/CVPRW.2014.131
– ident: 10.1016/j.inffus.2019.12.012_bib0332
  doi: 10.18653/v1/D16-1092
– volume: 5
  start-page: 120
  issue: 2
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0391
  article-title: Conscientious classification: A data scientist’s guide to discrimination-aware classification
  publication-title: Big data
  doi: 10.1089/big.2016.0048
– ident: 10.1016/j.inffus.2019.12.012_bib0360
– volume: 28
  start-page: 897
  issue: 7
  year: 2001
  ident: 10.1016/j.inffus.2019.12.012_bib0199
  article-title: Application of generalized additive models to butterfly transect count data
  publication-title: Journal of Applied Statistics
  doi: 10.1080/02664760120074979
– ident: 10.1016/j.inffus.2019.12.012_bib0302
– start-page: 3156
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0277
  article-title: Residual attention network for image classification
– volume: 13
  start-page: 71
  issue: 1
  year: 1993
  ident: 10.1016/j.inffus.2019.12.012_bib0252
  article-title: Extracting refined rules from knowledge-based neural networks
  publication-title: Machine Learning
  doi: 10.1023/A:1022683529158
– ident: 10.1016/j.inffus.2019.12.012_bib0104
– volume: 22
  start-page: 1345
  issue: 10
  year: 2009
  ident: 10.1016/j.inffus.2019.12.012_bib0425
  article-title: A survey on transfer learning
  publication-title: IEEE Transactions on knowledge and data engineering
  doi: 10.1109/TKDE.2009.191
– volume: 365
  start-page: 2103
  issue: 1857
  year: 2007
  ident: 10.1016/j.inffus.2019.12.012_bib0205
  article-title: Probabilistic climate change predictions applying bayesian model averaging
  publication-title: Philosophical transactions of the royal society of london a: mathematical, physical and engineering sciences
– start-page: 235
  year: 2016
  ident: 10.1016/j.inffus.2019.12.012_bib0421
  article-title: I-pic: A platform for privacy-compliant image capture
– start-page: 623
  year: 2013
  ident: 10.1016/j.inffus.2019.12.012_bib0090
  article-title: Accurate intelligible models with pairwise interactions
– volume: 2
  start-page: 187
  issue: 1-4
  year: 1998
  ident: 10.1016/j.inffus.2019.12.012_bib0119
  article-title: Knowledge discovery via multiple models
  publication-title: Intelligent Data Analysis
  doi: 10.1016/S1088-467X(98)00023-7
– volume: 22
  start-page: 3762
  issue: 12
  year: 2010
  ident: 10.1016/j.inffus.2019.12.012_bib0375
  article-title: Finding nature’s missing ternary oxide compounds using machine learning and density functional theory
  publication-title: Chemistry of Materials
  doi: 10.1021/cm100795d
– ident: 10.1016/j.inffus.2019.12.012_bib0231
– volume: 10
  start-page: 1392
  issue: 6
  year: 1999
  ident: 10.1016/j.inffus.2019.12.012_bib0258
  article-title: ANN-DT: an algorithm for extraction of decision trees from artificial neural networks
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.809084
– volume: 6
  start-page: 52138
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0014
  article-title: Peeking inside the black-box: A survey on explainable artificial intelligence (XAI)
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2870052
– volume: 46
  start-page: 21
  issue: 1-3
  year: 2002
  ident: 10.1016/j.inffus.2019.12.012_bib0247
  article-title: Bayesian methods for support vector machines: Evidence and predictive class probabilities
  publication-title: Machine learning
  doi: 10.1023/A:1012489924661
– volume: 15
  start-page: 261
  issue: 3
  year: 2003
  ident: 10.1016/j.inffus.2019.12.012_bib0354
  article-title: Good practice in the conduct and reporting of survey research
  publication-title: International Journal for Quality in Health Care
  doi: 10.1093/intqhc/mzg031
– ident: 10.1016/j.inffus.2019.12.012_bib0288
– volume: 24
  start-page: 190
  issue: 1
  year: 2015
  ident: 10.1016/j.inffus.2019.12.012_bib0116
  article-title: Interpreting support vector machine models for multivariate group wise analysis in neuroimaging
  publication-title: Medical image analysis
  doi: 10.1016/j.media.2015.06.008
– volume: 55
  start-page: 1031
  issue: 6
  year: 1998
  ident: 10.1016/j.inffus.2019.12.012_bib0203
  article-title: Bayesian stock assessment: a review and example application using the logistic model
  publication-title: ICES Journal of Marine Science
  doi: 10.1006/jmsc.1998.0425
– start-page: 132
  year: 2014
  ident: 10.1016/j.inffus.2019.12.012_bib0069
  article-title: Unsupervised feature construction and knowledge extraction from genome-wide assays of breast cancer with denoising autoencoders
– year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0099
  article-title: “Fair” risk assessments: A precarious approach for criminal justice reform
– start-page: 2946
  year: 2016
  ident: 10.1016/j.inffus.2019.12.012_bib0304
  article-title: Composing graphical models with neural networks for structured representations and fast inference
– year: 2008
  ident: 10.1016/j.inffus.2019.12.012_bib0028
– year: 2008
  ident: 10.1016/j.inffus.2019.12.012_bib0201
– start-page: 1245
  year: 2013
  ident: 10.1016/j.inffus.2019.12.012_bib0423
  article-title: Big data integration
– volume: 35
  start-page: 27
  year: 2012
  ident: 10.1016/j.inffus.2019.12.012_bib0241
  article-title: Interpretation of nonlinear relationships between process variables by use of random forests
  publication-title: Minerals Engineering
  doi: 10.1016/j.mineng.2012.05.008
– start-page: 150
  year: 2012
  ident: 10.1016/j.inffus.2019.12.012_bib0171
  article-title: Intelligible models for classification and regression
– start-page: 505
  year: 1994
  ident: 10.1016/j.inffus.2019.12.012_bib0253
  article-title: Extracting rules from artificial neural networks with distributed representations
– volume: 54
  start-page: 95
  issue: 1
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0220
  article-title: Auditing black-box models for indirect influence
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-017-1116-3
– ident: 10.1016/j.inffus.2019.12.012_bib0314
– year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0037
  article-title: Working with beliefs: AI transparency in the enterprise.
– ident: 10.1016/j.inffus.2019.12.012_bib0299
– start-page: 1670
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0079
  article-title: Beyond sparsity: Tree regularization of deep models for interpretability
– ident: 10.1016/j.inffus.2019.12.012_bib0011
– volume: 38
  start-page: 50
  issue: 3
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0003
  article-title: European union regulations on algorithmic decision-making and a “right to explanation”
  publication-title: AI Magazine
  doi: 10.1609/aimag.v38i3.2741
– year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0298
– volume: 44
  start-page: 78
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0365
  article-title: A practical tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models, software and guidelines
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2017.12.007
– volume: 13
  start-page: 411
  year: 2000
  ident: 10.1016/j.inffus.2019.12.012_bib0336
  article-title: Oja, e.: Independent component analysis: Algorithms and applications. neural networks 13(4-5), 411-430
  publication-title: Neural networks
  doi: 10.1016/S0893-6080(00)00026-5
– volume: 52
  start-page: 31
  year: 2019
  ident: 10.1016/j.inffus.2019.12.012_bib0409
  article-title: Knowledge fusion patterns: A survey
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2018.11.007
– start-page: 4306
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0111
  article-title: Improving interpretability of deep neural networks with semantic information
– ident: 10.1016/j.inffus.2019.12.012_bib0353
  doi: 10.1007/978-3-030-46147-8_31
– volume: 159
  start-page: 3091
  issue: 23
  year: 2008
  ident: 10.1016/j.inffus.2019.12.012_bib0108
  article-title: Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2008.05.016
– start-page: 618
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0292
  article-title: Grad-cam: Visual explanations from deep networks via gradient-based localization
– start-page: 295
  year: 2018
  ident: 10.1016/j.inffus.2019.12.012_bib0087
  article-title: Explainable AI: the new 42?
– volume: 29
  start-page: 2318
  issue: 10
  year: 2017
  ident: 10.1016/j.inffus.2019.12.012_bib0374
  article-title: Theory-guided data science: A new paradigm for scientific discovery from data
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2017.2720168
– ident: 10.1016/j.inffus.2019.12.012_bib0333
  doi: 10.1109/CVPR.2018.00915
SSID ssj0017031
Score 2.7252064
Snippet •We review concepts related to the explainability of AI methods (XAI).•We comprehensive analyze the XAI literature organized in two taxonomies.•We identify...
In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of expectations over many application sectors across...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 82
SubjectTerms Accountability
Artificial Intelligence
Comprehensibility
Computer Science
Data Fusion
Deep Learning
Explainable Artificial Intelligence
Fairness
Interpretability
Machine Learning
Privacy
Responsible Artificial Intelligence
Transparency
Title Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
URI https://dx.doi.org/10.1016/j.inffus.2019.12.012
https://hal.science/hal-02381211
Volume 58
WOSCitedRecordID wos000516799200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6305
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017031
  issn: 1566-2535
  databaseCode: AIEXJ
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6FlgM9sBQQLYtGCCSQ6srLeONmJa1iCKGCIuU2Go8n0ChyomyK-J_8H96b8RZVqOXAxYomdpz4fZn53vYNIW9EGAjbFqElgN-CgyJ9K868MfzdJZBXnUnSOrODcDiMRqP4otP5XfXCbKZhUUTbbTz_r6aGMTA2ts7-g7nrD4UBeA1GhyOYHY63MjxW1VUtUclClwIZQY2W9ibQylGSvnVjDAh0TeeiqRcSW92obCaPL3Nk5-tCq67qNEO32nsFhSGw4Bbj_6bIFm-Xtrlu2elkihnXy1bCP1mAg25oazJVE4GiCZj5QPHSmlnrFH5P_LK-znKTz-_9WJt49xBjTlf1gpKrKc55pugX1_k6xqCbjmZGWSFHRed2kMO1m2IsE3kraUJ7og4Cy_WN1MmpMmNR6FqBZ_vt2d0Iw19bKEzMYoLeDTwBLPGLdVi4rOne0eXuJ9_4Re-cD9Lhp913W8WM_WQARzCCpVkQ-NUbcMr33dCPYbLdT9Kz0cc6vYWbBmgh3_JHVD2duvDw-lf6G2e687OK_ms2dPmQ3C_dGJoY-D0iHVUckgfVFiG0XDEOycHnWhZ4-ZgsW9ikDTZpG5v0HSDz_QdaofKENpg8oTuIpAAc2iCSGkTSFiJpkj4h38_PLrt9q9z1w5JeFKwsyaRk4ThXPgOurjIgxELAOhFJT7JIOnY8Dh3wwrOxLQOmAltGjGW2Ewkhc5R2eEr2ilmhnhHKMpgnPR9caMaYiL1MOnkmQxUHuZLMjo6IVz1XLktJfNyZZcqr2scJN9bgaA3uuByscUSs-qq5kYS54fywMhkvaa2hqxzAeMOVr-EZ1jdBJXiAGcexBmTHtznpObnX_K1ekL3VYq1ekrtys7paLl6V8PwDOKvNjw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainable+Artificial+Intelligence+%28XAI%29%3A+Concepts%2C+Taxonomies%2C+Opportunities+and+Challenges+toward+Responsible+AI&rft.jtitle=Information+fusion&rft.au=Arrieta%2C+Alejandro+Barredo&rft.au=D%C3%ADaz-Rodr%C3%ADguez%2C+Natalia&rft.au=del+Ser%2C+Javier&rft.au=Bennetot%2C+Adrien&rft.date=2020-06-01&rft.pub=Elsevier&rft.issn=1566-2535&rft.eissn=1872-6305&rft.volume=58&rft_id=info:doi/10.1016%2Fj.inffus.2019.12.012&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02381211v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-2535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-2535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-2535&client=summon