Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
•We review concepts related to the explainability of AI methods (XAI).•We comprehensive analyze the XAI literature organized in two taxonomies.•We identify future research directions of the XAI field.•We discuss potential implications of XAI and privacy in data fusion contexts.•We identify Responsib...
Uložené v:
| Vydané v: | Information fusion Ročník 58; s. 82 - 115 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.06.2020
Elsevier |
| Predmet: | |
| ISSN: | 1566-2535, 1872-6305 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •We review concepts related to the explainability of AI methods (XAI).•We comprehensive analyze the XAI literature organized in two taxonomies.•We identify future research directions of the XAI field.•We discuss potential implications of XAI and privacy in data fusion contexts.•We identify Responsible AI as a concept promoting XAI and other AI principles in practical settings.
In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, if harnessed appropriately, may deliver the best of expectations over many application sectors across the field. For this to occur shortly in Machine Learning, the entire community stands in front of the barrier of explainability, an inherent problem of the latest techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI (namely, expert systems and rule based models). Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is widely acknowledged as a crucial feature for the practical deployment of AI models. The overview presented in this article examines the existing literature and contributions already done in the field of XAI, including a prospect toward what is yet to be reached. For this purpose we summarize previous efforts made to define explainability in Machine Learning, establishing a novel definition of explainable Machine Learning that covers such prior conceptual propositions with a major focus on the audience for which the explainability is sought. Departing from this definition, we propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at explaining Deep Learning methods for which a second dedicated taxonomy is built and examined in detail. This critical literature analysis serves as the motivating background for a series of challenges faced by XAI, such as the interesting crossroads of data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to the field of XAI with a thorough taxonomy that can serve as reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability. |
|---|---|
| AbstractList | •We review concepts related to the explainability of AI methods (XAI).•We comprehensive analyze the XAI literature organized in two taxonomies.•We identify future research directions of the XAI field.•We discuss potential implications of XAI and privacy in data fusion contexts.•We identify Responsible AI as a concept promoting XAI and other AI principles in practical settings.
In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, if harnessed appropriately, may deliver the best of expectations over many application sectors across the field. For this to occur shortly in Machine Learning, the entire community stands in front of the barrier of explainability, an inherent problem of the latest techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI (namely, expert systems and rule based models). Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is widely acknowledged as a crucial feature for the practical deployment of AI models. The overview presented in this article examines the existing literature and contributions already done in the field of XAI, including a prospect toward what is yet to be reached. For this purpose we summarize previous efforts made to define explainability in Machine Learning, establishing a novel definition of explainable Machine Learning that covers such prior conceptual propositions with a major focus on the audience for which the explainability is sought. Departing from this definition, we propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at explaining Deep Learning methods for which a second dedicated taxonomy is built and examined in detail. This critical literature analysis serves as the motivating background for a series of challenges faced by XAI, such as the interesting crossroads of data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to the field of XAI with a thorough taxonomy that can serve as reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability. In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of expectations over many application sectors across the field. For this to occur, the entire community stands in front of the barrier of explainability, an inherent problem of AI techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI. Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is acknowledged as a crucial feature for the practical deployment of AI models. This overview examines the existing literature in the field of XAI, including a prospect toward what is yet to be reached. We summarize previous efforts to define explainability in Machine Learning, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought. We then propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at Deep Learning methods for which a second taxonomy is built. This literature analysis serves as the background for a series of challenges faced by XAI, such as the crossroads between data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to XAI with a reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability. |
| Author | Chatila, Raja Gil-Lopez, Sergio Barredo Arrieta, Alejandro Benjamins, Richard Molina, Daniel Díaz-Rodríguez, Natalia Barbado, Alberto Del Ser, Javier Garcia, Salvador Herrera, Francisco Bennetot, Adrien Tabik, Siham |
| Author_xml | – sequence: 1 givenname: Alejandro surname: Barredo Arrieta fullname: Barredo Arrieta, Alejandro organization: TECNALIA, Derio 48160, Spain – sequence: 2 givenname: Natalia surname: Díaz-Rodríguez fullname: Díaz-Rodríguez, Natalia organization: ENSTA, Institute Polytechnique Paris and INRIA Flowers Team, Palaiseau, France – sequence: 3 givenname: Javier surname: Del Ser fullname: Del Ser, Javier email: javier.delser@tecnalia.com organization: TECNALIA, Derio 48160, Spain – sequence: 4 givenname: Adrien surname: Bennetot fullname: Bennetot, Adrien organization: ENSTA, Institute Polytechnique Paris and INRIA Flowers Team, Palaiseau, France – sequence: 5 givenname: Siham surname: Tabik fullname: Tabik, Siham organization: DaSCI Andalusian Institute of Data Science and Computational Intelligence, University of Granada, Granada 18071, Spain – sequence: 6 givenname: Alberto surname: Barbado fullname: Barbado, Alberto organization: Telefonica, Madrid 28050, Spain – sequence: 7 givenname: Salvador surname: Garcia fullname: Garcia, Salvador organization: DaSCI Andalusian Institute of Data Science and Computational Intelligence, University of Granada, Granada 18071, Spain – sequence: 8 givenname: Sergio surname: Gil-Lopez fullname: Gil-Lopez, Sergio organization: TECNALIA, Derio 48160, Spain – sequence: 9 givenname: Daniel surname: Molina fullname: Molina, Daniel organization: DaSCI Andalusian Institute of Data Science and Computational Intelligence, University of Granada, Granada 18071, Spain – sequence: 10 givenname: Richard surname: Benjamins fullname: Benjamins, Richard organization: Telefonica, Madrid 28050, Spain – sequence: 11 givenname: Raja surname: Chatila fullname: Chatila, Raja organization: Institut des Systèmes Intelligents et de Robotique, Sorbonne Universitè, France – sequence: 12 givenname: Francisco surname: Herrera fullname: Herrera, Francisco organization: DaSCI Andalusian Institute of Data Science and Computational Intelligence, University of Granada, Granada 18071, Spain |
| BackLink | https://hal.science/hal-02381211$$DView record in HAL |
| BookMark | eNqFkE1PGzEQhq0KpPLRf9DDHkFiF4_X62w4IEURlEiRuFCpN8uZ9cJExl7ZhtJ_j9NUPfRQTjPvaJ6x9RyzAx-8Zewr8AY4qMttQ34cX1IjOMwbEA0H8YkdQT8TtWp5d1D6TqladG33mR2ntOUcZryFI5Zu3iZnyJuNs9UiZhoJybhq5bN1jh6tR1ud_Viszq-qZShhyumiyuYt-PBMtvRhmkLML55yiZXxQ4VPxjnrH0vM4aeJQxVtmoJP9PuR1Sk7HI1L9sufesK-3948LO_q9f231XKxrrHtVa5RIsrZONhOKintpu06Y2CuemxR9gh8Ps5AKL4ZOSppFcdeyg2H3hgcRCfbE3a-v1v-o6dIzyb-0sGQvlus9W7GRduDAHiFsiv3uxhDStGOfwHgeidZb_Vest5J1iB0kVywq38wpGwyBZ-jIfcRfL2HbZHwSjbqhLQTPlC0mPUQ6P8H3gGA_p3G |
| CitedBy_id | crossref_primary_10_1016_j_epsr_2022_108487 crossref_primary_10_1515_jqas_2025_0006 crossref_primary_10_3390_encyclopedia1040080 crossref_primary_10_1287_opre_2023_0300 crossref_primary_10_1016_j_inffus_2021_09_017 crossref_primary_10_1016_j_measen_2021_100232 crossref_primary_10_1109_COMST_2023_3280465 crossref_primary_10_1007_s00146_021_01361_3 crossref_primary_10_1016_j_inffus_2021_09_012 crossref_primary_10_1016_j_cmpb_2025_108922 crossref_primary_10_31083_JFSFQ39242 crossref_primary_10_1109_ACCESS_2022_3204051 crossref_primary_10_1016_j_asoc_2022_109976 crossref_primary_10_3390_app13127082 crossref_primary_10_3390_aerospace10090762 crossref_primary_10_1007_s11081_023_09825_9 crossref_primary_10_1145_3637487 crossref_primary_10_1109_ACCESS_2022_3162588 crossref_primary_10_1007_s10676_024_09762_w crossref_primary_10_1109_MSP_2022_3155906 crossref_primary_10_1177_14727978251355795 crossref_primary_10_1016_j_compbiomed_2025_109905 crossref_primary_10_1016_j_inffus_2021_09_022 crossref_primary_10_1016_j_inffus_2025_103275 crossref_primary_10_1186_s12859_023_05444_4 crossref_primary_10_1093_qje_qjac025 crossref_primary_10_1108_JMLC_10_2024_0159 crossref_primary_10_1108_OIR_03_2024_0155 crossref_primary_10_1016_j_techsoc_2024_102599 crossref_primary_10_1109_MC_2021_3131990 crossref_primary_10_1016_j_ijmedinf_2024_105441 crossref_primary_10_3389_fpubh_2023_1328918 crossref_primary_10_1016_j_mex_2024_103009 crossref_primary_10_1088_2632_2153_ad6391 crossref_primary_10_1109_ACCESS_2024_3369912 crossref_primary_10_3390_bioengineering11070729 crossref_primary_10_1109_ACCESS_2025_3555926 crossref_primary_10_1155_2022_1255200 crossref_primary_10_1007_s10489_021_02451_x crossref_primary_10_1109_TGRS_2024_3522998 crossref_primary_10_1016_j_fpsl_2024_101287 crossref_primary_10_3389_fnins_2022_1096737 crossref_primary_10_1007_s10703_024_00445_2 crossref_primary_10_1145_3731559 crossref_primary_10_1080_10095020_2025_2543496 crossref_primary_10_1093_bib_bbad453 crossref_primary_10_1007_s13218_022_00766_6 crossref_primary_10_1029_2024EF004588 crossref_primary_10_1057_s41599_024_03277_x crossref_primary_10_1109_ACCESS_2025_3572492 crossref_primary_10_1007_s42521_022_00068_4 crossref_primary_10_1088_1741_2552_ad83c0 crossref_primary_10_1007_s13369_022_07459_0 crossref_primary_10_1016_j_enbuild_2022_111870 crossref_primary_10_1109_ACCESS_2022_3191907 crossref_primary_10_1007_s11042_024_19755_y crossref_primary_10_1007_s00256_025_04951_0 crossref_primary_10_3390_f14081616 crossref_primary_10_1016_j_giq_2024_102003 crossref_primary_10_1111_isj_12482 crossref_primary_10_1016_j_compbiomed_2020_104027 crossref_primary_10_1007_s00521_022_07709_0 crossref_primary_10_1109_JSTARS_2023_3318675 crossref_primary_10_1007_s10489_024_05321_4 crossref_primary_10_1109_TII_2025_3528557 crossref_primary_10_1007_s11747_025_01098_1 crossref_primary_10_3390_diagnostics15162040 crossref_primary_10_1016_j_tra_2025_104635 crossref_primary_10_1371_journal_pone_0318874 crossref_primary_10_1007_s00146_025_02312_y crossref_primary_10_1111_ijsa_12325 crossref_primary_10_3390_electronics14030571 crossref_primary_10_3390_rs13183650 crossref_primary_10_1016_j_eswa_2022_119390 crossref_primary_10_1016_j_aei_2025_103256 crossref_primary_10_1002_aisy_202200189 crossref_primary_10_1016_j_engstruct_2021_112836 crossref_primary_10_1016_j_compag_2025_110962 crossref_primary_10_1016_j_knosys_2022_109465 crossref_primary_10_1109_ACCESS_2024_3365586 crossref_primary_10_3390_network1020007 crossref_primary_10_1016_j_micpro_2022_104672 crossref_primary_10_1016_j_rse_2023_113664 crossref_primary_10_1177_10648046231166047 crossref_primary_10_1002_sstr_202400477 crossref_primary_10_1007_s42421_023_00083_w crossref_primary_10_1016_j_apor_2024_104273 crossref_primary_10_1016_j_jbi_2021_103876 crossref_primary_10_1109_ACCESS_2025_3538566 crossref_primary_10_1016_j_dwt_2025_101384 crossref_primary_10_1177_08901171251348208 crossref_primary_10_1029_2024EF004576 crossref_primary_10_3390_fintech4030033 crossref_primary_10_1109_TITS_2024_3424667 crossref_primary_10_1007_s00371_024_03579_w crossref_primary_10_3390_w17050676 crossref_primary_10_1007_s10506_023_09362_x crossref_primary_10_1016_j_advengsoft_2022_103339 crossref_primary_10_64289_iej_25_01A05_7298001 crossref_primary_10_1007_s43681_025_00733_5 crossref_primary_10_1016_j_future_2022_02_021 crossref_primary_10_1109_ACCESS_2025_3585764 crossref_primary_10_1016_j_eswa_2021_115968 crossref_primary_10_1080_00273171_2025_2456598 crossref_primary_10_1029_2024EF004540 crossref_primary_10_1007_s43681_024_00482_x crossref_primary_10_1177_07356331221129765 crossref_primary_10_1016_j_artint_2021_103571 crossref_primary_10_3390_app122110947 crossref_primary_10_1007_s10044_024_01299_4 crossref_primary_10_1007_s12243_022_00926_7 crossref_primary_10_1016_j_inffus_2024_102922 crossref_primary_10_1007_s12559_023_10179_8 crossref_primary_10_1016_j_jobe_2023_107814 crossref_primary_10_1016_j_eprac_2024_08_001 crossref_primary_10_1016_j_ijdrr_2023_104123 crossref_primary_10_1016_j_procir_2024_08_366 crossref_primary_10_1007_s43681_023_00325_1 crossref_primary_10_1145_3479609 crossref_primary_10_1016_j_rineng_2024_102831 crossref_primary_10_1016_j_bspc_2022_104144 crossref_primary_10_1089_cyber_2021_0347 crossref_primary_10_1016_j_jbusres_2023_114494 crossref_primary_10_1109_ACCESS_2023_3294569 crossref_primary_10_1080_08839514_2025_2515063 crossref_primary_10_1002_sd_2706 crossref_primary_10_1080_08839514_2025_2515062 crossref_primary_10_25300_MISQ_2021_16564 crossref_primary_10_1038_s41598_024_80535_7 crossref_primary_10_1016_j_compchemeng_2024_108849 crossref_primary_10_1155_2022_4653923 crossref_primary_10_38124_ijsrmt_v3i4_433 crossref_primary_10_1016_j_bas_2024_102858 crossref_primary_10_1016_j_artmed_2024_102873 crossref_primary_10_3390_en17081797 crossref_primary_10_3390_electronics12214430 crossref_primary_10_32604_cmes_2024_056289 crossref_primary_10_1016_j_procs_2024_02_119 crossref_primary_10_1016_j_techfore_2022_121763 crossref_primary_10_1007_s12559_021_09901_1 crossref_primary_10_21015_vtse_v13i2_2082 crossref_primary_10_1109_MC_2023_3243645 crossref_primary_10_1016_j_ijepes_2025_110647 crossref_primary_10_1016_j_compchemeng_2024_108857 crossref_primary_10_1080_10447318_2022_2095705 crossref_primary_10_1186_s40537_023_00770_z crossref_primary_10_3390_app15031412 crossref_primary_10_1080_19942060_2025_2511886 crossref_primary_10_1080_10447318_2024_2383034 crossref_primary_10_1007_s11947_025_03971_x crossref_primary_10_1007_s40747_021_00613_5 crossref_primary_10_1016_j_est_2024_110783 crossref_primary_10_1016_j_eswa_2021_116411 crossref_primary_10_2196_66200 crossref_primary_10_3390_app14020898 crossref_primary_10_1007_s13218_020_00702_6 crossref_primary_10_1016_j_biotechadv_2024_108495 crossref_primary_10_1007_s13042_024_02421_y crossref_primary_10_1016_j_inffus_2020_10_014 crossref_primary_10_3390_bdcc8110160 crossref_primary_10_3233_SJI_190555 crossref_primary_10_1109_TAFFC_2024_3505269 crossref_primary_10_1109_TDSC_2023_3268360 crossref_primary_10_1016_j_artmed_2024_102859 crossref_primary_10_1016_j_neunet_2025_107528 crossref_primary_10_1186_s43045_025_00547_5 crossref_primary_10_3389_fdata_2024_1406365 crossref_primary_10_1016_j_enbuild_2024_115115 crossref_primary_10_1016_j_ijmedinf_2021_104585 crossref_primary_10_1007_s11023_023_09651_z crossref_primary_10_1016_j_scs_2023_105004 crossref_primary_10_1371_journal_pdig_0000016 crossref_primary_10_1038_s41467_024_45879_8 crossref_primary_10_1371_journal_pone_0322052 crossref_primary_10_1007_s10994_021_06051_1 crossref_primary_10_1016_j_compbiomed_2025_110036 crossref_primary_10_1109_TASLP_2022_3156789 crossref_primary_10_1109_TIM_2025_3566801 crossref_primary_10_1016_j_compind_2023_103892 crossref_primary_10_1007_s00704_024_04951_5 crossref_primary_10_1111_itor_13594 crossref_primary_10_1016_j_artmed_2024_102841 crossref_primary_10_1016_j_ijhcs_2024_103411 crossref_primary_10_1016_j_inffus_2025_103217 crossref_primary_10_2196_64482 crossref_primary_10_1109_TEVC_2022_3225509 crossref_primary_10_1021_acs_jctc_5c00054 crossref_primary_10_1038_s41467_024_51970_x crossref_primary_10_3390_info13100459 crossref_primary_10_1016_j_ress_2023_109172 crossref_primary_10_1371_journal_pone_0289795 crossref_primary_10_1007_s40593_025_00487_5 crossref_primary_10_1287_orsc_2021_1544 crossref_primary_10_3390_drones6110347 crossref_primary_10_1287_orsc_2021_1549 crossref_primary_10_1177_10949968231200221 crossref_primary_10_1371_journal_pone_0281821 crossref_primary_10_3390_pr13082624 crossref_primary_10_1109_JIOT_2023_3327738 crossref_primary_10_1016_j_cej_2025_163978 crossref_primary_10_3390_make6020038 crossref_primary_10_1016_j_genrep_2025_102314 crossref_primary_10_1016_j_compchemeng_2023_108139 crossref_primary_10_1016_j_compbiomed_2025_110027 crossref_primary_10_1371_journal_pdig_0000038 crossref_primary_10_1007_s10462_023_10525_0 crossref_primary_10_3390_info14050256 crossref_primary_10_1109_TEVC_2023_3257230 crossref_primary_10_3389_frai_2022_884749 crossref_primary_10_1007_s12599_023_00810_1 crossref_primary_10_1093_logcom_exab082 crossref_primary_10_32604_cmc_2024_048914 crossref_primary_10_1145_3586163 crossref_primary_10_1088_1361_6579_ad548e crossref_primary_10_1038_s41598_021_90555_2 crossref_primary_10_1109_JIOT_2022_3194837 crossref_primary_10_1016_j_cosust_2023_101411 crossref_primary_10_1016_j_talanta_2023_124946 crossref_primary_10_1016_j_cogsys_2024_101243 crossref_primary_10_1016_j_cmpb_2022_107161 crossref_primary_10_3389_fdata_2024_1410424 crossref_primary_10_1126_scirobotics_abq3658 crossref_primary_10_1029_2022SW003376 crossref_primary_10_1109_TTS_2024_3403681 crossref_primary_10_1080_10429247_2024_2407254 crossref_primary_10_1109_TSIPN_2022_3223805 crossref_primary_10_1016_j_icte_2024_05_007 crossref_primary_10_3390_math13081305 crossref_primary_10_1111_tbed_14369 crossref_primary_10_1080_23311916_2023_2272361 crossref_primary_10_1145_3645090 crossref_primary_10_3390_sym14071338 crossref_primary_10_1007_s10676_022_09670_x crossref_primary_10_1080_14479338_2025_2504428 crossref_primary_10_3389_frai_2022_825565 crossref_primary_10_1177_0162243920975488 crossref_primary_10_1002_ppap_202100096 crossref_primary_10_1007_s10462_025_11165_2 crossref_primary_10_1016_j_procs_2025_04_444 crossref_primary_10_1016_j_knosys_2025_113092 crossref_primary_10_3389_fcomp_2023_1117848 crossref_primary_10_1016_j_ijinfomgt_2024_102779 crossref_primary_10_1007_s11948_021_00319_4 crossref_primary_10_30658_hmc_8_7 crossref_primary_10_1007_s11023_023_09628_y crossref_primary_10_1016_S2589_7500_24_00222_X crossref_primary_10_1111_cgf_14733 crossref_primary_10_1093_jigpal_jzae057 crossref_primary_10_1016_j_ymben_2020_10_005 crossref_primary_10_1109_MSP_2022_3153277 crossref_primary_10_31466_kfbd_1473382 crossref_primary_10_1111_ejed_12542 crossref_primary_10_1109_JIOT_2024_3363654 crossref_primary_10_1002_sd_3270 crossref_primary_10_3390_technologies13030093 crossref_primary_10_3390_jmse9111178 crossref_primary_10_1016_j_watres_2024_122457 crossref_primary_10_3390_electronics14132609 crossref_primary_10_1145_3721283 crossref_primary_10_1016_j_inffus_2023_102180 crossref_primary_10_3390_info14120642 crossref_primary_10_1016_j_neucom_2022_01_027 crossref_primary_10_1016_j_solener_2025_113937 crossref_primary_10_1111_ejed_12531 crossref_primary_10_2196_73374 crossref_primary_10_3390_ijgi11080422 crossref_primary_10_30935_cedtech_14615 crossref_primary_10_1109_ACCESS_2022_3188394 crossref_primary_10_1109_TKDE_2022_3142260 crossref_primary_10_1016_j_geosus_2024_100257 crossref_primary_10_1038_s41598_025_09538_2 crossref_primary_10_3390_fi16010031 crossref_primary_10_1080_07370024_2024_2341217 crossref_primary_10_1109_TCYB_2025_3539990 crossref_primary_10_1016_j_compbiomed_2023_107628 crossref_primary_10_1007_s10796_022_10313_1 crossref_primary_10_3390_neurolint16060098 crossref_primary_10_1088_1742_6596_2650_1_012025 crossref_primary_10_1016_j_esg_2025_100276 crossref_primary_10_1016_j_compbiolchem_2023_107867 crossref_primary_10_1007_s11814_024_00276_1 crossref_primary_10_1016_j_geotexmem_2023_04_004 crossref_primary_10_3389_fpls_2022_1089454 crossref_primary_10_1162_neco_a_01542 crossref_primary_10_1177_02683962241289597 crossref_primary_10_1080_13527266_2025_2508181 crossref_primary_10_3390_make5010006 crossref_primary_10_1016_j_engappai_2023_105823 crossref_primary_10_1109_ACCESS_2025_3581417 crossref_primary_10_3390_eng5030068 crossref_primary_10_1177_20552076221147423 crossref_primary_10_1016_j_heliyon_2024_e39205 crossref_primary_10_1093_mnras_stac3009 crossref_primary_10_1007_s42380_022_00120_2 crossref_primary_10_3390_ijerph192316359 crossref_primary_10_1007_s12599_025_00963_1 crossref_primary_10_1016_j_jastp_2025_106427 crossref_primary_10_1016_j_knosys_2020_106590 crossref_primary_10_3390_app15020672 crossref_primary_10_1016_j_knosys_2024_112756 crossref_primary_10_3390_e25081160 crossref_primary_10_1080_02564602_2025_2512086 crossref_primary_10_1002_adma_202208683 crossref_primary_10_3390_rs17050771 crossref_primary_10_1007_s43681_021_00127_3 crossref_primary_10_1016_j_cpet_2021_07_001 crossref_primary_10_1016_j_ijhcs_2024_103380 crossref_primary_10_1016_j_adhoc_2023_103329 crossref_primary_10_1016_j_inffus_2022_06_003 crossref_primary_10_1145_3519313 crossref_primary_10_1016_j_landusepol_2023_106761 crossref_primary_10_1007_s10639_023_11990_4 crossref_primary_10_1038_s42256_020_00273_z crossref_primary_10_3390_ijgi13100345 crossref_primary_10_1155_2022_8980664 crossref_primary_10_1016_j_neunet_2024_106335 crossref_primary_10_1086_731729 crossref_primary_10_1093_bib_bbac094 crossref_primary_10_1080_24725854_2022_2046893 crossref_primary_10_3390_s21238020 crossref_primary_10_3390_a15080291 crossref_primary_10_1007_s13218_022_00771_9 crossref_primary_10_1186_s12911_025_02994_w crossref_primary_10_1016_j_ijdrr_2025_105233 crossref_primary_10_1016_j_sigpro_2025_109888 crossref_primary_10_1007_s10618_023_00930_y crossref_primary_10_1016_j_heliyon_2024_e32637 crossref_primary_10_1007_s43681_025_00674_z crossref_primary_10_54481_sju_2024_2_13 crossref_primary_10_1016_j_neunet_2024_106345 crossref_primary_10_1016_j_knosys_2024_111441 crossref_primary_10_1145_3645103 crossref_primary_10_29333_ejmste_16602 crossref_primary_10_1007_s10838_022_09625_2 crossref_primary_10_3390_s21134322 crossref_primary_10_1039_D4JA00407H crossref_primary_10_1109_JSEN_2023_3289670 crossref_primary_10_1016_j_jfoodeng_2022_111014 crossref_primary_10_1186_s40561_023_00260_y crossref_primary_10_3389_fmed_2025_1636214 crossref_primary_10_1016_j_ejor_2025_08_058 crossref_primary_10_1016_j_rineng_2024_103381 crossref_primary_10_1016_j_neucom_2024_127798 crossref_primary_10_1515_icom_2020_0024 crossref_primary_10_1007_s10676_021_09616_9 crossref_primary_10_1038_s41598_024_82384_w crossref_primary_10_1016_j_knosys_2021_107737 crossref_primary_10_1029_2022MS003162 crossref_primary_10_1007_s10010_025_00875_2 crossref_primary_10_1016_j_ins_2025_122648 crossref_primary_10_1016_j_biosystems_2023_104927 crossref_primary_10_1177_10711813251370745 crossref_primary_10_1109_ACCESS_2024_3395444 crossref_primary_10_1016_j_omega_2023_102925 crossref_primary_10_1007_s44163_024_00114_7 crossref_primary_10_1109_MC_2021_3092610 crossref_primary_10_3390_info13080395 crossref_primary_10_1109_ACCESS_2023_3331219 crossref_primary_10_1016_j_psep_2024_05_014 crossref_primary_10_3390_bdcc8110149 crossref_primary_10_1016_j_knosys_2023_110273 crossref_primary_10_1007_s11423_020_09882_2 crossref_primary_10_3390_make4040057 crossref_primary_10_1016_j_knosys_2024_111469 crossref_primary_10_1016_j_artint_2021_103550 crossref_primary_10_1007_s10140_024_02306_1 crossref_primary_10_1016_j_knosys_2022_108970 crossref_primary_10_3389_fpsyt_2022_990370 crossref_primary_10_1109_MCI_2024_3401348 crossref_primary_10_3390_a15100367 crossref_primary_10_1016_j_apenergy_2024_123634 crossref_primary_10_1016_j_apergo_2021_103552 crossref_primary_10_1145_3470454 crossref_primary_10_1109_TAFFC_2022_3205170 crossref_primary_10_1007_s10462_024_11093_7 crossref_primary_10_1016_j_fuel_2022_127194 crossref_primary_10_1016_j_neucom_2025_130211 crossref_primary_10_1007_s42979_024_02810_8 crossref_primary_10_1109_ACCESS_2024_3443527 crossref_primary_10_1016_j_bspc_2024_106504 crossref_primary_10_1007_s13534_023_00319_2 crossref_primary_10_33131_24222208_402 crossref_primary_10_1007_s10462_022_10256_8 crossref_primary_10_1016_j_simpat_2023_102811 crossref_primary_10_1016_j_asoc_2025_113678 crossref_primary_10_1016_j_enbenv_2025_03_005 crossref_primary_10_1016_j_ecolind_2024_111739 crossref_primary_10_3390_diagnostics15172219 crossref_primary_10_1016_j_compbiomed_2025_110855 crossref_primary_10_3390_healthcare10071269 crossref_primary_10_2208_jscejj_24_13523 crossref_primary_10_1080_0960085X_2025_2506875 crossref_primary_10_3390_j5010010 crossref_primary_10_1016_j_compbiomed_2024_108842 crossref_primary_10_1016_j_compbiomed_2025_109857 crossref_primary_10_1016_j_compbiomed_2024_108844 crossref_primary_10_1109_TGRS_2025_3542628 crossref_primary_10_1109_ACCESS_2022_3197299 crossref_primary_10_1016_j_eswa_2022_118888 crossref_primary_10_1109_TAI_2022_3194503 crossref_primary_10_1177_21695067231193646 crossref_primary_10_3390_bioengineering12090951 crossref_primary_10_3390_s21041121 crossref_primary_10_1007_s13042_024_02242_z crossref_primary_10_1016_j_ymssp_2024_111430 crossref_primary_10_3390_bioengineering12090954 crossref_primary_10_1016_j_opresp_2025_100402 crossref_primary_10_3390_make4040047 crossref_primary_10_1145_3506857 crossref_primary_10_1016_j_compind_2024_104128 crossref_primary_10_1007_s43681_023_00267_8 crossref_primary_10_1007_s11192_020_03859_x crossref_primary_10_1109_TAFFC_2023_3276425 crossref_primary_10_1007_s11548_025_03497_9 crossref_primary_10_1038_s41598_022_16493_9 crossref_primary_10_3390_genes14020248 crossref_primary_10_1016_j_agwat_2025_109402 crossref_primary_10_1007_s10044_021_01055_y crossref_primary_10_1007_s10994_022_06167_y crossref_primary_10_1016_j_buildenv_2025_113144 crossref_primary_10_1038_s42256_024_00857_z crossref_primary_10_1016_j_jhydrol_2025_133237 crossref_primary_10_1016_j_neucom_2022_09_129 crossref_primary_10_1177_01655515221112844 crossref_primary_10_3389_fnins_2021_674055 crossref_primary_10_3390_make3040045 crossref_primary_10_3390_app13095809 crossref_primary_10_1109_TETC_2022_3143154 crossref_primary_10_1016_j_techsoc_2024_102666 crossref_primary_10_3390_s21010002 crossref_primary_10_1016_j_inffus_2023_102149 crossref_primary_10_1016_j_techsoc_2024_102662 crossref_primary_10_3390_mining1030018 crossref_primary_10_3389_fnins_2021_611300 crossref_primary_10_1016_j_fsigen_2021_102632 crossref_primary_10_1016_j_jhydrol_2023_129401 crossref_primary_10_1016_j_aei_2025_103303 crossref_primary_10_1016_j_apacoust_2025_110952 crossref_primary_10_1016_j_ijmedinf_2024_105526 crossref_primary_10_1145_3593240 crossref_primary_10_1016_j_agrformet_2025_110692 crossref_primary_10_1002_met_70048 crossref_primary_10_1016_j_techfore_2022_122120 crossref_primary_10_3758_s13428_021_01720_4 crossref_primary_10_1016_j_future_2023_12_003 crossref_primary_10_1108_DPRG_03_2020_0032 crossref_primary_10_3390_pr13051583 crossref_primary_10_1145_3555803 crossref_primary_10_1007_s00521_024_10197_z crossref_primary_10_1109_JAS_2023_123123 crossref_primary_10_1016_j_inffus_2023_102135 crossref_primary_10_1080_01431161_2024_2349267 crossref_primary_10_1016_j_jwpe_2025_108457 crossref_primary_10_5465_amj_2020_1516 crossref_primary_10_1016_j_eswa_2024_123154 crossref_primary_10_1007_s10796_021_10234_5 crossref_primary_10_1016_j_artint_2021_103503 crossref_primary_10_1109_JSTARS_2022_3155967 crossref_primary_10_1016_j_diamond_2024_111687 crossref_primary_10_18261_nft_58_2_3_5 crossref_primary_10_1002_ibra_12174 crossref_primary_10_1016_j_atmosenv_2025_121360 crossref_primary_10_5604_01_3001_0015_5582 crossref_primary_10_1016_j_dss_2025_114467 crossref_primary_10_1109_ACCESS_2025_3535590 crossref_primary_10_3390_biom10060963 crossref_primary_10_3390_info16090797 crossref_primary_10_1080_1369118X_2021_1874035 crossref_primary_10_3390_a15100353 crossref_primary_10_1016_j_asoc_2022_109940 crossref_primary_10_1016_j_artint_2021_103507 crossref_primary_10_25046_aj090502 crossref_primary_10_1016_j_epsr_2022_108366 crossref_primary_10_3389_fpubh_2022_862407 crossref_primary_10_1063_5_0077050 crossref_primary_10_1016_j_ejrad_2024_111356 crossref_primary_10_1111_insr_12492 crossref_primary_10_3389_fnins_2022_883385 crossref_primary_10_1016_j_compchemeng_2025_109266 crossref_primary_10_38124_ijsrmt_v2i4_746 crossref_primary_10_1016_j_inffus_2023_101896 crossref_primary_10_1002_advs_202414173 crossref_primary_10_3847_1538_4357_ad014c crossref_primary_10_1016_j_commatsci_2021_110360 crossref_primary_10_1186_s40561_023_00237_x crossref_primary_10_1016_j_engappai_2023_106139 crossref_primary_10_1145_3744745 crossref_primary_10_3390_rs14092086 crossref_primary_10_1007_s10710_022_09435_x crossref_primary_10_1007_s00146_023_01837_4 crossref_primary_10_1007_s11571_025_10343_w crossref_primary_10_1016_j_procs_2022_01_260 crossref_primary_10_3390_e24010067 crossref_primary_10_1016_j_eswa_2022_119227 crossref_primary_10_1038_s41598_025_97159_0 crossref_primary_10_3390_s21165317 crossref_primary_10_1016_j_eswa_2024_124373 crossref_primary_10_1016_j_neucom_2022_04_005 crossref_primary_10_1109_JBHI_2020_3037127 crossref_primary_10_1145_3604433 crossref_primary_10_3390_pharmaceutics14040832 crossref_primary_10_1016_j_health_2023_100147 crossref_primary_10_1016_j_osnem_2022_100239 crossref_primary_10_1007_s13042_022_01628_1 crossref_primary_10_3390_rs15102659 crossref_primary_10_1016_j_cirp_2023_03_004 crossref_primary_10_1016_j_inffus_2023_101883 crossref_primary_10_1007_s11709_025_1191_6 crossref_primary_10_1126_science_abk3333 crossref_primary_10_1016_j_jacr_2022_06_008 crossref_primary_10_1016_j_displa_2022_102233 crossref_primary_10_1016_j_renene_2024_120935 crossref_primary_10_1080_10447318_2025_2470278 crossref_primary_10_1177_1071181322661537 crossref_primary_10_1177_1088467X251319188 crossref_primary_10_1016_j_inffus_2021_01_009 crossref_primary_10_1002_cpe_6834 crossref_primary_10_1016_j_ajp_2023_103855 crossref_primary_10_1016_j_inffus_2021_01_008 crossref_primary_10_1007_s00194_025_00742_y crossref_primary_10_1016_j_future_2021_10_033 crossref_primary_10_1016_j_asoc_2022_108526 crossref_primary_10_1016_j_comnet_2020_107530 crossref_primary_10_1016_j_techfore_2022_122306 crossref_primary_10_1109_ACCESS_2024_3441088 crossref_primary_10_1016_j_ins_2022_10_084 crossref_primary_10_1021_acssensors_5c01232 crossref_primary_10_1177_00368504241266573 crossref_primary_10_1038_s41746_023_00955_z crossref_primary_10_1109_TNSM_2025_3539830 crossref_primary_10_1016_j_ecolmodel_2025_111164 crossref_primary_10_1016_j_cirp_2024_04_102 crossref_primary_10_1111_1541_4337_70054 crossref_primary_10_3390_a17050210 crossref_primary_10_3390_electronics12051092 crossref_primary_10_1016_j_ecolind_2023_111137 crossref_primary_10_1145_3576903 crossref_primary_10_1007_s12553_021_00601_2 crossref_primary_10_1016_j_comcom_2021_07_009 crossref_primary_10_1109_ACCESS_2023_3272403 crossref_primary_10_1109_ACCESS_2024_3431691 crossref_primary_10_3389_fdata_2024_1467222 crossref_primary_10_21202_jdtl_2025_7 crossref_primary_10_3233_ICA_210668 crossref_primary_10_1016_j_artint_2021_103473 crossref_primary_10_1111_wej_12970 crossref_primary_10_1109_EMR_2023_3342200 crossref_primary_10_1016_j_jag_2023_103287 crossref_primary_10_1111_insr_12448 crossref_primary_10_1186_s10020_023_00603_y crossref_primary_10_1016_j_watres_2025_124165 crossref_primary_10_1016_j_jmst_2025_06_012 crossref_primary_10_1016_j_mlwa_2025_100691 crossref_primary_10_1109_TPAMI_2022_3197845 crossref_primary_10_1016_j_medj_2024_07_016 crossref_primary_10_1016_j_mlwa_2025_100696 crossref_primary_10_1108_JMP_03_2024_0177 crossref_primary_10_1007_s11948_021_00325_6 crossref_primary_10_1016_j_envsoft_2024_106119 crossref_primary_10_1108_JSM_10_2023_0377 crossref_primary_10_1109_TEM_2024_3369231 crossref_primary_10_3390_info16030240 crossref_primary_10_1016_j_annemergmed_2024_01_031 crossref_primary_10_1016_j_jss_2022_111545 crossref_primary_10_1038_s41598_023_28804_9 crossref_primary_10_1007_s11301_023_00320_0 crossref_primary_10_1007_s12105_024_01643_4 crossref_primary_10_2188_jea_JE20210278 crossref_primary_10_1016_j_compbiomed_2024_109338 crossref_primary_10_1016_j_eiar_2025_108130 crossref_primary_10_1007_s10506_024_09395_w crossref_primary_10_3390_s23042087 crossref_primary_10_1007_s10115_023_01879_6 crossref_primary_10_3390_app14198884 crossref_primary_10_1007_s13222_022_00414_1 crossref_primary_10_1186_s13635_025_00201_x crossref_primary_10_1007_s12652_021_03138_4 crossref_primary_10_3390_app15116152 crossref_primary_10_1016_j_oreoa_2024_100064 crossref_primary_10_1016_j_ijdrr_2024_104785 crossref_primary_10_1126_scirobotics_adt7329 crossref_primary_10_1109_TNNLS_2023_3270027 crossref_primary_10_1002_mar_22211 crossref_primary_10_1007_s10676_025_09821_w crossref_primary_10_1007_s42113_023_00180_7 crossref_primary_10_1016_j_inffus_2020_08_018 crossref_primary_10_1016_j_media_2023_102809 crossref_primary_10_1016_j_neucom_2021_10_124 crossref_primary_10_3389_fceng_2021_700717 crossref_primary_10_1371_journal_pone_0309175 crossref_primary_10_1016_j_asoc_2023_110706 crossref_primary_10_1016_j_isprsjprs_2024_11_002 crossref_primary_10_1016_j_enbuild_2023_112949 crossref_primary_10_1016_j_ecolind_2024_112376 crossref_primary_10_1016_j_knosys_2023_110413 crossref_primary_10_1021_acs_jcim_5c01003 crossref_primary_10_1016_j_neucom_2022_04_072 crossref_primary_10_3389_frai_2022_833238 crossref_primary_10_3233_SW_233469 crossref_primary_10_1016_j_techfore_2024_123389 crossref_primary_10_1109_TITS_2024_3375936 crossref_primary_10_3390_a13010017 crossref_primary_10_1007_s11623_025_2081_8 crossref_primary_10_1016_j_procir_2023_06_183 crossref_primary_10_1109_TASE_2024_3430394 crossref_primary_10_1029_2021WR030394 crossref_primary_10_1177_30504554251331568 crossref_primary_10_1016_j_bspc_2024_107034 crossref_primary_10_1016_j_inffus_2025_103311 crossref_primary_10_18270_rcfc_4288 crossref_primary_10_1109_ACCESS_2021_3116664 crossref_primary_10_1016_j_mlwa_2025_100655 crossref_primary_10_1080_01969722_2023_2296251 crossref_primary_10_1109_JIOT_2021_3122019 crossref_primary_10_1007_s10614_025_10962_9 crossref_primary_10_1007_s10515_022_00337_x crossref_primary_10_3389_frai_2022_910630 crossref_primary_10_1007_s00500_025_10539_6 crossref_primary_10_1136_bmj_m3919 crossref_primary_10_1016_j_jelectrocard_2024_153792 crossref_primary_10_1016_j_atmosres_2023_106608 crossref_primary_10_1016_j_jclepro_2023_136605 crossref_primary_10_1007_s00415_023_11979_6 crossref_primary_10_1109_ACCESS_2021_3130956 crossref_primary_10_3390_mti7030027 crossref_primary_10_1016_j_inffus_2023_101805 crossref_primary_10_3390_app11125541 crossref_primary_10_1109_TPAMI_2023_3331846 crossref_primary_10_1007_s43681_024_00524_4 crossref_primary_10_1038_s41598_025_15268_2 crossref_primary_10_3390_bioengineering11100957 crossref_primary_10_1007_s12559_021_09837_6 crossref_primary_10_1109_TCI_2023_3321985 crossref_primary_10_1016_j_ins_2022_10_010 crossref_primary_10_1177_27523543241289108 crossref_primary_10_1145_3594728 crossref_primary_10_5050_KSNVE_2025_35_3_307 crossref_primary_10_1016_j_ins_2022_10_013 crossref_primary_10_1080_02640414_2025_2518694 crossref_primary_10_1145_3387166 crossref_primary_10_1016_j_ipm_2023_103584 crossref_primary_10_46991_BYSU_G_2025_16_1_004 crossref_primary_10_3390_app13095659 crossref_primary_10_1016_j_ijhcs_2020_102551 crossref_primary_10_1007_s12553_021_00609_8 crossref_primary_10_1016_j_iot_2025_101714 crossref_primary_10_1038_s41467_023_40550_0 crossref_primary_10_1371_journal_pone_0308718 crossref_primary_10_1016_j_ijhcs_2024_103301 crossref_primary_10_3390_diagnostics14242770 crossref_primary_10_1109_TAFE_2024_3492323 crossref_primary_10_1145_3731456 crossref_primary_10_1371_journal_pone_0313238 crossref_primary_10_1109_ACCESS_2024_3401007 crossref_primary_10_1016_j_asoc_2023_110757 crossref_primary_10_1016_j_asoc_2023_110758 crossref_primary_10_1080_00332747_2023_2291945 crossref_primary_10_1016_j_eswa_2025_128661 crossref_primary_10_1038_s41746_025_01784_y crossref_primary_10_48175_IJARSCT_23294 crossref_primary_10_1016_j_compbiomed_2024_108076 crossref_primary_10_3390_mti6010004 crossref_primary_10_1016_j_inffus_2025_103352 crossref_primary_10_1016_j_ejor_2024_03_008 crossref_primary_10_1109_TLT_2023_3314610 crossref_primary_10_1007_s43503_025_00066_6 crossref_primary_10_1016_j_bspc_2023_104979 crossref_primary_10_1007_s10668_024_05263_4 crossref_primary_10_1016_j_irfa_2023_103005 crossref_primary_10_1007_s11098_025_02379_9 crossref_primary_10_1007_s00521_024_09640_y crossref_primary_10_3233_SW_233407 crossref_primary_10_1080_10447318_2022_2066246 crossref_primary_10_1007_s10506_022_09309_8 crossref_primary_10_1371_journal_pone_0331917 crossref_primary_10_3389_frai_2023_1249322 crossref_primary_10_1109_ACCESS_2023_3325283 crossref_primary_10_3390_app11135781 crossref_primary_10_1088_2632_2153_abd614 crossref_primary_10_3389_fdgth_2025_1557467 crossref_primary_10_3390_electronics13193806 crossref_primary_10_3390_bioengineering10091070 crossref_primary_10_1109_TGRS_2023_3284475 crossref_primary_10_3390_asi8040097 crossref_primary_10_1016_j_jretconser_2025_104241 crossref_primary_10_1007_s10586_024_04655_5 crossref_primary_10_1177_10497315251329531 crossref_primary_10_1061_JCCEE5_CPENG_6018 crossref_primary_10_1145_3637348 crossref_primary_10_1016_j_neucom_2022_10_014 crossref_primary_10_1177_08920206251322644 crossref_primary_10_7717_peerj_cs_2899 crossref_primary_10_1007_s12239_025_00353_2 crossref_primary_10_1007_s12652_021_03658_z crossref_primary_10_1016_j_inffus_2023_101821 crossref_primary_10_1109_TMI_2023_3247659 crossref_primary_10_1016_j_health_2023_100170 crossref_primary_10_3390_a18010020 crossref_primary_10_1007_s10916_025_02211_1 crossref_primary_10_1109_ACCESS_2022_3184693 crossref_primary_10_3390_rs16224270 crossref_primary_10_1016_j_ecolind_2025_113557 crossref_primary_10_2139_ssrn_5023415 crossref_primary_10_1007_s10278_021_00527_1 crossref_primary_10_1016_j_clinbiomech_2021_105452 crossref_primary_10_1145_3670854 crossref_primary_10_1108_JICES_05_2023_0063 crossref_primary_10_1021_acs_est_5c04330 crossref_primary_10_1177_20539517231219958 crossref_primary_10_1155_2024_5080332 crossref_primary_10_1007_s13194_024_00614_4 crossref_primary_10_1109_MCOM_003_2200461 crossref_primary_10_1111_jace_20173 crossref_primary_10_3390_a18060368 crossref_primary_10_3390_app11083321 crossref_primary_10_1007_s10664_025_10656_8 crossref_primary_10_1016_j_csbj_2022_05_031 crossref_primary_10_1186_s44147_025_00727_4 crossref_primary_10_1053_j_semnuclmed_2020_09_003 crossref_primary_10_1109_MS_2023_3244204 crossref_primary_10_1016_j_inffus_2021_05_009 crossref_primary_10_1080_01587919_2022_2150145 crossref_primary_10_1109_TGRS_2024_3424680 crossref_primary_10_1007_s00500_021_05810_5 crossref_primary_10_3389_fnsys_2021_766980 crossref_primary_10_1007_s10462_024_10854_8 crossref_primary_10_1016_j_scitotenv_2023_164858 crossref_primary_10_1016_j_neuroimage_2023_119929 crossref_primary_10_3390_su16010274 crossref_primary_10_1145_3665494 crossref_primary_10_1093_jcde_qwad038 crossref_primary_10_1007_s13132_024_01868_2 crossref_primary_10_1016_j_chaos_2020_110338 crossref_primary_10_1016_j_csl_2022_101466 crossref_primary_10_3389_frai_2020_507973 crossref_primary_10_1109_JSTARS_2025_3549524 crossref_primary_10_1007_s00146_022_01389_z crossref_primary_10_1007_s10064_025_04180_8 crossref_primary_10_1109_ACCESS_2024_3444907 crossref_primary_10_1016_j_oceaneng_2024_116977 crossref_primary_10_1038_s42003_021_01697_y crossref_primary_10_1145_3673907 crossref_primary_10_1057_s41599_025_04361_6 crossref_primary_10_1109_ACCESS_2021_3051315 crossref_primary_10_1016_j_cag_2024_104058 crossref_primary_10_1017_flo_2024_28 crossref_primary_10_1093_humrep_deab168 crossref_primary_10_1016_j_infsof_2024_107456 crossref_primary_10_1109_ACCESS_2025_3567257 crossref_primary_10_1007_s10901_021_09885_2 crossref_primary_10_1007_s10462_023_10561_w crossref_primary_10_1111_bjet_13466 crossref_primary_10_3904_kjim_2024_098 crossref_primary_10_1007_s44163_022_00023_7 crossref_primary_10_1016_j_engappai_2024_109127 crossref_primary_10_1016_j_paerosci_2025_101085 crossref_primary_10_1007_s10845_023_02304_z crossref_primary_10_1007_s11192_024_04996_3 crossref_primary_10_1007_s10458_023_09619_4 crossref_primary_10_1007_s00146_023_01633_0 crossref_primary_10_3390_app11104697 crossref_primary_10_1007_s00146_025_02504_6 crossref_primary_10_1162_artl_a_00414 crossref_primary_10_1007_s11416_025_00561_5 crossref_primary_10_1016_j_jsinno_2025_200537 crossref_primary_10_1088_1741_2552_ad6593 crossref_primary_10_1016_j_jece_2025_117826 crossref_primary_10_1186_s13321_023_00682_3 crossref_primary_10_1007_s00146_022_01452_9 crossref_primary_10_1016_j_imu_2024_101504 crossref_primary_10_1186_s13244_025_01922_w crossref_primary_10_1016_j_techsoc_2022_102145 crossref_primary_10_1016_j_knosys_2024_111556 crossref_primary_10_3390_s22083031 crossref_primary_10_1016_j_eswa_2024_123890 crossref_primary_10_1109_ACCESS_2025_3602004 crossref_primary_10_1016_j_scitotenv_2022_153486 crossref_primary_10_1016_j_bspc_2021_102681 crossref_primary_10_1097_TP_0000000000005063 crossref_primary_10_5194_hess_26_4773_2022 crossref_primary_10_1016_j_imu_2024_101507 crossref_primary_10_1016_j_procs_2021_01_361 crossref_primary_10_1109_COMST_2022_3192978 crossref_primary_10_1177_0272989X221098409 crossref_primary_10_3389_fpls_2024_1319938 crossref_primary_10_1016_j_catena_2021_105967 crossref_primary_10_1109_ACCESS_2024_3394243 crossref_primary_10_1007_s12525_022_00606_3 crossref_primary_10_1016_j_jbi_2022_104216 crossref_primary_10_1088_1361_6560_ad19f1 crossref_primary_10_1109_ACCESS_2025_3526706 crossref_primary_10_1155_2022_5140148 crossref_primary_10_1177_14604582251342178 crossref_primary_10_1016_j_rineng_2025_104629 crossref_primary_10_1007_s12525_023_00649_0 crossref_primary_10_1007_s44163_022_00041_5 crossref_primary_10_1016_j_chb_2022_107539 crossref_primary_10_1002_cb_2428 crossref_primary_10_1080_00207543_2022_2138611 crossref_primary_10_1016_j_artmed_2024_102769 crossref_primary_10_1108_K_02_2024_0409 crossref_primary_10_3390_healthcare11152199 crossref_primary_10_1007_s13218_022_00772_8 crossref_primary_10_1093_jamiaopen_ooae074 crossref_primary_10_1016_j_arcontrol_2021_05_003 crossref_primary_10_3390_info11030167 crossref_primary_10_3390_rs13214439 crossref_primary_10_1016_j_ins_2024_120276 crossref_primary_10_1016_j_rineng_2024_103498 crossref_primary_10_1016_j_pacfin_2025_102845 crossref_primary_10_1007_s10676_022_09623_4 crossref_primary_10_1016_j_eswa_2024_124302 crossref_primary_10_1088_2632_2153_acf545 crossref_primary_10_1016_j_compind_2024_104233 crossref_primary_10_7717_peerj_17932 crossref_primary_10_1007_s13755_024_00303_9 crossref_primary_10_1109_ACCESS_2025_3571340 crossref_primary_10_1016_j_eswa_2023_120901 crossref_primary_10_1371_journal_pone_0282158 crossref_primary_10_3390_molecules26072065 crossref_primary_10_1016_j_energy_2025_134781 crossref_primary_10_1007_s44204_024_00238_8 crossref_primary_10_1080_10580530_2025_2506369 crossref_primary_10_1007_s10462_025_11325_4 crossref_primary_10_1038_s41591_023_02448_8 crossref_primary_10_1016_j_inffus_2023_102221 crossref_primary_10_1109_ACCESS_2023_3323573 crossref_primary_10_1016_j_compbiomed_2025_109740 crossref_primary_10_1007_s12559_021_09974_y crossref_primary_10_1007_s10506_023_09356_9 crossref_primary_10_1016_j_cmpb_2024_108371 crossref_primary_10_7232_JKIIE_2024_50_4_222 crossref_primary_10_1016_j_electacta_2024_144449 crossref_primary_10_1109_TIP_2024_3359331 crossref_primary_10_1109_TMI_2021_3129068 crossref_primary_10_1016_j_compbiomed_2025_109749 crossref_primary_10_3390_jmse9111227 crossref_primary_10_3390_rs15184585 crossref_primary_10_1016_j_clbc_2025_03_006 crossref_primary_10_1016_j_dss_2025_114529 crossref_primary_10_1016_j_inffus_2023_102218 crossref_primary_10_1007_s41060_023_00458_w crossref_primary_10_1016_j_cmpb_2022_106837 crossref_primary_10_1007_s00330_020_07561_7 crossref_primary_10_1007_s00521_022_07608_4 crossref_primary_10_1016_j_patrec_2021_05_018 crossref_primary_10_1007_s11257_024_09400_6 crossref_primary_10_3390_s25092845 crossref_primary_10_3233_IDA_240075 crossref_primary_10_7232_JKIIE_2022_48_2_151 crossref_primary_10_3390_electronics13010175 crossref_primary_10_1061__ASCE_NH_1527_6996_0000492 crossref_primary_10_1016_j_micpro_2024_105062 crossref_primary_10_1016_j_swevo_2021_100888 crossref_primary_10_1007_s11604_023_01474_3 crossref_primary_10_1371_journal_pone_0263898 crossref_primary_10_1016_j_inffus_2023_102208 crossref_primary_10_34133_icomputing_0126 crossref_primary_10_1109_TITS_2022_3188671 crossref_primary_10_1007_s43681_022_00195_z crossref_primary_10_1038_s41598_024_84810_5 crossref_primary_10_1016_j_enbuild_2023_113326 crossref_primary_10_3390_app12105137 crossref_primary_10_3390_s21020327 crossref_primary_10_1109_MIM_2021_9513641 crossref_primary_10_1016_j_eswa_2025_129065 crossref_primary_10_1038_s41598_025_96634_y crossref_primary_10_1016_j_ins_2023_119354 crossref_primary_10_1057_s41599_024_02759_2 crossref_primary_10_1007_s43681_025_00758_w crossref_primary_10_1109_ACCESS_2025_3537459 crossref_primary_10_1109_TEVC_2022_3225591 crossref_primary_10_1145_3593374 crossref_primary_10_1145_3652154 crossref_primary_10_1109_JIOT_2023_3237893 crossref_primary_10_1016_j_energy_2025_134738 crossref_primary_10_1016_j_inffus_2022_11_028 crossref_primary_10_1109_THMS_2023_3334988 crossref_primary_10_1109_TETC_2022_3227113 crossref_primary_10_3390_cancers13030552 crossref_primary_10_1016_j_imu_2024_101587 crossref_primary_10_3390_app12031295 crossref_primary_10_1080_13501763_2025_2499113 crossref_primary_10_1007_s40808_025_02521_w crossref_primary_10_1109_JBHI_2023_3236722 crossref_primary_10_1016_j_inffus_2022_11_013 crossref_primary_10_1007_s13748_025_00367_y crossref_primary_10_3390_pr12020328 crossref_primary_10_1016_j_engappai_2024_109947 crossref_primary_10_1371_journal_pone_0275814 crossref_primary_10_1016_j_semcancer_2023_02_007 crossref_primary_10_1016_j_compbiomed_2025_109709 crossref_primary_10_3917_res_240_0179 crossref_primary_10_1016_j_jatrs_2025_100072 crossref_primary_10_1007_s10489_022_03622_0 crossref_primary_10_1016_j_neucom_2024_128111 crossref_primary_10_1016_j_swevo_2025_102136 crossref_primary_10_1088_1361_6560_ac678a crossref_primary_10_1002_cfp2_70006 crossref_primary_10_1145_3685053 crossref_primary_10_1007_s00259_021_05339_7 crossref_primary_10_1016_j_mechatronics_2021_102735 crossref_primary_10_1007_s12559_024_10294_0 crossref_primary_10_1007_s00521_021_06282_2 crossref_primary_10_1109_ACCESS_2024_3391130 crossref_primary_10_1145_3609333 crossref_primary_10_1049_cit2_12253 crossref_primary_10_5465_amj_2022_0850 crossref_primary_10_1002_ett_4970 crossref_primary_10_1038_s41746_024_01043_6 crossref_primary_10_1007_s41095_023_0351_7 crossref_primary_10_1016_j_bspc_2023_105490 crossref_primary_10_1155_2020_8884539 crossref_primary_10_1145_3702004 crossref_primary_10_1007_s00521_022_07363_6 crossref_primary_10_7232_JKIIE_2023_49_3_223 crossref_primary_10_1016_j_eswa_2022_117464 crossref_primary_10_1002_advs_202307647 crossref_primary_10_3390_info16030182 crossref_primary_10_1109_ACCESS_2024_3430317 crossref_primary_10_1016_j_jmsy_2024_10_007 crossref_primary_10_3390_sym15091711 crossref_primary_10_1080_13658816_2024_2369535 crossref_primary_10_1002_asi_24889 crossref_primary_10_1016_j_artmed_2022_102471 crossref_primary_10_1007_s10994_024_06543_w crossref_primary_10_3390_en17133242 crossref_primary_10_1016_j_ins_2023_119885 crossref_primary_10_2139_ssrn_5401475 crossref_primary_10_3390_s22228761 crossref_primary_10_1007_s11042_022_12234_2 crossref_primary_10_1016_j_knosys_2021_108053 crossref_primary_10_1016_j_compbiomed_2021_104578 crossref_primary_10_1016_j_cities_2025_105712 crossref_primary_10_1016_j_health_2023_100242 crossref_primary_10_3390_s22228760 crossref_primary_10_1016_j_istruc_2025_109967 crossref_primary_10_3390_app14167192 crossref_primary_10_1016_j_imu_2025_101667 crossref_primary_10_1016_j_pnucene_2025_105745 crossref_primary_10_1109_TAI_2022_3227225 crossref_primary_10_1016_j_tifs_2024_104612 crossref_primary_10_1109_TITS_2023_3236274 crossref_primary_10_1109_TFUZZ_2022_3177028 crossref_primary_10_1109_TCYB_2022_3165104 crossref_primary_10_3390_universe11060187 crossref_primary_10_1016_j_ins_2023_119898 crossref_primary_10_1016_j_engappai_2024_108939 crossref_primary_10_1016_j_artint_2022_103667 crossref_primary_10_1016_j_engappai_2023_106016 crossref_primary_10_1109_ACCESS_2024_3405071 crossref_primary_10_1007_s41666_023_00127_4 crossref_primary_10_1016_j_enconman_2024_119118 crossref_primary_10_1088_1361_6463_ad2339 crossref_primary_10_1016_j_inffus_2025_103032 crossref_primary_10_1371_journal_pone_0328411 crossref_primary_10_1016_j_compchemeng_2025_109382 crossref_primary_10_1007_s12273_024_1154_1 crossref_primary_10_1051_itmconf_20246901002 crossref_primary_10_1002_epi4_70137 crossref_primary_10_1080_12460125_2020_1870065 crossref_primary_10_1007_s11042_023_17666_y crossref_primary_10_1007_s11042_023_17982_3 crossref_primary_10_1016_j_procs_2025_04_627 crossref_primary_10_1007_s12652_024_04856_1 crossref_primary_10_3390_s21186168 crossref_primary_10_1016_j_enbuild_2024_114426 crossref_primary_10_1002_alz_12948 crossref_primary_10_12688_openreseurope_20195_1 crossref_primary_10_3390_app112411659 crossref_primary_10_1109_TCDS_2021_3099945 crossref_primary_10_1007_s43681_025_00668_x crossref_primary_10_1177_00108367241288073 crossref_primary_10_3390_app12094459 crossref_primary_10_1016_j_ecolind_2024_112886 crossref_primary_10_1016_j_csbj_2024_12_027 crossref_primary_10_3390_ijms232113149 crossref_primary_10_1007_s00439_021_02387_9 crossref_primary_10_1007_s12525_022_00612_5 crossref_primary_10_1007_s41109_021_00438_8 crossref_primary_10_1016_j_procs_2025_04_642 crossref_primary_10_1016_j_eswa_2024_125120 crossref_primary_10_1016_j_ergon_2024_103568 crossref_primary_10_1002_aisy_202500241 crossref_primary_10_1017_eds_2024_14 crossref_primary_10_1109_MNET_001_2100227 crossref_primary_10_3390_ph18091271 crossref_primary_10_1016_j_tplants_2022_08_021 crossref_primary_10_1016_j_joitmc_2024_100338 crossref_primary_10_4018_JDM_318455 crossref_primary_10_1007_s10489_023_04942_5 crossref_primary_10_3390_a18030120 crossref_primary_10_1007_s00146_024_02152_2 crossref_primary_10_3390_batteries10030099 crossref_primary_10_3389_fpsyg_2023_1217178 crossref_primary_10_1016_j_cbpa_2021_102111 crossref_primary_10_1109_ACCESS_2024_3430010 crossref_primary_10_3390_math12071024 crossref_primary_10_1016_j_artint_2023_103923 crossref_primary_10_1111_exsy_13503 crossref_primary_10_1016_j_eswa_2021_115736 crossref_primary_10_1016_j_joitmc_2025_100629 crossref_primary_10_1038_s41598_024_84120_w crossref_primary_10_59324_ejaset_2025_3_3__06 crossref_primary_10_1109_TNNLS_2023_3282599 crossref_primary_10_1111_jbl_70032 crossref_primary_10_1142_S0217984924502105 crossref_primary_10_1109_TCSS_2022_3227458 crossref_primary_10_1016_j_cca_2024_119938 crossref_primary_10_3390_metabo13101079 crossref_primary_10_1016_j_apenergy_2020_116062 crossref_primary_10_1007_s10676_022_09624_3 crossref_primary_10_1080_10447318_2023_2301250 crossref_primary_10_1109_ACCESS_2024_3477553 crossref_primary_10_21202_2782_2923_2024_1_217_245 crossref_primary_10_1038_s41562_024_02020_5 crossref_primary_10_1109_MC_2024_3405708 crossref_primary_10_1016_j_bdr_2022_100359 crossref_primary_10_1016_j_engappai_2024_108921 crossref_primary_10_3390_app12199545 crossref_primary_10_1515_teme_2024_0004 crossref_primary_10_1016_j_compchemeng_2023_108310 crossref_primary_10_1093_clinchem_hvac190 crossref_primary_10_3390_ijms232213838 crossref_primary_10_1016_j_joitmc_2025_100640 crossref_primary_10_1080_19439962_2025_2540388 crossref_primary_10_1007_s10844_021_00672_7 crossref_primary_10_1093_jamia_ocaf110 crossref_primary_10_3390_electronics12071670 crossref_primary_10_1016_j_cirp_2024_04_014 crossref_primary_10_1016_j_compag_2024_109478 crossref_primary_10_1007_s10618_022_00867_8 crossref_primary_10_1093_jcde_qwaf075 crossref_primary_10_1016_j_artint_2023_103945 crossref_primary_10_11648_j_ajai_20250902_16 crossref_primary_10_3390_a15110431 crossref_primary_10_1007_s00500_021_05893_0 crossref_primary_10_1145_3729420 crossref_primary_10_1007_s12652_023_04694_7 crossref_primary_10_1177_10944281231202741 crossref_primary_10_3390_ai6080169 crossref_primary_10_1109_ACCESS_2021_3068597 crossref_primary_10_1007_s11042_023_14432_y crossref_primary_10_1016_j_schres_2021_05_018 crossref_primary_10_1109_TAI_2023_3279808 crossref_primary_10_1109_TIM_2022_3175033 crossref_primary_10_1145_3708504 crossref_primary_10_1177_23312165241298606 crossref_primary_10_3389_frai_2022_827584 crossref_primary_10_5194_hess_25_5839_2021 crossref_primary_10_1177_15553434221113964 crossref_primary_10_1007_s10458_020_09478_3 crossref_primary_10_3390_pr12122771 crossref_primary_10_1016_j_ymssp_2025_112331 crossref_primary_10_1007_s00521_025_11227_0 crossref_primary_10_1108_IJHMA_03_2025_0067 crossref_primary_10_1007_s10791_025_09590_6 crossref_primary_10_2118_223622_PA crossref_primary_10_1016_j_ecolind_2022_109523 crossref_primary_10_1016_j_neuroimage_2023_120073 crossref_primary_10_1109_ACCESS_2024_3384460 crossref_primary_10_1109_TDSC_2022_3194884 crossref_primary_10_3390_app12136799 crossref_primary_10_1108_JKM_01_2025_0119 crossref_primary_10_1007_s10489_024_05483_1 crossref_primary_10_1109_JSEN_2021_3065908 crossref_primary_10_1038_s41440_024_02024_8 crossref_primary_10_1371_journal_pone_0300906 crossref_primary_10_1007_s11227_023_05179_2 crossref_primary_10_3389_fnhum_2024_1406786 crossref_primary_10_1016_j_eswa_2021_115771 crossref_primary_10_3390_electronics13224339 crossref_primary_10_1016_j_jclepro_2022_133638 crossref_primary_10_3389_fbioe_2020_553904 crossref_primary_10_1002_cjce_25525 crossref_primary_10_1007_s00521_023_09192_7 crossref_primary_10_1007_s43681_024_00503_9 crossref_primary_10_32604_cmc_2024_058932 crossref_primary_10_3390_risks10010003 crossref_primary_10_1016_j_asoc_2020_106959 crossref_primary_10_1007_s00371_022_02715_8 crossref_primary_10_3390_electronics11132067 crossref_primary_10_1016_j_sftr_2025_101279 crossref_primary_10_1007_s42979_022_01360_1 crossref_primary_10_1016_j_inffus_2022_01_001 crossref_primary_10_1109_ACCESS_2021_3101257 crossref_primary_10_1038_s41598_024_82111_5 crossref_primary_10_1063_5_0129324 crossref_primary_10_34133_2020_4152816 crossref_primary_10_1109_TON_2025_3540640 crossref_primary_10_1016_j_artmed_2023_102700 crossref_primary_10_1016_j_csbj_2024_03_006 crossref_primary_10_1002_wcms_1716 crossref_primary_10_3390_app12136761 crossref_primary_10_3390_a18080470 crossref_primary_10_1016_j_watres_2024_122191 crossref_primary_10_1109_TEVC_2023_3238741 crossref_primary_10_3389_fmed_2021_699984 crossref_primary_10_1007_s00521_022_07853_7 crossref_primary_10_3390_app15147856 crossref_primary_10_1007_s10669_022_09855_1 crossref_primary_10_1145_3678181 crossref_primary_10_3390_app15126931 crossref_primary_10_1007_s12539_024_00630_1 crossref_primary_10_1364_JOCN_470812 crossref_primary_10_3390_app12178669 crossref_primary_10_1117_1_NPh_9_4_041411 crossref_primary_10_1007_s00146_024_02014_x crossref_primary_10_3389_fmed_2024_1396459 crossref_primary_10_1007_s12525_023_00644_5 crossref_primary_10_1016_j_engappai_2025_110664 crossref_primary_10_1109_ACCESS_2023_3281407 crossref_primary_10_1109_TMAG_2023_3301963 crossref_primary_10_3390_rs16193602 crossref_primary_10_1016_j_artmed_2022_102421 crossref_primary_10_1016_j_compbiomed_2024_108193 crossref_primary_10_2196_47736 crossref_primary_10_1007_s44163_024_00134_3 crossref_primary_10_1016_j_ins_2023_119851 crossref_primary_10_1016_j_engappai_2022_105222 crossref_primary_10_1617_s11527_025_02664_3 crossref_primary_10_2196_30079 crossref_primary_10_1109_ACCESS_2022_3230151 crossref_primary_10_1145_3569889 crossref_primary_10_1186_s42162_025_00529_1 crossref_primary_10_1016_j_artmed_2022_102438 crossref_primary_10_1109_TEM_2023_3324149 crossref_primary_10_1002_alz_13479 crossref_primary_10_1007_s42979_022_01044_w crossref_primary_10_3390_electronics13224375 crossref_primary_10_1145_3495013 crossref_primary_10_1109_ACCESS_2024_3398203 crossref_primary_10_1080_10447318_2022_2081762 crossref_primary_10_1111_exsy_70111 crossref_primary_10_1016_j_biotechadv_2021_107739 crossref_primary_10_1016_j_isprsjprs_2023_12_007 crossref_primary_10_1016_j_nuclphysb_2023_116182 crossref_primary_10_1016_j_nima_2025_170921 crossref_primary_10_3390_make6030097 crossref_primary_10_1109_ACCESS_2021_3127881 crossref_primary_10_2196_26811 crossref_primary_10_1520_SSMS20200084 crossref_primary_10_3390_jtaer18020044 crossref_primary_10_1016_j_egyai_2025_100480 crossref_primary_10_26634_jfet_19_4_20913 crossref_primary_10_3390_jpm14080812 crossref_primary_10_1016_j_ecolind_2025_113685 crossref_primary_10_3390_s20154232 crossref_primary_10_1016_j_cageo_2022_105281 crossref_primary_10_1016_j_trc_2022_103924 crossref_primary_10_1007_s10796_021_10174_0 crossref_primary_10_1007_s12559_025_10408_2 crossref_primary_10_1016_j_cegh_2025_101956 crossref_primary_10_1017_dsj_2020_22 crossref_primary_10_1109_ACCESS_2025_3544625 crossref_primary_10_3390_ph16060891 crossref_primary_10_3390_ijfs11030096 crossref_primary_10_1109_ACCESS_2021_3101284 crossref_primary_10_1038_s41524_021_00616_3 crossref_primary_10_1109_TEM_2024_3411656 crossref_primary_10_1109_ACCESS_2024_3387547 crossref_primary_10_48175_IJARSCT_25105 crossref_primary_10_3390_a16010049 crossref_primary_10_1016_j_compbiomed_2022_105350 crossref_primary_10_1007_s00146_024_02147_z crossref_primary_10_1145_3626104 crossref_primary_10_1145_3700598 crossref_primary_10_1016_j_trd_2022_103252 crossref_primary_10_1088_1361_6501_add6c8 crossref_primary_10_1007_s10853_024_09379_w crossref_primary_10_1109_TPAMI_2022_3176387 crossref_primary_10_1093_rfs_hhac027 crossref_primary_10_1007_s42979_025_04358_7 crossref_primary_10_1109_JIOT_2025_3586721 crossref_primary_10_1109_ACCESS_2021_3071269 crossref_primary_10_1109_TVT_2024_3498038 crossref_primary_10_1016_j_isprsjprs_2021_11_008 crossref_primary_10_1016_j_bir_2025_06_013 crossref_primary_10_1016_j_dajour_2025_100591 crossref_primary_10_1145_3561048 crossref_primary_10_1093_gigascience_giab030 crossref_primary_10_1007_s10676_024_09769_3 crossref_primary_10_1007_s11042_023_17978_z crossref_primary_10_1109_ACCESS_2022_3216617 crossref_primary_10_1016_j_medj_2024_02_006 crossref_primary_10_1007_s10815_023_02973_y crossref_primary_10_1080_1351847X_2020_1847725 crossref_primary_10_1002_batt_202200309 crossref_primary_10_1016_j_trb_2024_102947 crossref_primary_10_1016_j_ijar_2022_09_008 crossref_primary_10_3390_s25072288 crossref_primary_10_1080_00207721_2025_2455998 crossref_primary_10_1109_COMST_2024_3437248 crossref_primary_10_1145_3563691 crossref_primary_10_1016_j_neucom_2024_128840 crossref_primary_10_1002_pmic_202200031 crossref_primary_10_1016_j_eswa_2023_122588 crossref_primary_10_1016_j_tsc_2023_101356 crossref_primary_10_3390_ani14142023 crossref_primary_10_1002_widm_1391 crossref_primary_10_1007_s10458_025_09689_6 crossref_primary_10_1016_j_engappai_2024_108171 crossref_primary_10_1109_ACCESS_2022_3202889 crossref_primary_10_1016_j_heliyon_2024_e38596 crossref_primary_10_2196_36199 crossref_primary_10_1016_j_inffus_2024_102223 crossref_primary_10_1109_RBME_2020_2987975 crossref_primary_10_1007_s12650_024_00996_w crossref_primary_10_1007_s13347_025_00911_7 crossref_primary_10_3390_computers14050160 crossref_primary_10_3103_S0147688221050129 crossref_primary_10_1016_j_inffus_2020_04_002 crossref_primary_10_1016_j_eswa_2025_127169 crossref_primary_10_1080_07366981_2025_2518821 crossref_primary_10_1109_TBME_2021_3116607 crossref_primary_10_1016_j_oceaneng_2023_115267 crossref_primary_10_1007_s11063_025_11732_2 crossref_primary_10_1016_j_knosys_2024_111668 crossref_primary_10_1007_s00773_024_01043_x crossref_primary_10_1063_5_0260424 crossref_primary_10_1016_j_ejmech_2024_117164 crossref_primary_10_1080_13662716_2023_2281983 crossref_primary_10_3389_fbuil_2024_1387953 crossref_primary_10_1007_s00521_021_06359_y crossref_primary_10_1109_TCBB_2023_3269767 crossref_primary_10_1007_s43681_022_00135_x crossref_primary_10_1029_2022WR034215 crossref_primary_10_1109_LRA_2021_3135927 crossref_primary_10_3390_w15193369 crossref_primary_10_1016_j_aei_2023_102024 crossref_primary_10_3390_make3010009 crossref_primary_10_1016_j_neucom_2021_07_097 crossref_primary_10_1080_21642583_2024_2364033 crossref_primary_10_2139_ssrn_4106222 crossref_primary_10_1109_ACCESS_2024_3397871 crossref_primary_10_32604_cmc_2024_054654 crossref_primary_10_3389_fdata_2020_577974 crossref_primary_10_1111_bjet_13158 crossref_primary_10_1007_s12649_025_03206_2 crossref_primary_10_1109_TNNLS_2023_3246980 crossref_primary_10_2113_2025_lithosphere_2024_240 crossref_primary_10_1515_sagmb_2021_0087 crossref_primary_10_1016_j_eswa_2021_116100 crossref_primary_10_1109_TNS_2025_3546143 crossref_primary_10_1111_ppa_13927 crossref_primary_10_1021_acssensors_4c02272 crossref_primary_10_1016_j_eneco_2024_108112 crossref_primary_10_1016_j_egyai_2025_100528 crossref_primary_10_3390_cancers15020470 crossref_primary_10_1097_XCS_0000000000000242 crossref_primary_10_3389_frai_2022_1015604 crossref_primary_10_1136_jme_2023_109737 crossref_primary_10_1002_advs_202403547 crossref_primary_10_1109_TNNLS_2024_3373101 crossref_primary_10_1111_exsy_70060 crossref_primary_10_1111_jedm_12333 crossref_primary_10_1186_s12984_023_01169_w crossref_primary_10_1109_TPAMI_2024_3388275 crossref_primary_10_1093_tse_tdac036 crossref_primary_10_1007_s10462_024_11077_7 crossref_primary_10_3390_rs17010081 crossref_primary_10_3390_s23083826 crossref_primary_10_3389_fenrg_2025_1531655 crossref_primary_10_3389_fenvs_2022_1057081 crossref_primary_10_1016_j_ejor_2023_04_013 crossref_primary_10_1111_risa_17679 crossref_primary_10_1016_j_psep_2022_01_010 crossref_primary_10_1016_j_geoderma_2025_117207 crossref_primary_10_1016_j_insi_2025_100049 crossref_primary_10_1016_j_eswa_2024_125997 crossref_primary_10_1109_MCI_2023_3327834 crossref_primary_10_1016_j_compag_2024_109414 crossref_primary_10_1002_alr_23613 crossref_primary_10_4018_IJIIT_370967 crossref_primary_10_1016_j_rser_2025_115668 crossref_primary_10_1016_j_patcog_2024_110825 crossref_primary_10_1016_j_ijmedinf_2024_105727 crossref_primary_10_3389_fpsyg_2021_686624 crossref_primary_10_1016_j_scs_2025_106243 crossref_primary_10_1016_j_psep_2024_02_056 crossref_primary_10_1080_10447318_2023_2210890 crossref_primary_10_1016_j_annonc_2023_10_125 crossref_primary_10_1016_j_compbiomed_2023_107450 crossref_primary_10_1016_j_rineng_2025_104380 crossref_primary_10_1109_TSE_2024_3422427 crossref_primary_10_1007_s13347_022_00586_4 crossref_primary_10_1016_j_eswa_2023_119808 crossref_primary_10_1016_j_eswa_2023_123066 crossref_primary_10_1016_j_rineng_2024_101834 crossref_primary_10_3390_joitmc7010071 crossref_primary_10_3390_smartcities7060132 crossref_primary_10_3390_smartcities7060131 crossref_primary_10_1007_s42979_025_04260_2 crossref_primary_10_1371_journal_pcbi_1010718 crossref_primary_10_1016_j_jii_2022_100354 crossref_primary_10_1016_j_jbiomech_2021_110878 crossref_primary_10_3389_fcomp_2023_1151150 crossref_primary_10_1016_j_ins_2022_08_110 crossref_primary_10_1155_2023_2979822 crossref_primary_10_1177_00187208251320589 crossref_primary_10_1016_j_jmsy_2021_07_021 crossref_primary_10_1080_00949655_2024_2449534 crossref_primary_10_1016_j_cities_2023_104677 crossref_primary_10_1177_0958305X241256293 crossref_primary_10_1109_ACCESS_2024_3367110 crossref_primary_10_1109_TLT_2024_3425959 crossref_primary_10_3233_JIFS_237539 crossref_primary_10_1007_s12144_024_06658_2 crossref_primary_10_1007_s00347_024_02146_x crossref_primary_10_1016_j_datak_2023_102264 crossref_primary_10_1016_j_eswa_2024_123375 crossref_primary_10_37648_ijtbm_v14i01_012 crossref_primary_10_1177_14614448211022702 crossref_primary_10_1063_5_0156044 crossref_primary_10_1016_j_engappai_2024_108988 crossref_primary_10_1016_j_jhydrol_2025_133473 crossref_primary_10_1016_j_asoc_2024_112257 crossref_primary_10_1111_ppa_13988 crossref_primary_10_1007_s00432_024_05998_7 crossref_primary_10_1155_atr_3748345 crossref_primary_10_1109_ACCESS_2022_3207765 crossref_primary_10_1002_jsc_2403 crossref_primary_10_1002_pol_20240522 crossref_primary_10_1007_s10115_025_02541_z crossref_primary_10_1007_s11245_025_10218_z crossref_primary_10_1007_s10796_021_10191_z crossref_primary_10_1016_j_psep_2025_107402 crossref_primary_10_1016_j_asoc_2025_113876 crossref_primary_10_1007_s10551_021_04843_y crossref_primary_10_3103_S1060992X22040026 crossref_primary_10_1016_j_knosys_2021_107587 crossref_primary_10_1016_j_jss_2024_112180 crossref_primary_10_1109_TMI_2024_3362837 crossref_primary_10_1080_2573234X_2025_2514190 crossref_primary_10_1007_s00766_022_00393_5 crossref_primary_10_1109_TII_2025_3547004 crossref_primary_10_1007_s00146_022_01457_4 crossref_primary_10_1038_s42256_025_00998_9 crossref_primary_10_1057_s41310_023_00207_2 crossref_primary_10_1177_03019233251318492 crossref_primary_10_3389_fdata_2023_921355 crossref_primary_10_1016_j_jag_2023_103215 crossref_primary_10_3389_frai_2024_1363531 crossref_primary_10_3389_frobt_2021_665729 crossref_primary_10_1007_s10729_023_09647_2 crossref_primary_10_1007_s41870_025_02444_w crossref_primary_10_1016_j_cmpb_2024_108033 crossref_primary_10_1109_ACCESS_2023_3250262 crossref_primary_10_1007_s13347_025_00955_9 crossref_primary_10_1109_ACCESS_2025_3578043 crossref_primary_10_3390_jmse12040624 crossref_primary_10_1109_TIFS_2021_3117075 crossref_primary_10_4467_22996834FLR_23_014_18598 crossref_primary_10_1007_s10994_023_06373_2 crossref_primary_10_1007_s44212_025_00077_9 crossref_primary_10_1016_j_neucom_2025_129405 crossref_primary_10_3389_frai_2023_1241290 crossref_primary_10_1007_s41207_024_00659_0 crossref_primary_10_1016_j_compchemeng_2022_107675 crossref_primary_10_1109_TSC_2023_3327822 crossref_primary_10_1016_j_ress_2022_108561 crossref_primary_10_3390_agriculture13050971 crossref_primary_10_1016_j_csbj_2025_06_008 crossref_primary_10_3390_app12083890 crossref_primary_10_1016_j_chbr_2025_100693 crossref_primary_10_2196_59649 crossref_primary_10_1007_s12065_021_00663_1 crossref_primary_10_1016_j_bspc_2023_104793 crossref_primary_10_1016_j_inffus_2020_07_007 crossref_primary_10_1109_TITS_2021_3119968 crossref_primary_10_1186_s40537_024_01010_8 crossref_primary_10_1016_j_inffus_2020_07_001 crossref_primary_10_1016_j_chbah_2025_100144 crossref_primary_10_3389_fbinf_2025_1645785 crossref_primary_10_1016_j_engappai_2023_107222 crossref_primary_10_3390_electronics13132621 crossref_primary_10_1109_TETC_2022_3171314 crossref_primary_10_1038_s41598_024_54482_2 crossref_primary_10_3390_rs14153563 crossref_primary_10_1016_j_ecolind_2024_111696 crossref_primary_10_1109_JBHI_2020_3005769 crossref_primary_10_1007_s41060_022_00363_8 crossref_primary_10_1111_exsy_13667 crossref_primary_10_1109_ACCESS_2022_3187507 crossref_primary_10_1007_s11760_025_04394_z crossref_primary_10_3390_w14152423 crossref_primary_10_1109_MSP_2022_3142719 crossref_primary_10_1515_revneuro_2023_0050 crossref_primary_10_1016_j_neucom_2025_130602 crossref_primary_10_1016_j_techsoc_2024_102471 crossref_primary_10_1007_s42452_024_06324_z crossref_primary_10_1016_j_enpol_2023_113542 crossref_primary_10_1016_j_ins_2023_119987 crossref_primary_10_1016_j_artmed_2022_102370 crossref_primary_10_1145_3763230 crossref_primary_10_1007_s12525_022_00600_9 crossref_primary_10_1016_j_engappai_2024_108842 crossref_primary_10_3846_ijspm_2021_15129 crossref_primary_10_1016_j_csbr_2024_100005 crossref_primary_10_1007_s10140_022_02099_1 crossref_primary_10_1016_j_inffus_2025_103184 crossref_primary_10_1016_j_cherd_2023_09_003 crossref_primary_10_1039_D5DD00219B crossref_primary_10_1016_j_dcan_2024_08_013 crossref_primary_10_1007_s00146_024_02151_3 crossref_primary_10_1080_07370024_2024_2392494 crossref_primary_10_3390_brainsci14080831 crossref_primary_10_1109_TETCI_2021_3074919 crossref_primary_10_1002_wer_11140 crossref_primary_10_1007_s00259_021_05417_w crossref_primary_10_1109_ACCESS_2024_3418499 crossref_primary_10_1155_2022_4271711 crossref_primary_10_3389_fendo_2022_959546 crossref_primary_10_3390_app112411790 crossref_primary_10_1109_TITS_2021_3131637 crossref_primary_10_1177_10711813241260350 crossref_primary_10_1016_j_artint_2023_103861 crossref_primary_10_1016_j_ymeth_2025_04_016 crossref_primary_10_1016_j_cmpb_2022_107079 crossref_primary_10_3390_biomedicines12061220 crossref_primary_10_3390_math11204355 crossref_primary_10_1016_j_trpro_2023_11_745 crossref_primary_10_1109_ACCESS_2021_3138614 crossref_primary_10_1007_s11023_024_09682_0 crossref_primary_10_2478_fman_2021_0008 crossref_primary_10_3390_jpm11090832 crossref_primary_10_1109_TAI_2024_3357041 crossref_primary_10_1016_j_compind_2025_104318 crossref_primary_10_1080_09585192_2024_2335515 crossref_primary_10_1016_j_eswa_2025_127979 crossref_primary_10_1016_j_ins_2021_05_055 crossref_primary_10_3389_fcvm_2022_855356 crossref_primary_10_1038_s41467_024_44740_2 crossref_primary_10_1080_14697688_2022_2118071 crossref_primary_10_3390_drones7020078 crossref_primary_10_1016_j_matt_2023_03_031 crossref_primary_10_1016_j_media_2022_102726 crossref_primary_10_1080_13683500_2024_2389308 crossref_primary_10_1103_PRXLife_3_013005 crossref_primary_10_2478_raft_2025_0046 crossref_primary_10_1007_s11280_022_01030_5 crossref_primary_10_3390_math13132215 crossref_primary_10_1007_s12144_024_07175_y crossref_primary_10_1177_0192623321990375 crossref_primary_10_1177_1071181322661363 crossref_primary_10_3390_s24227407 crossref_primary_10_1016_j_compbiomed_2024_109569 crossref_primary_10_3389_fpsyg_2023_980523 crossref_primary_10_1016_j_compbiomed_2021_105111 crossref_primary_10_1109_JIOT_2025_3531884 crossref_primary_10_1016_j_engappai_2025_111009 crossref_primary_10_1080_10447318_2022_2050543 crossref_primary_10_1016_j_inffus_2021_11_008 crossref_primary_10_1145_3665647 crossref_primary_10_1016_j_ejmp_2021_02_024 crossref_primary_10_3390_electronics12041020 crossref_primary_10_1080_0960085X_2022_2026621 crossref_primary_10_1109_TFUZZ_2022_3179582 crossref_primary_10_1016_j_artmed_2023_102697 crossref_primary_10_3389_feduc_2023_1073829 crossref_primary_10_3389_fmed_2025_1651934 crossref_primary_10_7717_peerj_17793 crossref_primary_10_1109_TNSM_2021_3122940 crossref_primary_10_1016_j_inffus_2021_11_003 crossref_primary_10_1016_j_inffus_2021_11_004 crossref_primary_10_24979_ambiente_vi_1677 crossref_primary_10_1080_17517575_2022_2098537 crossref_primary_10_1007_s10111_024_00765_7 crossref_primary_10_1007_s10994_025_06855_5 crossref_primary_10_1016_j_inffus_2021_11_007 crossref_primary_10_3390_s24216776 crossref_primary_10_1007_s11036_022_02021_6 crossref_primary_10_1080_10447318_2022_2070107 crossref_primary_10_1016_j_compag_2024_109599 crossref_primary_10_1016_j_compmedimag_2025_102617 crossref_primary_10_1093_bib_bbae616 crossref_primary_10_1016_j_inffus_2021_11_019 crossref_primary_10_1108_MBE_09_2023_0133 crossref_primary_10_1038_s41598_024_81794_0 crossref_primary_10_1016_j_watres_2024_121861 crossref_primary_10_1007_s41666_023_00126_5 crossref_primary_10_1111_tgis_12939 crossref_primary_10_1007_s42454_021_00037_z crossref_primary_10_1016_j_inffus_2021_11_015 crossref_primary_10_32604_cmes_2024_051363 crossref_primary_10_1016_j_inffus_2021_11_017 crossref_primary_10_1016_j_techsoc_2025_102912 crossref_primary_10_1109_COMST_2022_3200740 crossref_primary_10_1145_3677613 crossref_primary_10_1016_j_future_2023_03_005 crossref_primary_10_1029_2021WR030185 crossref_primary_10_1016_j_cgh_2024_12_010 crossref_primary_10_1109_ACCESS_2023_3285082 crossref_primary_10_1080_07357907_2025_2483302 crossref_primary_10_1109_COMST_2024_3443193 crossref_primary_10_1002_iis2_13096 crossref_primary_10_3390_a18020077 crossref_primary_10_3390_electronics11101661 crossref_primary_10_1007_s12525_025_00799_3 crossref_primary_10_1038_s41598_022_21417_8 crossref_primary_10_1088_1741_2552_ac8b38 crossref_primary_10_3390_ijerph191912180 crossref_primary_10_1016_j_aei_2025_103179 crossref_primary_10_1007_s11760_025_03984_1 crossref_primary_10_1016_j_apergo_2022_103708 crossref_primary_10_1016_j_ijar_2023_108982 crossref_primary_10_1016_j_is_2023_102335 crossref_primary_10_1109_ACCESS_2025_3575022 crossref_primary_10_3233_JIFS_211737 crossref_primary_10_3390_bioengineering10030321 crossref_primary_10_1016_j_brainres_2025_149797 crossref_primary_10_3389_fmed_2025_1562558 crossref_primary_10_1016_j_addma_2024_104195 crossref_primary_10_1007_s12525_020_00441_4 crossref_primary_10_1109_TAFFC_2022_3228749 crossref_primary_10_1109_ACCESS_2021_3086230 crossref_primary_10_1016_j_addma_2022_102691 crossref_primary_10_1016_j_neucom_2022_11_023 crossref_primary_10_3390_informatics10010032 crossref_primary_10_1016_j_bspc_2025_107530 crossref_primary_10_1016_j_ijar_2023_108977 crossref_primary_10_1016_j_jsis_2023_101790 crossref_primary_10_1155_2023_9922475 crossref_primary_10_1016_j_future_2021_11_018 crossref_primary_10_1016_j_ijepes_2021_106806 crossref_primary_10_3390_app122211750 crossref_primary_10_3390_biomedicines13010124 crossref_primary_10_3390_info12110473 crossref_primary_10_1016_j_asoc_2024_111632 crossref_primary_10_1111_ecog_07587 crossref_primary_10_3389_fdata_2021_693494 crossref_primary_10_1002_ima_70201 crossref_primary_10_1016_j_inffus_2023_03_008 crossref_primary_10_1016_j_inffus_2023_03_007 crossref_primary_10_1108_INTR_01_2022_0042 crossref_primary_10_1109_TCBB_2023_3272333 crossref_primary_10_1016_j_compbiomed_2024_108284 crossref_primary_10_1161_CIRCRESAHA_121_318106 crossref_primary_10_3390_a14120339 crossref_primary_10_1016_j_future_2024_02_023 crossref_primary_10_3390_s20185141 crossref_primary_10_1016_j_aei_2025_103156 crossref_primary_10_1016_j_is_2023_102310 crossref_primary_10_1088_1742_6596_2340_1_012003 crossref_primary_10_1002_aenm_202502420 crossref_primary_10_3389_frai_2024_1471208 crossref_primary_10_3390_bs14100964 crossref_primary_10_1007_s10618_023_00924_w crossref_primary_10_1109_TETCI_2024_3379240 crossref_primary_10_2139_ssrn_5346270 crossref_primary_10_1016_j_jtrangeo_2022_103310 crossref_primary_10_3390_e25101429 crossref_primary_10_1134_S1064230724700138 crossref_primary_10_1007_s11042_023_15382_1 crossref_primary_10_1016_j_comnet_2022_108770 crossref_primary_10_1016_j_asoc_2021_108066 crossref_primary_10_1016_j_eswa_2024_125097 crossref_primary_10_1029_2022EF003086 crossref_primary_10_3389_frobt_2022_937772 crossref_primary_10_1016_j_artmed_2024_102962 crossref_primary_10_1177_15485129211028651 crossref_primary_10_1016_j_vehcom_2025_100896 crossref_primary_10_1109_ACCESS_2022_3171109 crossref_primary_10_1038_s41539_025_00333_2 crossref_primary_10_1080_00207543_2025_2513574 crossref_primary_10_1029_2024JH000391 crossref_primary_10_1038_s41598_023_38459_1 crossref_primary_10_1016_j_neunet_2024_106292 crossref_primary_10_1029_2024WR039820 crossref_primary_10_1016_j_trd_2025_104709 crossref_primary_10_3390_make5010017 crossref_primary_10_1109_TVCG_2023_3326943 crossref_primary_10_1109_ACCESS_2022_3188808 crossref_primary_10_1175_AIES_D_22_0001_1 crossref_primary_10_1007_s10479_024_05825_9 crossref_primary_10_3390_app15147925 crossref_primary_10_1007_s10462_025_11153_6 crossref_primary_10_1016_j_inffus_2022_08_017 crossref_primary_10_1111_2041_210X_13992 crossref_primary_10_1016_j_isprsjprs_2022_04_029 crossref_primary_10_1080_1461670X_2021_1916984 crossref_primary_10_1016_j_knosys_2025_114384 crossref_primary_10_1109_ACCESS_2025_3589620 crossref_primary_10_1080_14685248_2020_1742918 crossref_primary_10_1016_j_compind_2020_103290 crossref_primary_10_1016_j_compmedimag_2024_102387 crossref_primary_10_1016_j_csbj_2025_06_037 crossref_primary_10_1109_MCOM_001_2100736 crossref_primary_10_1109_TPAMI_2021_3115452 crossref_primary_10_3389_fdgth_2021_595704 crossref_primary_10_1109_JIOT_2022_3232845 crossref_primary_10_1016_j_cose_2023_103654 crossref_primary_10_1093_scipol_scad038 crossref_primary_10_1080_09540091_2025_2507180 crossref_primary_10_1016_j_knosys_2024_111840 crossref_primary_10_1016_j_knosys_2025_113042 crossref_primary_10_1109_TRS_2025_3566222 crossref_primary_10_1145_3721437 crossref_primary_10_1007_s10796_021_10186_w crossref_primary_10_1155_2023_8068569 crossref_primary_10_1016_j_artmed_2023_102616 crossref_primary_10_1016_j_patrec_2023_11_009 crossref_primary_10_1364_JOCN_560757 crossref_primary_10_3390_app122010228 crossref_primary_10_1109_TVCG_2023_3326929 crossref_primary_10_1016_j_eswa_2025_128443 crossref_primary_10_3390_e24030346 crossref_primary_10_3390_app14177462 crossref_primary_10_1016_j_jmapro_2023_05_016 crossref_primary_10_1109_ACCESS_2023_3294840 crossref_primary_10_1016_j_inffus_2025_103133 crossref_primary_10_1016_j_matt_2022_04_016 crossref_primary_10_3390_app14188108 crossref_primary_10_1109_TAI_2021_3133846 crossref_primary_10_1007_s10462_024_10852_w crossref_primary_10_1177_2327857925141018 crossref_primary_10_1098_rsta_2020_0363 crossref_primary_10_1145_3743672 crossref_primary_10_1109_TVCG_2023_3326912 crossref_primary_10_1109_TVCG_2024_3418653 crossref_primary_10_1016_j_apenergy_2021_118240 crossref_primary_10_1109_TG_2022_3159704 crossref_primary_10_3390_diagnostics13010111 crossref_primary_10_3390_s25072183 crossref_primary_10_1016_j_ces_2024_120493 crossref_primary_10_1109_TNSRE_2024_3465016 crossref_primary_10_1016_j_engappai_2024_109359 crossref_primary_10_3390_ai4030034 crossref_primary_10_1016_j_cose_2024_103862 crossref_primary_10_3390_laws12010005 crossref_primary_10_1145_3716818 crossref_primary_10_1016_j_ipm_2025_104061 crossref_primary_10_32628_IJSRST2302551 crossref_primary_10_1145_3711123 crossref_primary_10_1007_s10458_022_09577_3 crossref_primary_10_1109_TGRS_2023_3329649 crossref_primary_10_1145_3711122 crossref_primary_10_1016_j_neucom_2022_09_053 crossref_primary_10_32604_cmc_2025_058361 crossref_primary_10_1109_TGRS_2021_3077062 crossref_primary_10_1109_ACCESS_2024_3485200 crossref_primary_10_1002_ppp3_70007 crossref_primary_10_3390_computers10080103 crossref_primary_10_1109_ACCESS_2024_3514197 crossref_primary_10_1016_j_inffus_2024_102360 crossref_primary_10_1007_s44163_025_00241_9 crossref_primary_10_1016_j_compchemeng_2024_108584 crossref_primary_10_1109_MIS_2023_3334639 crossref_primary_10_1007_s10462_023_10692_0 crossref_primary_10_1145_3716820 crossref_primary_10_52399_001c_138720 crossref_primary_10_1109_ACCESS_2025_3571518 crossref_primary_10_1007_s11229_022_03485_5 crossref_primary_10_1186_s42408_023_00236_w crossref_primary_10_1111_bjet_13233 crossref_primary_10_3390_app15031467 crossref_primary_10_1007_s12525_022_00608_1 crossref_primary_10_1016_j_jshs_2025_101047 crossref_primary_10_1145_3610536 crossref_primary_10_1038_s41524_022_00884_7 crossref_primary_10_1109_TFUZZ_2022_3141761 crossref_primary_10_1080_01605682_2022_2139646 crossref_primary_10_1007_s10796_022_10291_4 crossref_primary_10_1016_j_future_2021_06_046 crossref_primary_10_1007_s43681_024_00445_2 crossref_primary_10_1007_s10606_022_09461_4 crossref_primary_10_1016_j_eswa_2023_121138 crossref_primary_10_1016_j_knosys_2024_111732 crossref_primary_10_1007_s43681_023_00309_1 crossref_primary_10_1007_s00138_024_01653_w crossref_primary_10_1109_JPROC_2024_3403898 crossref_primary_10_1145_3429739 crossref_primary_10_2174_0129503752359512250325061847 crossref_primary_10_1007_s11831_023_09899_9 crossref_primary_10_1007_s12599_023_00787_x crossref_primary_10_1007_s00521_022_07263_9 crossref_primary_10_1109_TITS_2025_3543810 crossref_primary_10_3233_SW_233297 crossref_primary_10_1016_j_inffus_2023_102040 crossref_primary_10_3390_app15052392 crossref_primary_10_1109_TIFS_2023_3251842 crossref_primary_10_1038_s41598_024_59690_4 crossref_primary_10_3390_ma17143540 crossref_primary_10_1016_j_engappai_2024_109376 crossref_primary_10_1016_j_ssaho_2025_101467 crossref_primary_10_2196_76981 crossref_primary_10_1016_j_knosys_2024_111741 crossref_primary_10_1109_JIOT_2024_3377731 crossref_primary_10_1016_j_techfore_2021_121209 crossref_primary_10_1007_s00521_024_10868_x crossref_primary_10_17694_bajece_1577929 crossref_primary_10_1016_j_cjca_2021_10_009 crossref_primary_10_1016_j_bspc_2025_107620 crossref_primary_10_1016_j_undsp_2024_09_004 crossref_primary_10_1016_j_acra_2024_12_018 crossref_primary_10_1109_ACCESS_2024_3448219 crossref_primary_10_1109_MC_2022_3213181 crossref_primary_10_1080_10696679_2025_2552275 crossref_primary_10_2196_44502 crossref_primary_10_3390_medicina58111681 crossref_primary_10_1016_j_rineng_2024_102397 crossref_primary_10_3390_land9070229 crossref_primary_10_1145_3626094 crossref_primary_10_1016_j_cma_2021_114562 crossref_primary_10_1016_j_rser_2022_112459 crossref_primary_10_1186_s12911_021_01703_7 crossref_primary_10_1016_j_buildenv_2025_113659 crossref_primary_10_1007_s11517_021_02487_8 crossref_primary_10_2196_66760 crossref_primary_10_1016_j_ssci_2021_105528 crossref_primary_10_1016_j_jmsy_2023_05_027 crossref_primary_10_1007_s12599_025_00964_0 crossref_primary_10_1016_j_jmatprotec_2024_118452 crossref_primary_10_1108_JSTP_06_2022_0134 crossref_primary_10_1016_j_bspc_2024_107328 crossref_primary_10_3390_technologies12040056 crossref_primary_10_1016_j_inffus_2023_102094 crossref_primary_10_1007_s10664_024_10526_9 crossref_primary_10_1021_accountsmr_1c00236 crossref_primary_10_59324_stss_2025_2_7__02 crossref_primary_10_1016_j_procs_2025_02_224 crossref_primary_10_3389_fenrg_2023_1328899 crossref_primary_10_1007_s11573_023_01181_5 crossref_primary_10_3390_sym17081290 crossref_primary_10_1016_j_neucom_2020_04_057 crossref_primary_10_1111_geb_13695 crossref_primary_10_1177_23814683251328377 crossref_primary_10_1016_j_ecolind_2025_114138 crossref_primary_10_1007_s00521_024_10811_0 crossref_primary_10_1007_s10479_025_06575_y crossref_primary_10_1111_jiec_13509 crossref_primary_10_1016_j_tranpol_2025_04_009 crossref_primary_10_3390_app13158684 crossref_primary_10_1109_ACCESS_2024_3392297 crossref_primary_10_3390_s25082398 crossref_primary_10_1016_j_chaos_2021_110814 crossref_primary_10_1016_j_jnca_2024_104091 crossref_primary_10_1016_j_ast_2021_107052 crossref_primary_10_1016_j_inffus_2022_10_022 crossref_primary_10_1016_j_patcog_2023_109666 crossref_primary_10_3389_fonc_2023_1122247 crossref_primary_10_1016_j_technovation_2024_103002 crossref_primary_10_1108_JRIM_07_2021_0192 crossref_primary_10_1111_mice_13322 crossref_primary_10_2196_30704 crossref_primary_10_15187_adr_2022_05_35_2_57 crossref_primary_10_1016_j_infoandorg_2022_100432 crossref_primary_10_1007_s41870_023_01713_w crossref_primary_10_1016_j_ins_2024_121738 crossref_primary_10_1103_PhysRevApplied_20_044002 crossref_primary_10_1042_BCJ20210535 crossref_primary_10_1007_s11255_024_04165_8 crossref_primary_10_1111_1468_5973_70031 crossref_primary_10_1111_mice_13338 crossref_primary_10_1007_s10506_024_09397_8 crossref_primary_10_1016_j_techfore_2023_122343 crossref_primary_10_1109_TIM_2023_3284940 crossref_primary_10_1016_j_csbj_2022_06_018 crossref_primary_10_1186_s12880_024_01394_2 crossref_primary_10_1016_j_saa_2025_125768 crossref_primary_10_1093_bulcsj_uoae121 crossref_primary_10_1109_TFUZZ_2024_3398719 crossref_primary_10_1016_j_compbiomed_2025_109974 crossref_primary_10_1016_j_chemolab_2022_104556 crossref_primary_10_3389_fcomp_2023_1087929 crossref_primary_10_1109_ACCESS_2023_3347796 crossref_primary_10_1007_s43681_023_00331_3 crossref_primary_10_1016_j_rser_2022_112401 crossref_primary_10_1007_s10639_025_13385_z crossref_primary_10_1080_10447318_2023_2262797 crossref_primary_10_1016_j_neucom_2021_07_100 crossref_primary_10_1016_j_patcog_2022_108876 crossref_primary_10_1007_s00170_022_10059_9 crossref_primary_10_1109_ACCESS_2024_3431437 crossref_primary_10_1109_TRO_2023_3240619 crossref_primary_10_1186_s12984_022_01025_3 crossref_primary_10_1016_j_ins_2024_121711 crossref_primary_10_1016_j_smhl_2023_100429 crossref_primary_10_1007_s10462_023_10674_2 crossref_primary_10_1080_13658816_2025_2530060 crossref_primary_10_1016_j_giq_2021_101578 crossref_primary_10_1039_D4NP00003J crossref_primary_10_1080_21642583_2024_2331074 crossref_primary_10_1108_EL_01_2020_0016 crossref_primary_10_1016_j_datak_2022_102088 crossref_primary_10_1162_imag_a_00353 crossref_primary_10_1016_j_csbj_2022_06_045 crossref_primary_10_3390_en15124427 crossref_primary_10_1016_j_csa_2025_100104 crossref_primary_10_1016_S2215_0366_21_00254_6 crossref_primary_10_2478_aei_2025_0005 crossref_primary_10_3390_risks10120230 crossref_primary_10_3389_fninf_2022_871904 crossref_primary_10_52836_sayistay_1554497 crossref_primary_10_1007_s11280_023_01150_6 crossref_primary_10_1016_j_jss_2025_112360 crossref_primary_10_1080_19648189_2025_2544206 crossref_primary_10_1038_s41598_023_41715_z crossref_primary_10_2196_50342 crossref_primary_10_1186_s12885_025_14369_5 crossref_primary_10_1016_j_jallcom_2022_163828 crossref_primary_10_3233_SJI_210875 crossref_primary_10_3390_computers11120182 crossref_primary_10_1016_j_patcog_2023_109610 crossref_primary_10_3389_fninf_2023_1297874 crossref_primary_10_1016_j_hcl_2025_08_007 crossref_primary_10_1038_s42256_022_00466_8 crossref_primary_10_1109_ACCESS_2021_3119573 crossref_primary_10_1109_TITS_2023_3236489 crossref_primary_10_1016_j_ecoinf_2024_102904 crossref_primary_10_1016_j_jvcir_2022_103685 crossref_primary_10_1016_j_media_2022_102684 crossref_primary_10_3389_frai_2023_1093712 crossref_primary_10_1016_j_im_2024_103969 crossref_primary_10_1177_20552076231186520 crossref_primary_10_1016_j_inffus_2021_02_002 crossref_primary_10_1016_j_knosys_2022_109725 crossref_primary_10_3390_app12010136 crossref_primary_10_1080_00140139_2023_2278394 crossref_primary_10_1109_ACCESS_2024_3393558 crossref_primary_10_1016_j_solener_2024_112414 crossref_primary_10_1007_s43681_025_00725_5 crossref_primary_10_1016_j_compbiomed_2025_110922 crossref_primary_10_3390_app132111953 crossref_primary_10_3390_s25134002 crossref_primary_10_1038_s41746_021_00549_7 crossref_primary_10_1109_TGRS_2023_3318980 crossref_primary_10_3390_app14031047 crossref_primary_10_1007_s10462_023_10585_2 crossref_primary_10_1016_j_inffus_2024_102301 crossref_primary_10_1109_TMLCN_2025_3575368 crossref_primary_10_1016_j_cmpb_2022_106620 crossref_primary_10_1007_s00521_024_10437_2 crossref_primary_10_1016_j_atmosres_2024_107500 crossref_primary_10_1007_s00146_020_01020_z crossref_primary_10_1109_ACCESS_2022_3155118 crossref_primary_10_1016_j_cej_2022_136147 crossref_primary_10_3390_ma17143584 crossref_primary_10_1038_s41598_022_06483_2 crossref_primary_10_1080_10447318_2022_2095478 crossref_primary_10_1007_s00180_023_01453_2 crossref_primary_10_1016_j_epsr_2022_108489 crossref_primary_10_1016_j_ecolind_2024_112653 crossref_primary_10_1016_j_foodcont_2023_109660 crossref_primary_10_3390_jimaging9100224 crossref_primary_10_1038_s41598_025_02355_7 crossref_primary_10_1007_s41116_023_00038_x crossref_primary_10_1002_bse_4189 crossref_primary_10_1016_j_eswa_2023_119638 crossref_primary_10_1109_ACCESS_2024_3439096 crossref_primary_10_1007_s00146_021_01263_4 crossref_primary_10_5802_crmath_521 crossref_primary_10_1007_s10115_023_01876_9 crossref_primary_10_1016_j_patrec_2024_04_009 crossref_primary_10_1109_TDSC_2025_3572115 crossref_primary_10_1145_3716394 crossref_primary_10_3390_agriengineering6040277 crossref_primary_10_1108_MEDAR_10_2023_2204 crossref_primary_10_3389_fspor_2024_1440652 crossref_primary_10_1109_THMS_2022_3144956 crossref_primary_10_1007_s10796_022_10352_8 crossref_primary_10_3390_app14020496 crossref_primary_10_1038_s41598_024_79208_2 crossref_primary_10_1111_exsy_13319 crossref_primary_10_1016_j_procs_2024_09_408 crossref_primary_10_12677_acm_2025_152503 crossref_primary_10_1007_s10462_024_10803_5 crossref_primary_10_1007_s10845_023_02266_2 crossref_primary_10_1016_j_techsoc_2025_102847 crossref_primary_10_1109_TCSI_2022_3155443 crossref_primary_10_1016_j_annemergmed_2024_06_004 crossref_primary_10_1016_j_techsoc_2025_102838 crossref_primary_10_1016_j_uncres_2024_100128 crossref_primary_10_1145_3626314 crossref_primary_10_1007_s11263_022_01603_x crossref_primary_10_1016_j_jclepro_2022_131626 crossref_primary_10_3390_diagnostics13223413 crossref_primary_10_1007_s10796_022_10276_3 crossref_primary_10_3390_electronics14153073 crossref_primary_10_1016_j_ecolind_2024_112636 crossref_primary_10_1016_j_watres_2025_123172 crossref_primary_10_1109_TII_2023_3293863 crossref_primary_10_3390_electronics12020256 crossref_primary_10_1145_3583558 crossref_primary_10_1016_j_knosys_2022_108548 crossref_primary_10_3389_frobt_2021_640647 crossref_primary_10_1016_j_rineng_2024_103724 crossref_primary_10_1016_j_rser_2023_114037 crossref_primary_10_1016_j_asr_2021_04_023 crossref_primary_10_1017_dap_2023_29 crossref_primary_10_1016_j_vehcom_2022_100551 crossref_primary_10_1016_j_jii_2025_100905 crossref_primary_10_1109_JIOT_2024_3452717 crossref_primary_10_1365_s40702_021_00707_1 crossref_primary_10_1016_j_scico_2025_103297 crossref_primary_10_1007_s00530_023_01187_7 crossref_primary_10_1016_j_bbe_2025_05_011 crossref_primary_10_3390_math13132122 crossref_primary_10_1136_bmjopen_2022_066322 crossref_primary_10_1007_s00146_021_01383_x crossref_primary_10_1007_s10489_021_02264_y crossref_primary_10_3390_computers14060237 crossref_primary_10_3389_fonc_2025_1578991 crossref_primary_10_1007_s41060_022_00351_y crossref_primary_10_1080_09544828_2025_2518907 crossref_primary_10_1145_3579460 crossref_primary_10_3390_info15110725 crossref_primary_10_1007_s00521_022_07259_5 crossref_primary_10_3390_cancers15041118 crossref_primary_10_1016_j_ijar_2023_109112 crossref_primary_10_3390_en16176360 crossref_primary_10_1557_s43578_025_01548_0 crossref_primary_10_1097_j_pain_0000000000002002 crossref_primary_10_1145_3672276 crossref_primary_10_1016_j_techsoc_2025_102818 crossref_primary_10_22399_ijcesen_3198 crossref_primary_10_1016_j_jbusres_2024_114788 crossref_primary_10_1039_D2MH01279K crossref_primary_10_1002_bit_70036 crossref_primary_10_1016_j_ijnurstu_2024_104753 crossref_primary_10_1016_j_tra_2024_104300 crossref_primary_10_3390_s22145205 crossref_primary_10_1360_TB_2024_1299 crossref_primary_10_3390_a15120455 crossref_primary_10_1016_j_envint_2024_108607 crossref_primary_10_1016_j_jallcom_2025_181155 crossref_primary_10_1016_j_neucom_2025_129701 crossref_primary_10_1016_j_imu_2022_100941 crossref_primary_10_1016_j_asoc_2021_107082 crossref_primary_10_1109_ACCESS_2023_3235735 crossref_primary_10_1088_1361_6501_ad774b crossref_primary_10_1016_j_ajem_2023_11_063 crossref_primary_10_1007_s11042_023_15361_6 crossref_primary_10_1007_s00236_025_00499_7 crossref_primary_10_1109_ACCESS_2025_3583583 crossref_primary_10_1016_j_datak_2021_101909 crossref_primary_10_1016_j_jmsy_2024_02_010 crossref_primary_10_1016_j_iswa_2025_200504 crossref_primary_10_1007_s13347_025_00940_2 crossref_primary_10_1080_10447318_2024_2441015 crossref_primary_10_1177_15353702211052280 crossref_primary_10_1016_j_ipm_2023_103273 crossref_primary_10_3390_computers14060211 crossref_primary_10_1016_j_measurement_2023_112821 crossref_primary_10_1109_TRPMS_2021_3066428 crossref_primary_10_1145_3579485 crossref_primary_10_1016_j_engstruct_2023_116539 crossref_primary_10_3390_app12115637 crossref_primary_10_1080_19475705_2025_2485329 crossref_primary_10_1016_j_knosys_2025_113598 crossref_primary_10_3390_computers11030047 crossref_primary_10_1007_s12028_022_01504_4 crossref_primary_10_3390_s23031065 crossref_primary_10_1007_s10742_025_00351_y crossref_primary_10_1007_s43681_023_00303_7 crossref_primary_10_3390_atmos16050539 crossref_primary_10_3390_computation12110230 crossref_primary_10_3390_s25185634 crossref_primary_10_1016_j_ecoser_2023_101581 crossref_primary_10_3390_philosophies10050103 crossref_primary_10_1109_LSENS_2024_3503752 crossref_primary_10_3389_frai_2022_826499 crossref_primary_10_1016_j_jmsy_2023_09_007 crossref_primary_10_1103_PhysRevD_110_123038 crossref_primary_10_1016_j_asoc_2021_108391 crossref_primary_10_1016_j_eswa_2023_120655 crossref_primary_10_1109_ACCESS_2024_3365135 crossref_primary_10_1016_j_pediatrneurol_2023_01_004 crossref_primary_10_3390_rs12244073 crossref_primary_10_12991_jrespharm_1644357 crossref_primary_10_3390_machines11070704 crossref_primary_10_3389_fmed_2023_1086097 crossref_primary_10_1016_j_eswa_2021_115546 crossref_primary_10_1002_cpe_8034 crossref_primary_10_1109_JIOT_2023_3287678 crossref_primary_10_3390_s21206910 crossref_primary_10_1002_smll_202305918 crossref_primary_10_1007_s11299_025_00322_3 crossref_primary_10_1145_3567430 crossref_primary_10_3390_make7010006 crossref_primary_10_1016_j_sca_2024_100078 crossref_primary_10_1016_j_chb_2024_108221 crossref_primary_10_1109_ACCESS_2023_3264270 crossref_primary_10_1016_j_asoc_2020_106727 crossref_primary_10_1016_j_energy_2024_132625 crossref_primary_10_1111_tops_12573 crossref_primary_10_1111_exsy_13387 crossref_primary_10_1007_s40766_025_00073_4 crossref_primary_10_1016_j_jobe_2022_105740 crossref_primary_10_1007_s00146_025_02352_4 crossref_primary_10_1007_s12559_024_10311_2 crossref_primary_10_1016_j_apenergy_2021_118300 crossref_primary_10_1016_j_neunet_2022_08_002 crossref_primary_10_1016_j_bspc_2024_106034 crossref_primary_10_1007_s10489_024_05953_6 crossref_primary_10_1016_j_tele_2023_101954 crossref_primary_10_1080_2573234X_2021_1952913 crossref_primary_10_1007_s43681_022_00167_3 crossref_primary_10_1016_j_tre_2024_103881 crossref_primary_10_1177_30494826251336314 crossref_primary_10_1002_ejsc_12162 crossref_primary_10_1007_s12525_021_00496_x crossref_primary_10_1038_s41569_021_00527_2 crossref_primary_10_3390_life12111894 crossref_primary_10_1016_j_jag_2024_104192 crossref_primary_10_1057_s41599_024_02786_z crossref_primary_10_1016_j_compbiomed_2021_104393 crossref_primary_10_1109_ACCESS_2024_3488081 crossref_primary_10_1016_j_gpb_2022_11_003 crossref_primary_10_1109_ACCESS_2025_3587114 crossref_primary_10_1109_LRA_2021_3137520 crossref_primary_10_1177_14413582251350407 crossref_primary_10_1002_qj_4167 crossref_primary_10_1016_j_cose_2024_103813 crossref_primary_10_1016_j_asr_2024_06_082 crossref_primary_10_3390_app14135779 crossref_primary_10_1016_j_spasta_2025_100920 crossref_primary_10_3390_electronics11244086 crossref_primary_10_3390_rs13132477 crossref_primary_10_1016_j_chb_2021_106878 crossref_primary_10_1007_s42979_023_01747_8 crossref_primary_10_1109_ACCESS_2025_3555543 crossref_primary_10_1109_TFUZZ_2021_3089284 crossref_primary_10_1109_TSG_2023_3324992 crossref_primary_10_1177_20552076221074488 crossref_primary_10_2174_0115748928361472250123105507 crossref_primary_10_1371_journal_pone_0292960 crossref_primary_10_3389_fmed_2023_1116354 crossref_primary_10_3390_electronics14163265 crossref_primary_10_1162_dint_a_00243 crossref_primary_10_1016_j_inffus_2023_01_021 crossref_primary_10_1007_s44163_024_00123_6 crossref_primary_10_1145_3522579 crossref_primary_10_1016_j_agrformet_2023_109458 crossref_primary_10_1145_3698826 crossref_primary_10_1109_ACCESS_2022_3232561 crossref_primary_10_1007_s00477_025_03007_y crossref_primary_10_1016_j_compbiomed_2022_105587 crossref_primary_10_1002_widm_70031 crossref_primary_10_1007_s13369_021_06153_x crossref_primary_10_1515_zwf_2022_1015 crossref_primary_10_3390_smartcities4020029 crossref_primary_10_1016_j_websem_2024_100858 crossref_primary_10_3390_healthcare13151829 crossref_primary_10_1016_j_hlpt_2022_100663 crossref_primary_10_1007_s12652_023_04594_w crossref_primary_10_1016_j_knosys_2021_106916 crossref_primary_10_1038_s41568_020_00327_9 crossref_primary_10_3390_risks11050080 crossref_primary_10_1016_j_ejmp_2023_102671 crossref_primary_10_1111_bjop_12740 crossref_primary_10_1145_3665926 crossref_primary_10_1007_s12247_025_09940_3 crossref_primary_10_1007_s43681_021_00122_8 crossref_primary_10_1080_23311916_2023_2300557 crossref_primary_10_1016_j_iot_2024_101320 crossref_primary_10_1002_widm_70015 crossref_primary_10_3390_s22249875 crossref_primary_10_1007_s41060_024_00514_z crossref_primary_10_2478_ebce_2024_0004 crossref_primary_10_3390_s23249722 crossref_primary_10_1029_2024JH000489 crossref_primary_10_1007_s00521_024_09587_0 crossref_primary_10_3390_app112411854 crossref_primary_10_1177_14738716231168671 crossref_primary_10_1007_s13347_024_00743_x crossref_primary_10_1016_j_future_2023_01_011 crossref_primary_10_23104_ME_e7 crossref_primary_10_1016_j_inffus_2021_07_016 crossref_primary_10_1016_j_procs_2023_03_057 crossref_primary_10_1109_MGRS_2023_3343623 crossref_primary_10_1007_s00521_022_07019_5 crossref_primary_10_3389_fmicb_2022_925454 crossref_primary_10_3390_electronics14153024 crossref_primary_10_1016_j_jengtecman_2022_101716 crossref_primary_10_1109_TFUZZ_2021_3094661 crossref_primary_10_1016_j_ijhcs_2025_103629 crossref_primary_10_1002_asmb_2803 crossref_primary_10_1007_s10796_025_10583_5 crossref_primary_10_1016_j_ijhcs_2025_103625 crossref_primary_10_3390_math10121994 crossref_primary_10_1016_j_inffus_2024_102472 crossref_primary_10_1007_s10489_021_02281_x crossref_primary_10_1007_s13218_022_00780_8 crossref_primary_10_1002_cpe_70057 crossref_primary_10_1007_s11571_023_09947_x crossref_primary_10_3390_biology12060795 crossref_primary_10_1016_j_buildenv_2025_113504 crossref_primary_10_1016_j_cosrev_2025_100764 crossref_primary_10_1002_smtd_202401757 crossref_primary_10_1177_26349795211007094 crossref_primary_10_1007_s10729_024_09673_8 crossref_primary_10_1088_2632_2153_add3bd crossref_primary_10_1007_s10845_021_01817_9 crossref_primary_10_1016_j_ress_2024_110368 crossref_primary_10_1038_s41746_021_00496_3 crossref_primary_10_1016_j_compchemeng_2021_107529 crossref_primary_10_3390_jne3040014 crossref_primary_10_1007_s11571_023_10028_2 crossref_primary_10_1108_QRAM_01_2022_0005 crossref_primary_10_1007_s10796_021_10154_4 crossref_primary_10_3390_w16223328 crossref_primary_10_1016_j_asoc_2025_113288 crossref_primary_10_1007_s40751_024_00161_w crossref_primary_10_1108_JICES_06_2021_0059 crossref_primary_10_1177_02663821241264705 crossref_primary_10_3390_su14127375 crossref_primary_10_1038_s41598_023_49831_6 crossref_primary_10_1109_MC_2021_3076131 crossref_primary_10_38124_ijsrmt_v4i8_716 crossref_primary_10_1109_JSEN_2025_3568392 crossref_primary_10_1145_3665138 crossref_primary_10_1080_10286608_2022_2049257 crossref_primary_10_1016_j_engappai_2022_105534 crossref_primary_10_1016_j_jbi_2023_104414 crossref_primary_10_1007_s43681_023_00396_0 crossref_primary_10_3390_app13148329 crossref_primary_10_1093_toxsci_kfac046 crossref_primary_10_26599_FIE_2023_9270001 crossref_primary_10_1089_thy_2023_0384 crossref_primary_10_1007_s43762_023_00100_2 crossref_primary_10_7717_peerj_cs_1253 crossref_primary_10_1016_j_eswa_2023_121011 crossref_primary_10_1016_j_neunet_2025_107920 crossref_primary_10_1016_j_jfranklin_2025_108038 crossref_primary_10_1109_ACCESS_2024_3349957 crossref_primary_10_1016_j_bushor_2024_04_008 crossref_primary_10_1016_j_crmeth_2023_100557 crossref_primary_10_1016_j_asoc_2025_113265 crossref_primary_10_33847_2712_8148_4_1_4 crossref_primary_10_1016_j_engappai_2025_111860 crossref_primary_10_1016_j_inffus_2022_08_021 crossref_primary_10_1016_j_jes_2025_06_009 crossref_primary_10_1007_s41649_024_00292_7 crossref_primary_10_1016_j_eswa_2022_117946 crossref_primary_10_1038_s41598_021_83182_4 crossref_primary_10_3390_info14070397 crossref_primary_10_1007_s00371_023_03112_5 crossref_primary_10_1016_j_imavis_2024_105164 crossref_primary_10_1177_1748006X221118448 crossref_primary_10_1016_j_giq_2024_101965 crossref_primary_10_1109_ACCESS_2024_3510526 crossref_primary_10_1016_j_imu_2023_101349 crossref_primary_10_2139_ssrn_5020690 crossref_primary_10_3390_a14110318 crossref_primary_10_3390_smartcities8010025 crossref_primary_10_1016_j_ijar_2022_08_015 crossref_primary_10_3390_cryst11070723 crossref_primary_10_1177_27539687251357020 crossref_primary_10_3390_diagnostics12061482 crossref_primary_10_1016_S0140_6736_24_00302_7 crossref_primary_10_1016_j_cosrev_2021_100452 crossref_primary_10_1007_s10479_024_06348_z crossref_primary_10_1109_ACCESS_2024_3425226 crossref_primary_10_3389_fonc_2021_704039 crossref_primary_10_1016_j_neunet_2021_04_036 crossref_primary_10_1007_s11390_025_4239_0 crossref_primary_10_1016_j_rse_2024_114484 crossref_primary_10_1134_S1064229324603524 crossref_primary_10_2196_40031 crossref_primary_10_1016_j_ins_2022_12_012 crossref_primary_10_1002_adma_202101474 crossref_primary_10_1007_s00347_025_02189_8 crossref_primary_10_3390_rs14236096 crossref_primary_10_1016_j_apgeog_2024_103486 crossref_primary_10_1016_j_asoc_2021_107849 crossref_primary_10_3390_aerospace10070644 crossref_primary_10_1007_s12559_024_10373_2 crossref_primary_10_1016_j_eswa_2024_123557 crossref_primary_10_1038_s41598_022_13275_1 crossref_primary_10_1109_ACCESS_2024_3484409 crossref_primary_10_1016_j_heliyon_2025_e41871 crossref_primary_10_1007_s40558_024_00301_3 crossref_primary_10_1016_j_cmpb_2025_109036 crossref_primary_10_1109_TMLCN_2025_3576727 crossref_primary_10_1016_j_neucom_2024_127317 crossref_primary_10_1109_ACCESS_2022_3173734 crossref_primary_10_1007_s00521_023_09124_5 crossref_primary_10_1007_s10207_025_01036_w crossref_primary_10_1017_epi_2022_39 crossref_primary_10_1007_s00146_025_02538_w crossref_primary_10_3390_make3020020 crossref_primary_10_1016_j_ijrefrig_2025_03_001 crossref_primary_10_1016_j_comcom_2023_07_039 crossref_primary_10_1109_TCDS_2024_3376433 crossref_primary_10_1007_s00477_025_02975_5 crossref_primary_10_1016_j_eswa_2024_124879 crossref_primary_10_3390_s23239536 crossref_primary_10_1007_s11749_022_00826_x crossref_primary_10_1016_j_socscimed_2022_114782 crossref_primary_10_1109_OJCOMS_2025_3534626 crossref_primary_10_1109_LWC_2025_3557843 crossref_primary_10_1016_j_asoc_2025_113222 crossref_primary_10_1007_s12283_023_00402_y crossref_primary_10_1007_s00500_023_09530_w crossref_primary_10_3390_electronics11172634 crossref_primary_10_2196_50295 crossref_primary_10_1016_j_compbiomed_2022_106043 crossref_primary_10_1038_s43588_022_00314_0 crossref_primary_10_1371_journal_pcbi_1010988 crossref_primary_10_1080_08874417_2025_2508860 crossref_primary_10_1002_pra2_663 crossref_primary_10_3389_fdgth_2025_1583490 crossref_primary_10_3390_ani14162295 crossref_primary_10_1109_LGRS_2020_3020098 crossref_primary_10_3390_app11115088 crossref_primary_10_3390_heritage8030102 crossref_primary_10_3390_ijerph19063641 crossref_primary_10_1016_j_fluid_2024_114283 crossref_primary_10_1016_j_jenvman_2025_126398 crossref_primary_10_1016_j_rineng_2025_104137 crossref_primary_10_1109_ACCESS_2024_3450299 crossref_primary_10_3390_rs14184486 crossref_primary_10_1016_j_fuel_2024_133183 crossref_primary_10_3390_fi14050134 crossref_primary_10_1016_j_artint_2022_103823 crossref_primary_10_56398_ajacieda_00405 crossref_primary_10_3390_w16070923 crossref_primary_10_1007_s10462_022_10354_7 crossref_primary_10_1016_j_ejor_2023_08_040 crossref_primary_10_1002_widm_1512 crossref_primary_10_1007_s10462_025_11215_9 crossref_primary_10_1002_widm_1510 crossref_primary_10_1109_TSM_2023_3314431 crossref_primary_10_1016_j_engappai_2024_109628 crossref_primary_10_3389_fphy_2020_00200 crossref_primary_10_1016_j_scs_2025_106492 crossref_primary_10_1038_s44221_023_00069_6 crossref_primary_10_3389_fpsyg_2022_941640 crossref_primary_10_1016_j_ejor_2023_08_039 crossref_primary_10_1109_ACCESS_2024_3420415 crossref_primary_10_2196_22183 crossref_primary_10_3390_atmos16091073 crossref_primary_10_1007_s10479_023_05624_8 crossref_primary_10_1007_s12599_022_00754_y crossref_primary_10_1016_j_knosys_2023_111188 crossref_primary_10_1186_s13244_025_01950_6 crossref_primary_10_1080_10447318_2023_2215098 crossref_primary_10_1097_j_pain_0000000000002108 crossref_primary_10_1016_j_asoc_2024_112043 crossref_primary_10_1016_j_rineng_2025_104155 crossref_primary_10_1007_s11023_024_09701_0 crossref_primary_10_1016_j_apenergy_2023_121753 crossref_primary_10_1007_s11096_025_02004_z crossref_primary_10_1016_j_buildenv_2023_110771 crossref_primary_10_1109_ACCESS_2025_3559105 crossref_primary_10_1016_j_knosys_2024_112305 crossref_primary_10_1109_TKDE_2025_3528023 crossref_primary_10_1016_j_isci_2025_112980 crossref_primary_10_1016_j_eml_2024_102269 crossref_primary_10_3390_app15169061 crossref_primary_10_1007_s12559_024_10297_x crossref_primary_10_1016_j_aei_2025_103726 crossref_primary_10_3389_fpsyg_2021_796371 crossref_primary_10_32604_cmes_2023_023897 crossref_primary_10_1080_17460441_2022_2019704 crossref_primary_10_1016_j_ins_2024_121844 crossref_primary_10_1007_s42979_024_03584_9 crossref_primary_10_1016_j_ssci_2024_106590 crossref_primary_10_1038_s41598_024_60916_8 crossref_primary_10_3390_su16125182 crossref_primary_10_3389_fpsyt_2020_551299 crossref_primary_10_1088_2632_2153_ade6c4 crossref_primary_10_1002_widm_1565 crossref_primary_10_1016_j_solener_2022_11_018 crossref_primary_10_1016_j_compbiomed_2021_104410 crossref_primary_10_1007_s42044_024_00190_z crossref_primary_10_1016_j_chbah_2024_100062 crossref_primary_10_32604_cmc_2025_057359 crossref_primary_10_1007_s40815_022_01324_w crossref_primary_10_3390_app12168192 crossref_primary_10_5209_infe_98150 crossref_primary_10_1109_ACCESS_2023_3315605 crossref_primary_10_1016_j_cose_2022_102746 crossref_primary_10_1109_MGRS_2022_3171836 crossref_primary_10_1016_j_knosys_2021_107332 crossref_primary_10_1016_j_chbah_2024_100054 crossref_primary_10_1108_IJLSS_07_2024_0159 crossref_primary_10_1016_j_scitotenv_2022_160240 crossref_primary_10_1088_3049_4761_adce0d crossref_primary_10_3390_en13102559 crossref_primary_10_1109_ACCESS_2024_3521242 crossref_primary_10_1080_21622965_2024_2336019 crossref_primary_10_1371_journal_pone_0292063 crossref_primary_10_3390_fi13050132 crossref_primary_10_1145_3734191 crossref_primary_10_1145_3725234 crossref_primary_10_1016_j_patcog_2022_108554 crossref_primary_10_3390_machines9120361 crossref_primary_10_3345_cep_2021_00766 crossref_primary_10_1016_j_entcom_2023_100608 crossref_primary_10_1016_j_eswa_2022_117116 crossref_primary_10_1016_j_fss_2023_03_014 crossref_primary_10_1109_TAES_2024_3403078 crossref_primary_10_1007_s10489_025_06262_2 crossref_primary_10_1016_j_jag_2024_103739 crossref_primary_10_3390_forecast4010015 crossref_primary_10_1016_j_inffus_2024_102407 crossref_primary_10_1080_09669582_2020_1778011 crossref_primary_10_1109_ACCESS_2022_3168302 crossref_primary_10_1109_TVCG_2021_3114794 crossref_primary_10_1016_j_gsf_2024_101815 crossref_primary_10_1007_s11192_020_03811_z crossref_primary_10_3390_asi7060121 crossref_primary_10_3233_IA_190036 crossref_primary_10_7717_peerj_cs_3063 crossref_primary_10_1002_int_23088 crossref_primary_10_1007_s00287_021_01393_5 crossref_primary_10_1007_s10618_022_00831_6 crossref_primary_10_1109_TVCG_2023_3327153 crossref_primary_10_1007_s11431_020_1647_3 crossref_primary_10_1515_cclm_2023_1037 crossref_primary_10_1007_s11948_021_00334_5 crossref_primary_10_1145_3641859 crossref_primary_10_1016_j_ecoinf_2025_103104 crossref_primary_10_3390_electronics10172129 crossref_primary_10_3389_fcvm_2023_1219586 crossref_primary_10_1016_j_jhydrol_2025_134004 crossref_primary_10_1016_j_ergon_2025_103755 crossref_primary_10_1039_D4TB02876G crossref_primary_10_1002_spy2_70094 crossref_primary_10_1007_s11750_024_00670_2 crossref_primary_10_1016_j_ejor_2025_09_005 crossref_primary_10_1109_TFUZZ_2022_3222033 crossref_primary_10_1109_THMS_2022_3155714 crossref_primary_10_1109_LRA_2021_3111055 crossref_primary_10_1007_s42452_025_06879_5 crossref_primary_10_1016_j_atmosenv_2024_120797 crossref_primary_10_1002_cssc_202500809 crossref_primary_10_1007_s11023_025_09733_0 crossref_primary_10_1016_j_buildenv_2023_110589 crossref_primary_10_1080_09537287_2023_2234882 crossref_primary_10_1007_s10462_024_11036_2 crossref_primary_10_1145_3536428 crossref_primary_10_3390_ai3020015 crossref_primary_10_1109_JIOT_2024_3461775 crossref_primary_10_1007_s10703_024_00468_9 crossref_primary_10_1145_3444693 crossref_primary_10_1007_s00521_022_07981_0 crossref_primary_10_1016_j_comnet_2022_109467 crossref_primary_10_1007_s13347_024_00713_3 crossref_primary_10_1038_s42004_024_01155_w crossref_primary_10_1109_TITS_2023_3333749 crossref_primary_10_1016_j_ins_2022_07_160 crossref_primary_10_1155_2021_6634811 crossref_primary_10_1016_j_commtr_2025_100178 crossref_primary_10_1016_j_ins_2021_06_076 crossref_primary_10_1080_15583058_2024_2437618 crossref_primary_10_3390_s25134166 crossref_primary_10_1007_s10489_024_05671_z crossref_primary_10_1109_LRA_2025_3568617 crossref_primary_10_1109_TCSS_2025_3531718 crossref_primary_10_1109_TFUZZ_2024_3349637 crossref_primary_10_32604_cmc_2023_035246 crossref_primary_10_3390_atmos14030542 crossref_primary_10_1109_ACCESS_2023_3347028 crossref_primary_10_1038_s41598_023_35963_2 crossref_primary_10_1115_1_4068821 crossref_primary_10_1145_3645057_3645062 crossref_primary_10_1016_j_scs_2025_106422 crossref_primary_10_48175_IJARSCT_28536 crossref_primary_10_1007_s13755_025_00351_9 crossref_primary_10_1016_j_mex_2025_103408 crossref_primary_10_3390_cancers15102704 crossref_primary_10_1016_j_patcog_2024_111175 crossref_primary_10_1016_j_future_2020_06_011 crossref_primary_10_1007_s12559_023_10189_6 crossref_primary_10_1016_j_geoderma_2024_117006 crossref_primary_10_1038_s41598_024_61257_2 crossref_primary_10_1109_TCE_2023_3318754 crossref_primary_10_1109_MCI_2021_3129959 crossref_primary_10_1145_3729531 crossref_primary_10_1016_j_cose_2024_104191 crossref_primary_10_1016_j_neucom_2025_129830 crossref_primary_10_3390_jimaging6060052 crossref_primary_10_1109_TAI_2023_3266418 crossref_primary_10_1016_j_ymeth_2020_10_004 crossref_primary_10_1109_TPAMI_2023_3330944 crossref_primary_10_1109_TNSM_2024_3376631 crossref_primary_10_1038_s41598_021_03100_6 crossref_primary_10_1111_1540_6229_12397 crossref_primary_10_1109_TITS_2023_3273547 crossref_primary_10_1002_iis2_12871 crossref_primary_10_1007_s10114_025_3329_9 crossref_primary_10_1007_s10489_022_04276_8 crossref_primary_10_1055_a_2542_5742 crossref_primary_10_1002_ldr_5666 crossref_primary_10_1016_j_engappai_2025_110394 crossref_primary_10_1016_j_engappai_2025_110396 crossref_primary_10_1145_3664522 crossref_primary_10_1016_j_compag_2022_106962 crossref_primary_10_3390_bioengineering11040369 crossref_primary_10_3390_ai3020030 crossref_primary_10_3390_app12041834 crossref_primary_10_1016_j_knosys_2023_110832 crossref_primary_10_1038_s41598_024_81151_1 crossref_primary_10_32604_cmes_2023_030391 crossref_primary_10_1016_j_fsidi_2024_301806 crossref_primary_10_1287_isre_2021_0391 crossref_primary_10_1007_s12559_024_10325_w crossref_primary_10_1080_08839514_2023_2282834 crossref_primary_10_1155_2023_6629507 crossref_primary_10_1016_j_eswa_2024_125290 crossref_primary_10_1145_3568024 crossref_primary_10_1007_s00481_023_00761_x crossref_primary_10_3389_frai_2023_1272159 crossref_primary_10_1016_j_cor_2025_107163 crossref_primary_10_1145_3507901 crossref_primary_10_1109_TEVC_2024_3382145 crossref_primary_10_1016_j_ijhcs_2025_103591 crossref_primary_10_1016_j_ijhcs_2025_103592 crossref_primary_10_1007_s10462_024_11005_9 crossref_primary_10_1007_s10639_022_11471_0 crossref_primary_10_1007_s12525_024_00707_1 crossref_primary_10_1016_j_ijmedinf_2025_105886 crossref_primary_10_1080_09638180_2025_2463961 crossref_primary_10_3390_ijerph20054261 crossref_primary_10_3390_bdcc9050138 crossref_primary_10_1007_s43681_025_00710_y crossref_primary_10_1080_10447318_2022_2140385 crossref_primary_10_3390_cells12141847 crossref_primary_10_3390_e23010018 crossref_primary_10_1016_j_jmapro_2023_06_003 crossref_primary_10_5753_jbcs_2025_5324 crossref_primary_10_1007_s00521_024_09435_1 crossref_primary_10_3390_biomedinformatics2010001 crossref_primary_10_1016_j_bspc_2024_106179 crossref_primary_10_1111_exsy_13494 crossref_primary_10_1109_TAFFC_2023_3333200 crossref_primary_10_1016_j_neucom_2023_126884 crossref_primary_10_1109_MGRS_2023_3237465 crossref_primary_10_3390_app15147724 crossref_primary_10_3390_app12020925 crossref_primary_10_3390_asi8020035 crossref_primary_10_3390_systems10050160 crossref_primary_10_1016_j_clinimag_2025_110492 crossref_primary_10_1016_j_ijhcs_2025_103573 crossref_primary_10_1016_j_jbi_2020_103655 crossref_primary_10_1117_1_JRS_18_042604 crossref_primary_10_1109_TITS_2024_3385754 crossref_primary_10_1186_s41239_021_00279_6 crossref_primary_10_1007_s10479_024_05943_4 crossref_primary_10_1016_j_compstruct_2023_117601 crossref_primary_10_1016_j_compchemeng_2023_108442 crossref_primary_10_3389_frai_2023_1203546 crossref_primary_10_1080_00207543_2022_2122620 crossref_primary_10_1007_s13132_024_02096_4 crossref_primary_10_1109_TASE_2023_3242198 crossref_primary_10_1080_09544828_2024_2362587 crossref_primary_10_1038_s41598_025_06998_4 crossref_primary_10_1038_s41746_024_01123_7 crossref_primary_10_1016_j_ecoenv_2023_115250 crossref_primary_10_1007_s12065_023_00833_3 crossref_primary_10_3389_frai_2021_693022 crossref_primary_10_1111_cbdd_14262 crossref_primary_10_1016_j_cmpb_2023_107527 crossref_primary_10_3390_technologies10030074 crossref_primary_10_3390_electronics12030567 crossref_primary_10_1016_j_jsis_2024_101864 crossref_primary_10_1016_j_scitotenv_2023_163004 crossref_primary_10_1109_TFUZZ_2022_3229525 crossref_primary_10_1186_s40337_025_01303_0 crossref_primary_10_1016_j_actpsy_2025_105097 crossref_primary_10_1016_j_engappai_2025_110363 crossref_primary_10_1007_s10676_023_09692_z crossref_primary_10_1007_s00521_021_06332_9 crossref_primary_10_1016_j_jwpe_2024_104781 crossref_primary_10_1016_j_knosys_2023_110866 crossref_primary_10_3390_electronics13132438 crossref_primary_10_1111_exsy_70021 crossref_primary_10_3390_pr13030912 crossref_primary_10_1016_j_engstruct_2022_114768 crossref_primary_10_1109_TUFFC_2022_3195477 crossref_primary_10_1088_1402_4896_addef5 crossref_primary_10_1162_dint_a_00119 crossref_primary_10_1145_3758967 crossref_primary_10_1145_3644073 crossref_primary_10_3390_sym13122439 crossref_primary_10_1109_ACCESS_2020_3031477 crossref_primary_10_3389_fpubh_2024_1344865 crossref_primary_10_1016_j_jece_2024_114481 crossref_primary_10_1109_MITP_2025_3543555 crossref_primary_10_1016_j_ifacol_2024_11_023 crossref_primary_10_1142_S2811032325400028 crossref_primary_10_1016_j_ijinfomgt_2025_102976 crossref_primary_10_1007_s43681_022_00142_y crossref_primary_10_3390_systems13040264 crossref_primary_10_1007_s40430_024_05222_0 crossref_primary_10_1016_j_asoc_2020_106658 crossref_primary_10_1016_j_eswa_2025_129514 crossref_primary_10_3390_s23249871 crossref_primary_10_1080_1369118X_2024_2400130 crossref_primary_10_1016_j_enbuild_2022_112629 crossref_primary_10_1111_exsy_70017 crossref_primary_10_1111_exsy_70008 crossref_primary_10_1016_j_ins_2024_121097 crossref_primary_10_3390_info14100541 crossref_primary_10_3390_ai5040130 crossref_primary_10_1007_s00170_021_08320_8 crossref_primary_10_1038_s41598_023_36249_3 crossref_primary_10_1109_TIP_2023_3246793 crossref_primary_10_3390_app12041885 crossref_primary_10_3390_jcm14176201 crossref_primary_10_1002_hyp_70163 crossref_primary_10_1016_j_engappai_2023_107829 crossref_primary_10_3390_math13183001 crossref_primary_10_1016_j_saa_2025_126068 crossref_primary_10_1016_j_future_2020_06_036 crossref_primary_10_3390_w14091384 crossref_primary_10_1016_j_buildenv_2021_108502 crossref_primary_10_1007_s10462_024_10996_9 crossref_primary_10_1016_j_future_2021_12_007 crossref_primary_10_1145_3579522 crossref_primary_10_3390_ai5040101 crossref_primary_10_3390_ai5040100 crossref_primary_10_1002_aaai_12056 crossref_primary_10_3390_app13063671 crossref_primary_10_1007_s40815_020_00998_4 crossref_primary_10_1177_0021955X241255102 crossref_primary_10_1016_j_future_2020_06_048 crossref_primary_10_1186_s40561_024_00343_4 crossref_primary_10_1016_j_engappai_2025_110324 crossref_primary_10_1016_j_cscm_2025_e04568 crossref_primary_10_1109_ACCESS_2024_3521945 crossref_primary_10_3390_jmse11112165 crossref_primary_10_1145_3555580 crossref_primary_10_1016_j_eswa_2020_114287 crossref_primary_10_3390_aerospace8080224 crossref_primary_10_1007_s10462_023_10415_5 crossref_primary_10_1109_ACCESS_2025_3555626 crossref_primary_10_1109_TVCG_2025_3562929 crossref_primary_10_3390_su16229963 crossref_primary_10_1109_ACCESS_2025_3609188 crossref_primary_10_3390_s25154647 crossref_primary_10_1051_shsconf_202521401001 crossref_primary_10_1631_FITEE_2100463 crossref_primary_10_1016_j_eswa_2022_117904 crossref_primary_10_3390_math13152436 crossref_primary_10_3390_a18090586 crossref_primary_10_3390_en16247988 crossref_primary_10_1016_j_ijhcs_2025_103505 crossref_primary_10_1145_3700749 crossref_primary_10_3390_s24010164 crossref_primary_10_3390_app131910778 crossref_primary_10_4102_sajems_v27i1_5786 crossref_primary_10_1016_j_inffus_2024_102598 crossref_primary_10_1016_j_ijinfomgt_2025_102939 crossref_primary_10_1016_j_esmorw_2025_100182 crossref_primary_10_1002_widm_1493 crossref_primary_10_1016_j_talanta_2025_128652 crossref_primary_10_1142_S0218202525500125 crossref_primary_10_1002_widm_1495 crossref_primary_10_1007_s41060_024_00636_4 crossref_primary_10_1145_3457188 crossref_primary_10_2196_71080 crossref_primary_10_1016_j_cie_2025_111407 crossref_primary_10_1016_j_inffus_2025_103718 crossref_primary_10_1145_3457187 crossref_primary_10_17803_1729_5920_2025_222_5_130_138 crossref_primary_10_1016_j_hrmr_2021_100876 crossref_primary_10_3390_rs14215331 crossref_primary_10_1002_widm_1479 crossref_primary_10_3390_en18051282 crossref_primary_10_3390_info16060435 crossref_primary_10_3390_app15158449 crossref_primary_10_1371_journal_pone_0321342 crossref_primary_10_1029_2023MS003715 crossref_primary_10_1038_s41524_021_00571_z crossref_primary_10_1190_geo2023_0657_1 crossref_primary_10_1177_00220345221089251 crossref_primary_10_1016_j_ultrasmedbio_2025_04_009 crossref_primary_10_3390_geomatics5030033 crossref_primary_10_3389_fevo_2023_1189184 crossref_primary_10_1109_TFUZZ_2021_3112222 crossref_primary_10_1145_3632121 crossref_primary_10_1016_j_tins_2024_12_007 crossref_primary_10_1016_j_engappai_2025_110409 crossref_primary_10_1080_17480272_2023_2265349 crossref_primary_10_1038_s41598_022_20347_9 crossref_primary_10_1386_drtp_00119_7 crossref_primary_10_1109_MC_2022_3233806 crossref_primary_10_1186_s12911_021_01518_6 crossref_primary_10_1016_j_pcad_2023_09_001 crossref_primary_10_1007_s11042_024_20090_5 crossref_primary_10_1007_s10994_024_06538_7 crossref_primary_10_3390_philosophies7020035 crossref_primary_10_1016_j_eswa_2024_124710 crossref_primary_10_1109_ACCESS_2025_3599281 crossref_primary_10_3390_app132212374 crossref_primary_10_1007_s13347_024_00787_z crossref_primary_10_1016_j_iintel_2023_100028 crossref_primary_10_1080_10494820_2023_2277761 crossref_primary_10_1007_s10606_022_09450_7 crossref_primary_10_1145_3517224 crossref_primary_10_1016_j_inoche_2024_113577 crossref_primary_10_3390_app15126893 crossref_primary_10_1016_j_watres_2024_122110 crossref_primary_10_1007_s10664_024_10594_x crossref_primary_10_1007_s12599_025_00940_8 crossref_primary_10_1016_j_ress_2024_110285 crossref_primary_10_1016_j_jclepro_2024_142824 crossref_primary_10_1016_j_knosys_2022_109901 crossref_primary_10_1145_3689037 crossref_primary_10_1109_ACCESS_2025_3553032 crossref_primary_10_3847_1538_3881_add2f1 crossref_primary_10_3390_bioengineering12040356 crossref_primary_10_1007_s10115_023_01903_9 crossref_primary_10_1007_s44206_025_00212_8 crossref_primary_10_1080_02642069_2024_2361291 crossref_primary_10_1007_s11098_025_02299_8 crossref_primary_10_26668_IndexLawJournals_2358_1352_2022_v32i12_7547 crossref_primary_10_1093_jge_gxad058 crossref_primary_10_11616_asbi_1658320 crossref_primary_10_1016_j_enbuild_2022_112583 crossref_primary_10_1016_j_specom_2022_11_005 crossref_primary_10_1007_s10462_024_10712_7 crossref_primary_10_1080_1461670X_2025_2505001 crossref_primary_10_1017_aog_2024_33 crossref_primary_10_1016_j_eswa_2024_124733 crossref_primary_10_1109_ACCESS_2023_3236260 crossref_primary_10_1016_j_eswa_2024_124736 crossref_primary_10_1016_j_jisa_2024_103716 crossref_primary_10_3389_fpsyg_2021_713074 crossref_primary_10_1109_RBME_2023_3296938 crossref_primary_10_3233_ICA_230719 crossref_primary_10_1002_qute_202400173 crossref_primary_10_1109_ACCESS_2023_3251892 crossref_primary_10_2147_JMDH_S485724 crossref_primary_10_1145_3617380 crossref_primary_10_1016_j_compstruc_2023_107155 crossref_primary_10_3390_educsci14020172 crossref_primary_10_3390_electronics10121406 crossref_primary_10_1007_s10726_024_09912_x crossref_primary_10_3390_s22249927 crossref_primary_10_1007_s12083_023_01507_8 crossref_primary_10_1016_j_ipm_2024_103900 crossref_primary_10_1109_ACCESS_2025_3558716 crossref_primary_10_1111_nph_70552 crossref_primary_10_1016_j_ast_2022_107993 crossref_primary_10_1109_TIM_2024_3350131 crossref_primary_10_3390_app12189181 crossref_primary_10_1007_s10462_022_10304_3 crossref_primary_10_1109_ACCESS_2024_3405788 crossref_primary_10_1038_s41467_023_43095_4 crossref_primary_10_1109_MS_2023_3321282 crossref_primary_10_2196_53207 crossref_primary_10_3389_fgene_2022_902960 crossref_primary_10_1016_j_hrmr_2021_100881 crossref_primary_10_3390_children10101655 crossref_primary_10_1109_TNNLS_2022_3160699 crossref_primary_10_1017_dap_2021_3 crossref_primary_10_1007_s10479_025_06684_8 crossref_primary_10_1109_ACCESS_2023_3329257 crossref_primary_10_22201_ceiich_24485691e_2023_31_69775 crossref_primary_10_1371_journal_pone_0305258 crossref_primary_10_1108_INTR_05_2020_0300 crossref_primary_10_1016_j_enbuild_2024_114912 crossref_primary_10_2478_jaiscr_2025_0013 crossref_primary_10_1016_j_engappai_2024_109571 crossref_primary_10_1016_j_procs_2025_08_143 crossref_primary_10_33333_rp_vol54n1_04 crossref_primary_10_1108_ITP_06_2024_0808 crossref_primary_10_1002_wene_532 crossref_primary_10_1016_j_knosys_2022_109947 crossref_primary_10_1016_j_asoc_2022_108912 crossref_primary_10_1016_j_techfore_2024_123709 crossref_primary_10_3389_feduc_2020_572367 crossref_primary_10_1007_s40685_020_00138_6 crossref_primary_10_1080_0960085X_2022_2073278 crossref_primary_10_1007_s10462_022_10246_w crossref_primary_10_3390_su16093858 crossref_primary_10_3390_app142210413 crossref_primary_10_1016_j_ijpe_2021_108380 crossref_primary_10_1007_s40815_023_01597_9 crossref_primary_10_1177_01926233251340622 crossref_primary_10_1016_j_amf_2025_200198 crossref_primary_10_3390_app112210801 crossref_primary_10_3390_jimaging10100252 crossref_primary_10_1093_bib_bbae356 crossref_primary_10_1038_s41597_024_03062_0 crossref_primary_10_1016_j_techfore_2025_124076 crossref_primary_10_1145_3526107 crossref_primary_10_1109_ACCESS_2024_3441469 crossref_primary_10_1108_AJIM_08_2024_0606 crossref_primary_10_1007_s42454_020_00023_x crossref_primary_10_1080_10494820_2025_2495733 crossref_primary_10_1126_scirobotics_adi6421 crossref_primary_10_1016_j_scs_2025_106365 crossref_primary_10_1038_s41598_023_46493_2 crossref_primary_10_3389_fncom_2024_1349408 crossref_primary_10_1007_s13748_024_00315_2 crossref_primary_10_1016_j_artmed_2023_102494 crossref_primary_10_1016_j_ins_2024_120616 crossref_primary_10_1007_s10994_023_06330_z crossref_primary_10_1016_j_inffus_2021_03_009 crossref_primary_10_1080_2573234X_2024_2396366 crossref_primary_10_1145_3599974 crossref_primary_10_1002_widm_1424 crossref_primary_10_1155_2023_4459198 crossref_primary_10_1093_advances_nmac103 crossref_primary_10_1016_j_datak_2021_101946 crossref_primary_10_1038_s41598_025_09265_8 crossref_primary_10_64293_mentor_v1i2_15 crossref_primary_10_1007_s00521_024_10799_7 crossref_primary_10_1177_09610006241241306 crossref_primary_10_1108_ITP_05_2023_0431 crossref_primary_10_1007_s00704_023_04571_5 crossref_primary_10_1007_s10489_023_04810_2 crossref_primary_10_1109_ACCESS_2025_3553934 crossref_primary_10_1007_s40745_025_00617_9 crossref_primary_10_1016_j_heliyon_2023_e14379 crossref_primary_10_1016_j_knosys_2023_111298 crossref_primary_10_1021_acs_analchem_5c03126 crossref_primary_10_3390_app13031252 crossref_primary_10_1109_ACCESS_2025_3565901 crossref_primary_10_1145_3503461 crossref_primary_10_1145_3710908 crossref_primary_10_1016_j_ins_2021_11_010 crossref_primary_10_1016_j_ins_2023_01_090 crossref_primary_10_1016_j_ejrad_2024_111884 crossref_primary_10_1016_j_apenergy_2024_123960 crossref_primary_10_1080_10447318_2023_2285640 crossref_primary_10_1016_j_est_2025_117808 crossref_primary_10_1109_ACCESS_2025_3581136 crossref_primary_10_1016_j_envres_2024_120683 crossref_primary_10_1016_j_ecoinf_2025_103081 crossref_primary_10_1134_S1054661824700615 crossref_primary_10_1016_j_ijpe_2024_109286 crossref_primary_10_1109_TVCG_2025_3558074 crossref_primary_10_3390_diagnostics14060625 crossref_primary_10_3390_info14080453 crossref_primary_10_3390_app13127328 crossref_primary_10_3390_biomedicines10092157 crossref_primary_10_1016_j_eswa_2022_118348 crossref_primary_10_1016_j_istruc_2024_107732 crossref_primary_10_3390_fi16070241 crossref_primary_10_1016_j_apenergy_2024_122624 crossref_primary_10_1002_widm_1451 crossref_primary_10_1016_j_jbusres_2024_114821 crossref_primary_10_1016_j_asoc_2020_107072 crossref_primary_10_1002_aisy_202400359 crossref_primary_10_1080_10447318_2023_2209995 crossref_primary_10_3390_electronics10212660 crossref_primary_10_1002_job_2831 crossref_primary_10_1016_j_knosys_2021_107455 crossref_primary_10_1051_0004_6361_202243354 crossref_primary_10_32604_cmc_2024_059116 crossref_primary_10_1007_s00530_022_00960_4 crossref_primary_10_3917_rips1_080_0079 crossref_primary_10_3390_en18051242 crossref_primary_10_3390_info12120518 crossref_primary_10_1007_s00146_021_01239_4 crossref_primary_10_1016_j_artint_2023_104058 crossref_primary_10_3390_rs17183226 crossref_primary_10_1016_j_isci_2022_104176 crossref_primary_10_3390_laws10040093 crossref_primary_10_1016_j_heliyon_2023_e16110 crossref_primary_10_1016_j_sciaf_2023_e01799 crossref_primary_10_1016_j_mtphys_2022_100946 crossref_primary_10_1016_j_ijmedinf_2025_105914 crossref_primary_10_1007_s00521_023_08929_8 crossref_primary_10_3390_computers10110154 crossref_primary_10_3389_fmars_2023_1170587 crossref_primary_10_1109_ACCESS_2022_3180788 crossref_primary_10_1177_20552076251333480 crossref_primary_10_1016_j_ejco_2024_100091 crossref_primary_10_1155_stc_8462004 crossref_primary_10_1080_10447318_2023_2221605 crossref_primary_10_1002_capr_12764 crossref_primary_10_1007_s40120_022_00355_7 crossref_primary_10_1057_s41261_024_00233_2 crossref_primary_10_1016_j_media_2022_102471 crossref_primary_10_1016_j_jclepro_2023_137564 crossref_primary_10_1155_2023_7669696 crossref_primary_10_1016_j_autcon_2024_105651 crossref_primary_10_1038_s43588_024_00593_9 crossref_primary_10_1016_j_lindif_2024_102499 crossref_primary_10_1111_exsy_12959 crossref_primary_10_1186_s13014_022_02035_0 crossref_primary_10_1145_3527451 crossref_primary_10_1093_pnasnexus_pgad111 crossref_primary_10_3390_risks9070126 crossref_primary_10_1016_j_elerap_2021_101079 crossref_primary_10_1109_ACCESS_2023_3320042 crossref_primary_10_1142_S1793984425300067 crossref_primary_10_1016_j_joule_2022_10_016 crossref_primary_10_1155_2023_4637678 crossref_primary_10_1093_pubmed_fdae154 crossref_primary_10_1016_j_culher_2024_11_020 crossref_primary_10_3389_frobt_2025_1535082 crossref_primary_10_1016_j_frl_2023_104306 crossref_primary_10_1186_s42162_022_00241_4 crossref_primary_10_1525_elementa_2021_00064 crossref_primary_10_1080_00913367_2020_1811179 crossref_primary_10_1016_j_jmsy_2021_05_003 crossref_primary_10_3390_app12136390 crossref_primary_10_1145_3721976 crossref_primary_10_1016_j_neunet_2024_107065 crossref_primary_10_1111_1540_6229_12483 crossref_primary_10_3390_en18071568 crossref_primary_10_3390_app13063572 crossref_primary_10_1089_big_2022_0287 crossref_primary_10_1016_j_scitotenv_2022_155070 crossref_primary_10_1109_TITS_2020_3032227 crossref_primary_10_1071_WF22138 crossref_primary_10_1111_joes_70014 crossref_primary_10_1186_s12911_021_01699_0 crossref_primary_10_1007_s12369_023_01020_1 crossref_primary_10_1088_1361_6501_adfcf3 crossref_primary_10_1016_j_compeleceng_2022_108381 crossref_primary_10_1108_AJIM_11_2024_0898 crossref_primary_10_1007_s11682_022_00688_9 crossref_primary_10_3390_app14010468 crossref_primary_10_1007_s10994_025_06847_5 crossref_primary_10_1007_s10606_023_09475_6 crossref_primary_10_1016_j_procs_2024_05_164 crossref_primary_10_1007_s40593_023_00375_w crossref_primary_10_1109_ACCESS_2025_3597575 crossref_primary_10_1080_17538947_2025_2510570 crossref_primary_10_1186_s12873_024_01135_2 crossref_primary_10_3390_met15040408 crossref_primary_10_1007_s10551_024_05894_7 crossref_primary_10_1007_s10489_025_06798_3 crossref_primary_10_1109_ACCESS_2023_3278273 crossref_primary_10_1145_3672462 crossref_primary_10_1109_ACCESS_2022_3230590 crossref_primary_10_1007_s10618_022_00889_2 crossref_primary_10_1016_j_future_2022_03_009 crossref_primary_10_1016_j_ymssp_2024_111120 crossref_primary_10_3917_qdm_229_0131 crossref_primary_10_1002_mar_22118 crossref_primary_10_1007_s43681_024_00507_5 crossref_primary_10_38124_ijsrmt_v3i2_678 crossref_primary_10_3390_foods14152663 crossref_primary_10_1007_s11042_024_19161_4 crossref_primary_10_1007_s41870_023_01367_8 crossref_primary_10_1109_ACCESS_2022_3160179 crossref_primary_10_1016_j_techfore_2025_124265 crossref_primary_10_1038_s42256_022_00558_5 crossref_primary_10_1016_j_inffus_2022_03_011 crossref_primary_10_1016_j_csbj_2024_05_014 crossref_primary_10_1007_s10618_023_00927_7 crossref_primary_10_1016_j_egyr_2024_11_075 crossref_primary_10_3389_frobt_2023_1236184 crossref_primary_10_4018_IJEGR_298216 crossref_primary_10_4018_IJT_291553 crossref_primary_10_1016_j_imavis_2024_104988 crossref_primary_10_1021_acsami_5c05529 crossref_primary_10_1038_s41598_024_56081_7 crossref_primary_10_1007_s10479_025_06534_7 crossref_primary_10_3390_foods14152679 crossref_primary_10_3390_s21165657 crossref_primary_10_1016_j_ijin_2025_07_001 crossref_primary_10_3758_s13428_023_02335_7 crossref_primary_10_1080_13600869_2025_2497633 crossref_primary_10_3390_app10144725 crossref_primary_10_1109_ACCESS_2025_3549031 crossref_primary_10_3389_frai_2024_1371502 crossref_primary_10_1016_j_eswa_2022_119150 crossref_primary_10_1016_j_knosys_2021_107162 crossref_primary_10_1038_s41746_024_01200_x crossref_primary_10_1109_TCYB_2025_3531013 crossref_primary_10_1016_j_arth_2025_04_072 crossref_primary_10_1016_j_ejim_2023_10_005 crossref_primary_10_2478_ceej_2024_0015 crossref_primary_10_1016_j_crad_2020_11_113 crossref_primary_10_1016_j_eswa_2021_114891 crossref_primary_10_1007_s12525_023_00640_9 crossref_primary_10_1016_j_asoc_2025_112939 crossref_primary_10_3389_frhs_2025_1545864 crossref_primary_10_3390_electronics13173497 crossref_primary_10_3389_fncom_2024_1434421 crossref_primary_10_17645_mac_v11i4_7018 crossref_primary_10_4018_JGIM_354062 crossref_primary_10_1016_j_eswa_2025_128954 crossref_primary_10_1016_j_ins_2022_06_026 crossref_primary_10_1109_TCYB_2024_3487934 crossref_primary_10_1016_j_inffus_2024_102721 crossref_primary_10_48047_rzb7xq74 crossref_primary_10_3390_app14051811 crossref_primary_10_1002_ail2_40 crossref_primary_10_1007_s44163_022_00038_0 crossref_primary_10_1109_ACCESS_2022_3156942 crossref_primary_10_1109_JBHI_2021_3120178 crossref_primary_10_3390_app15137165 crossref_primary_10_1007_s11417_024_09429_x crossref_primary_10_1049_htl2_12122 crossref_primary_10_1145_3626520 crossref_primary_10_1016_j_ribaf_2023_101940 crossref_primary_10_1109_TCSVT_2024_3405998 crossref_primary_10_1016_j_ijhcs_2025_103484 crossref_primary_10_1016_j_rcim_2023_102663 crossref_primary_10_1016_j_knosys_2022_109200 crossref_primary_10_3390_diagnostics12010040 crossref_primary_10_3390_electronics13163234 crossref_primary_10_1080_17445302_2024_2373561 crossref_primary_10_3389_fmolb_2024_1389325 crossref_primary_10_1002_ail2_77 crossref_primary_10_1109_TITS_2023_3316455 crossref_primary_10_1016_j_eswa_2025_128975 crossref_primary_10_1016_j_nanoen_2022_108084 crossref_primary_10_1109_MPRV_2022_3217408 crossref_primary_10_1016_j_jik_2025_100700 crossref_primary_10_3390_app13074267 crossref_primary_10_1007_s11831_023_09881_5 crossref_primary_10_1038_s41598_022_24315_1 crossref_primary_10_3389_fdgth_2023_1196079 crossref_primary_10_1002_ail2_64 crossref_primary_10_1007_s00477_023_02560_8 crossref_primary_10_1016_j_rser_2021_111051 crossref_primary_10_1177_02783649251336385 crossref_primary_10_3389_fdgth_2022_920662 crossref_primary_10_1038_s44222_023_00096_8 crossref_primary_10_1109_TNNLS_2025_3528321 crossref_primary_10_4000_rac_29961 crossref_primary_10_1007_s11042_024_19072_4 crossref_primary_10_1016_j_eswa_2023_120467 crossref_primary_10_1016_j_isprsjprs_2023_05_025 crossref_primary_10_1007_s10676_025_09842_5 crossref_primary_10_1142_S0219649225500091 crossref_primary_10_1016_j_cirp_2024_06_003 crossref_primary_10_3390_diagnostics12020237 crossref_primary_10_1016_j_compbiomed_2024_109001 crossref_primary_10_1177_20552076241272632 crossref_primary_10_1016_j_knosys_2023_110523 crossref_primary_10_3390_bdcc6030091 crossref_primary_10_3390_fi17030100 crossref_primary_10_1371_journal_pone_0291443 crossref_primary_10_3390_foods11101500 crossref_primary_10_1016_j_jacr_2021_02_008 crossref_primary_10_1016_j_rmal_2025_100237 crossref_primary_10_1007_s44163_023_00092_2 crossref_primary_10_1145_3670685 crossref_primary_10_1145_3577011 crossref_primary_10_1080_10447318_2024_2400388 crossref_primary_10_3390_ijms23094645 crossref_primary_10_1007_s10994_024_06583_2 crossref_primary_10_3390_math11092121 crossref_primary_10_1016_j_compenvurbsys_2024_102119 crossref_primary_10_1007_s00521_023_08639_1 crossref_primary_10_1186_s13640_024_00645_0 crossref_primary_10_1167_tvst_14_9_17 crossref_primary_10_3390_brainsci15060565 crossref_primary_10_1007_s10922_021_09606_8 crossref_primary_10_1016_j_engappai_2023_107716 crossref_primary_10_3390_cancers15245793 crossref_primary_10_1016_j_net_2025_103588 crossref_primary_10_1145_3635474 crossref_primary_10_3390_s21072514 crossref_primary_10_1029_2024WR037582 crossref_primary_10_1007_s00766_025_00437_6 crossref_primary_10_1200_EDBK_390084 crossref_primary_10_1109_MC_2021_3076851 crossref_primary_10_1177_2327857924131046 crossref_primary_10_1177_20552076241259664 crossref_primary_10_1080_10447318_2024_2400396 crossref_primary_10_1002_ail2_37 crossref_primary_10_1016_j_eswa_2024_126063 crossref_primary_10_1108_JEIM_11_2020_0436 crossref_primary_10_1007_s12525_022_00593_5 crossref_primary_10_1080_00423114_2025_2526056 crossref_primary_10_3390_su12208548 crossref_primary_10_3390_fi17030129 crossref_primary_10_3390_s23135958 crossref_primary_10_1002_advs_202404437 crossref_primary_10_1109_ACCESS_2024_3351188 crossref_primary_10_1016_j_cogsys_2025_101357 crossref_primary_10_1016_j_gpb_2022_07_003 crossref_primary_10_1016_j_neucom_2021_10_046 crossref_primary_10_1080_12460125_2023_2207268 crossref_primary_10_1093_petrology_egae036 crossref_primary_10_1007_s44163_025_00318_5 crossref_primary_10_1016_j_media_2024_103436 crossref_primary_10_1002_int_22937 crossref_primary_10_1109_TNNLS_2023_3323131 crossref_primary_10_1029_2025WR040433 crossref_primary_10_2196_32240 crossref_primary_10_1016_j_compbiomed_2023_107806 crossref_primary_10_1007_s10278_025_01585_5 crossref_primary_10_1049_rsn2_70041 crossref_primary_10_1109_ACCESS_2021_3068961 crossref_primary_10_3390_fi15030097 crossref_primary_10_1007_s10462_022_10285_3 crossref_primary_10_3390_electronics13153004 crossref_primary_10_1016_j_ecoinf_2023_102163 crossref_primary_10_1016_j_dim_2024_100082 crossref_primary_10_3389_frai_2024_1406773 crossref_primary_10_1145_3625288 crossref_primary_10_1016_j_jclepro_2024_142655 crossref_primary_10_3390_app14135950 crossref_primary_10_3390_electronics13101895 crossref_primary_10_1007_s40305_025_00612_0 crossref_primary_10_1016_j_ifacol_2022_10_041 crossref_primary_10_1109_LSENS_2024_3358619 crossref_primary_10_3892_ol_2022_13630 crossref_primary_10_1109_TFUZZ_2024_3485212 crossref_primary_10_1016_j_engappai_2025_111521 crossref_primary_10_3390_diagnostics13243631 crossref_primary_10_7232_JKIIE_2024_50_3_189 crossref_primary_10_3390_bdcc7020113 crossref_primary_10_1007_s43681_022_00143_x crossref_primary_10_1109_TLT_2023_3239110 crossref_primary_10_1016_j_jocs_2022_101824 crossref_primary_10_3233_IDT_230320 crossref_primary_10_1016_j_future_2025_107882 crossref_primary_10_1016_j_knosys_2022_109287 crossref_primary_10_1016_j_watres_2023_120503 crossref_primary_10_1007_s13218_023_00806_9 crossref_primary_10_1109_ACCESS_2021_3112397 crossref_primary_10_3390_diagnostics13243630 crossref_primary_10_1371_journal_pcbi_1010357 crossref_primary_10_1016_j_inffus_2023_101955 crossref_primary_10_1002_aaai_12184 crossref_primary_10_3390_biotech11040046 crossref_primary_10_1016_j_compeleceng_2024_109370 crossref_primary_10_1002_ett_70090 crossref_primary_10_1016_j_engappai_2022_105687 crossref_primary_10_1108_JMP_05_2024_0379 crossref_primary_10_3390_app10093089 crossref_primary_10_1109_ACCESS_2023_3287195 crossref_primary_10_1016_j_patter_2025_101340 crossref_primary_10_1109_TAI_2021_3128132 crossref_primary_10_1007_s10586_025_05473_z crossref_primary_10_1016_j_patter_2025_101347 crossref_primary_10_1109_OJITS_2025_3550792 crossref_primary_10_3390_electronics14071251 crossref_primary_10_3390_make6010031 crossref_primary_10_3389_fcomp_2023_1096257 crossref_primary_10_3390_a17020078 crossref_primary_10_3390_electronics14071255 crossref_primary_10_1007_s10994_023_06479_7 crossref_primary_10_1016_j_compag_2025_110354 crossref_primary_10_1016_j_jbusres_2025_115309 crossref_primary_10_1016_j_watres_2024_123080 crossref_primary_10_1016_j_inffus_2023_101943 crossref_primary_10_1016_j_neucom_2024_127961 crossref_primary_10_1016_j_knosys_2023_110552 crossref_primary_10_1109_ACCESS_2025_3602673 crossref_primary_10_3390_app15084556 crossref_primary_10_1186_s40537_022_00579_2 crossref_primary_10_1145_3592616 crossref_primary_10_1016_j_inffus_2025_102996 crossref_primary_10_1016_j_scs_2022_104050 crossref_primary_10_1109_JBHI_2024_3447583 crossref_primary_10_1016_j_health_2021_100001 crossref_primary_10_1109_ACCESS_2025_3525952 crossref_primary_10_1016_j_ejrad_2023_110786 crossref_primary_10_48175_IJARSCT_23772 crossref_primary_10_1016_j_ejrad_2023_110787 crossref_primary_10_1016_j_fss_2024_108949 crossref_primary_10_1016_j_cpet_2021_06_006 crossref_primary_10_1007_s11831_023_10033_y crossref_primary_10_1007_s13198_025_02801_9 crossref_primary_10_1177_07439156241309874 crossref_primary_10_1016_j_inffus_2025_102981 crossref_primary_10_1088_1748_9326_ad959f crossref_primary_10_1016_j_cmpb_2023_107719 crossref_primary_10_1016_j_neunet_2021_12_014 crossref_primary_10_1016_j_neunet_2021_12_015 crossref_primary_10_1016_j_tele_2024_102135 crossref_primary_10_1177_20552076241308298 crossref_primary_10_1016_j_egyr_2022_10_060 crossref_primary_10_1038_s42256_025_01000_2 crossref_primary_10_1007_s11222_025_10668_w crossref_primary_10_1186_s12909_024_05352_y crossref_primary_10_3390_urbansci8030093 crossref_primary_10_1016_j_procs_2024_10_194 crossref_primary_10_1007_s42979_022_01258_y crossref_primary_10_1016_j_imavis_2025_105689 crossref_primary_10_32604_jcs_2024_056164 crossref_primary_10_3390_cancers14133215 crossref_primary_10_3390_info16010053 crossref_primary_10_3390_technologies13090390 crossref_primary_10_1007_s10618_021_00776_2 crossref_primary_10_1016_j_inffus_2025_102976 crossref_primary_10_1016_j_neunet_2024_106542 crossref_primary_10_3389_frai_2020_564878 crossref_primary_10_3390_jtaer20030225 crossref_primary_10_1007_s00500_023_09430_z crossref_primary_10_1016_j_ejor_2023_09_010 crossref_primary_10_1109_ACCESS_2022_3178382 crossref_primary_10_1371_journal_pone_0321478 crossref_primary_10_1016_j_procs_2024_10_186 crossref_primary_10_1109_TNNLS_2020_3027314 crossref_primary_10_1007_s10586_025_05281_5 crossref_primary_10_1108_BIJ_02_2022_0112 crossref_primary_10_3390_fi16020046 crossref_primary_10_1016_j_tele_2024_102175 crossref_primary_10_3390_app13137432 crossref_primary_10_3390_rs15153758 crossref_primary_10_1080_01691864_2021_1955001 crossref_primary_10_1007_s44206_024_00087_1 crossref_primary_10_3389_feduc_2024_1386075 crossref_primary_10_3389_frai_2023_1099521 crossref_primary_10_1016_j_learninstruc_2024_101929 crossref_primary_10_3389_forgp_2025_1538438 crossref_primary_10_3390_app13105886 crossref_primary_10_1016_j_jairtraman_2023_102511 crossref_primary_10_1016_j_omega_2025_103335 crossref_primary_10_1016_j_eswa_2022_116857 crossref_primary_10_1515_zwf_2025_1062 crossref_primary_10_3390_app11104573 crossref_primary_10_3390_diagnostics15151950 crossref_primary_10_1080_17538947_2025_2528621 crossref_primary_10_3390_s23020634 crossref_primary_10_1016_j_scitotenv_2024_173546 crossref_primary_10_1016_j_egyr_2025_08_046 crossref_primary_10_1016_j_jretconser_2024_103933 crossref_primary_10_3390_electronics13183738 crossref_primary_10_3390_jpm12030435 crossref_primary_10_1016_j_bspc_2025_107987 crossref_primary_10_1109_ACCESS_2024_3427631 crossref_primary_10_1145_3709367 crossref_primary_10_1016_j_compbiomed_2023_106554 crossref_primary_10_1016_j_ijhcs_2021_102684 crossref_primary_10_3390_app14052209 crossref_primary_10_1016_j_psep_2022_12_018 crossref_primary_10_1016_j_knosys_2022_110189 crossref_primary_10_1109_ACCESS_2025_3558845 crossref_primary_10_1016_j_ejor_2023_09_026 crossref_primary_10_3390_fi12120226 crossref_primary_10_1016_j_energy_2022_125075 crossref_primary_10_1016_j_cag_2023_06_010 crossref_primary_10_1155_2022_6892995 crossref_primary_10_1007_s11069_020_04124_3 crossref_primary_10_1145_3618105 crossref_primary_10_1016_j_knosys_2021_107970 crossref_primary_10_1109_ACCESS_2022_3232299 crossref_primary_10_1016_j_frl_2023_104242 crossref_primary_10_1109_TFUZZ_2021_3049911 crossref_primary_10_1186_s40561_024_00335_4 crossref_primary_10_1016_j_apergo_2024_104271 crossref_primary_10_1097_RLI_0000000000000962 crossref_primary_10_1016_j_ijhcs_2022_102976 crossref_primary_10_3390_jintelligence9030046 crossref_primary_10_1108_ITSE_10_2021_0188 crossref_primary_10_1007_s10516_025_09748_3 crossref_primary_10_2196_50048 crossref_primary_10_1002_pmic_202100232 crossref_primary_10_1002_jmri_28663 crossref_primary_10_3390_app12031353 crossref_primary_10_1016_j_compbiomed_2025_110649 crossref_primary_10_1108_JHTT_03_2024_0139 crossref_primary_10_1016_j_ijhcs_2022_102941 crossref_primary_10_1007_s11356_022_22099_5 crossref_primary_10_1007_s11042_024_20016_1 crossref_primary_10_1038_s41598_024_60220_5 crossref_primary_10_1002_ana_27229 crossref_primary_10_1007_s10462_025_11342_3 crossref_primary_10_1109_TAI_2023_3266183 crossref_primary_10_1109_TNNLS_2022_3202234 crossref_primary_10_1007_s43681_020_00012_5 crossref_primary_10_3389_fmicb_2024_1393243 crossref_primary_10_1016_j_cor_2023_106268 crossref_primary_10_1007_s00500_023_08041_y crossref_primary_10_1109_LGRS_2024_3400934 crossref_primary_10_1007_s40012_023_00381_2 crossref_primary_10_1109_ACCESS_2024_3409843 crossref_primary_10_4204_EPTCS_416_13 crossref_primary_10_1007_s43681_024_00586_4 crossref_primary_10_1007_s10994_023_06351_8 crossref_primary_10_1007_s10506_022_09327_6 crossref_primary_10_1080_10447318_2024_2405266 crossref_primary_10_3390_info14010021 crossref_primary_10_1109_TEM_2025_3591661 crossref_primary_10_3390_computation12060113 crossref_primary_10_1186_s12911_025_02890_3 crossref_primary_10_3390_data10040052 crossref_primary_10_1007_s43681_023_00278_5 crossref_primary_10_1016_j_knosys_2024_112567 crossref_primary_10_1007_s11432_023_4011_4 crossref_primary_10_1016_j_neucom_2021_09_051 crossref_primary_10_1016_j_procir_2025_01_005 crossref_primary_10_1016_j_datak_2025_102493 crossref_primary_10_1109_OJCOMS_2025_3583867 crossref_primary_10_1007_s00521_022_07159_8 crossref_primary_10_1109_MIS_2024_3383155 crossref_primary_10_1016_j_cose_2023_103297 crossref_primary_10_1016_j_ijar_2024_109206 crossref_primary_10_1016_j_jhydrol_2022_128495 crossref_primary_10_1007_s00550_021_00524_6 crossref_primary_10_1007_s11277_023_10585_z crossref_primary_10_3389_frai_2023_1264372 crossref_primary_10_1016_j_newideapsych_2024_101077 crossref_primary_10_1038_s42256_024_00842_6 crossref_primary_10_1007_s00521_025_11583_x crossref_primary_10_3390_make3030033 crossref_primary_10_1631_FITEE_2000347 crossref_primary_10_3390_electronics14183586 crossref_primary_10_2478_picbe_2024_0138 crossref_primary_10_3389_fnins_2022_906290 crossref_primary_10_1016_j_inffus_2024_102638 crossref_primary_10_1007_s00424_025_03076_6 crossref_primary_10_1016_j_cherd_2022_10_014 crossref_primary_10_1145_3502265 crossref_primary_10_1057_s41599_023_01579_0 crossref_primary_10_1109_JSEN_2025_3541158 crossref_primary_10_1109_ACCESS_2023_3327820 crossref_primary_10_1016_j_iswa_2023_200181 crossref_primary_10_3389_fmed_2025_1545409 crossref_primary_10_1080_10447318_2024_2348843 crossref_primary_10_1002_jor_25962 crossref_primary_10_1016_j_compenvurbsys_2021_101691 crossref_primary_10_1038_s41598_025_01854_x crossref_primary_10_1002_bies_202100025 crossref_primary_10_3390_app13064040 crossref_primary_10_1007_s00146_025_02380_0 crossref_primary_10_3389_fonc_2025_1540195 crossref_primary_10_3390_infrastructures9120213 crossref_primary_10_3390_make3030027 crossref_primary_10_1111_tgis_13045 crossref_primary_10_1007_s41060_024_00694_8 crossref_primary_10_1016_j_inffus_2025_102928 crossref_primary_10_1016_j_jss_2022_111538 crossref_primary_10_1016_j_datak_2025_102470 crossref_primary_10_1016_j_softx_2025_102289 crossref_primary_10_1109_TII_2022_3181692 crossref_primary_10_1111_brv_13167 crossref_primary_10_3390_jimaging6060037 crossref_primary_10_1016_j_enbuild_2023_113204 crossref_primary_10_3390_computers13100252 crossref_primary_10_1007_s10845_023_02127_y crossref_primary_10_1007_s10462_024_11007_7 crossref_primary_10_1016_j_dajour_2022_100153 crossref_primary_10_3390_app15031192 crossref_primary_10_57197_JDR_2024_0101 crossref_primary_10_1016_j_giq_2023_101803 crossref_primary_10_1109_ACCESS_2020_3048348 crossref_primary_10_1109_ACCESS_2024_3474012 crossref_primary_10_3390_app15137261 crossref_primary_10_1016_j_jmsy_2024_05_004 crossref_primary_10_1109_ACCESS_2024_3413075 crossref_primary_10_1038_s43856_024_00726_1 crossref_primary_10_1108_INTR_08_2021_0600 crossref_primary_10_1007_s13218_024_00878_1 crossref_primary_10_1016_j_heliyon_2023_e20517 crossref_primary_10_1007_s11633_022_1407_3 crossref_primary_10_1038_s41598_024_67259_4 crossref_primary_10_1080_26408066_2025_2517073 crossref_primary_10_3390_informatics9010014 crossref_primary_10_1016_j_cose_2025_104358 crossref_primary_10_1016_j_ijpe_2025_109688 crossref_primary_10_1038_s41578_022_00490_5 crossref_primary_10_1109_TGRS_2024_3493763 crossref_primary_10_1017_S1930297500003594 crossref_primary_10_1021_acsestengg_5c00356 crossref_primary_10_1029_2020WR027948 crossref_primary_10_1109_ACCESS_2025_3569575 crossref_primary_10_1038_s41746_023_00751_9 crossref_primary_10_1109_ACCESS_2021_3061424 crossref_primary_10_1007_s11191_024_00585_1 crossref_primary_10_1002_stc_3019 crossref_primary_10_1016_j_ecoinf_2025_103131 crossref_primary_10_1007_s10844_025_00940_w crossref_primary_10_1016_j_compind_2023_104044 crossref_primary_10_1016_j_eswa_2021_114801 crossref_primary_10_1016_j_teler_2024_100116 crossref_primary_10_1007_s11227_022_04818_4 crossref_primary_10_1007_s10796_023_10406_5 crossref_primary_10_1109_TNSM_2025_3567654 crossref_primary_10_3390_s23042013 crossref_primary_10_1061_JCCEE5_CPENG_5744 crossref_primary_10_1109_ACCESS_2021_3110647 crossref_primary_10_1016_j_fsidi_2022_301403 crossref_primary_10_1109_TPAMI_2022_3225162 crossref_primary_10_3390_agronomy12112659 crossref_primary_10_1093_hr_uhac187 crossref_primary_10_1007_s10579_023_09671_2 crossref_primary_10_1371_journal_pone_0286829 crossref_primary_10_3389_feart_2022_917608 crossref_primary_10_1080_17483107_2023_2170478 crossref_primary_10_1016_j_tifs_2021_04_008 crossref_primary_10_1016_j_inffus_2025_102972 crossref_primary_10_3390_jimaging6120133 crossref_primary_10_1007_s11219_022_09613_1 crossref_primary_10_1007_s10479_025_06713_6 crossref_primary_10_1038_s41562_025_02297_0 crossref_primary_10_1007_s10111_025_00826_5 crossref_primary_10_1016_j_talanta_2024_126652 crossref_primary_10_1145_3610219 crossref_primary_10_1007_s10479_025_06570_3 crossref_primary_10_2196_64617 crossref_primary_10_17586_2226_1494_2025_25_3_373_386 crossref_primary_10_1016_j_cherd_2024_12_015 crossref_primary_10_1016_j_aap_2023_106956 crossref_primary_10_1108_JEBDE_07_2024_0019 crossref_primary_10_1145_3610206 crossref_primary_10_1016_j_bspc_2025_107910 crossref_primary_10_35699_2965_6931_2023_47533 crossref_primary_10_3917_inno_pr2_0153 crossref_primary_10_1016_j_ejor_2023_06_032 crossref_primary_10_1080_03088839_2025_2451363 crossref_primary_10_1016_j_vacuum_2022_111351 crossref_primary_10_1016_j_engappai_2024_108517 crossref_primary_10_1016_j_procs_2024_01_081 crossref_primary_10_1016_j_enbuild_2024_114876 crossref_primary_10_1145_3737445 crossref_primary_10_1631_FITEE_2200675 crossref_primary_10_1109_TNNLS_2022_3165618 crossref_primary_10_3390_jpm12040607 crossref_primary_10_1016_j_oceaneng_2023_113844 crossref_primary_10_1016_j_ecoinf_2025_103342 crossref_primary_10_1108_JOSM_05_2024_0223 crossref_primary_10_3390_en18092380 crossref_primary_10_25300_MISQ_2021_16274 crossref_primary_10_1016_j_ijinfomgt_2022_102538 crossref_primary_10_1016_j_tre_2022_102722 crossref_primary_10_1016_j_websem_2023_100807 crossref_primary_10_1145_3733837 crossref_primary_10_2174_0126662558324883241011101625 crossref_primary_10_1080_0144929X_2024_2334852 crossref_primary_10_1063_5_0226151 crossref_primary_10_1109_ACCESS_2022_3204171 crossref_primary_10_3390_make4010008 crossref_primary_10_1109_ACCESS_2024_3367602 crossref_primary_10_1016_j_engappai_2024_107982 crossref_primary_10_1016_j_websem_2023_100808 crossref_primary_10_1109_ACCESS_2023_3340626 crossref_primary_10_1007_s12053_025_10371_9 crossref_primary_10_1016_j_accinf_2025_100744 crossref_primary_10_3917_jie_pr1_0160 crossref_primary_10_1016_j_xops_2025_100804 crossref_primary_10_3390_jpm12020166 crossref_primary_10_3389_frai_2025_1609097 crossref_primary_10_1016_j_engappai_2023_106376 crossref_primary_10_1016_j_procs_2025_07_170 crossref_primary_10_1007_s11042_021_10714_5 crossref_primary_10_1111_isj_12585 crossref_primary_10_1080_08839514_2024_2318670 crossref_primary_10_1016_j_ress_2023_109659 crossref_primary_10_3390_diagnostics14070753 crossref_primary_10_1016_j_ejdp_2023_100040 crossref_primary_10_1109_ACCESS_2021_3080517 crossref_primary_10_1007_s11750_021_00594_1 crossref_primary_10_1109_TSMC_2021_3138589 crossref_primary_10_1155_int_4934696 crossref_primary_10_1109_JSYST_2020_3032609 crossref_primary_10_1080_10447318_2022_2081284 crossref_primary_10_1016_j_psep_2022_07_019 crossref_primary_10_3390_math12050635 crossref_primary_10_3390_electronics14091868 crossref_primary_10_1016_j_radonc_2020_09_008 crossref_primary_10_1038_s41598_025_92171_w crossref_primary_10_3390_electronics10182195 crossref_primary_10_2478_bjes_2025_0008 crossref_primary_10_1016_j_asoc_2025_112832 crossref_primary_10_3390_mi12121504 crossref_primary_10_3788_CJL241363 crossref_primary_10_1016_j_jbusres_2020_11_001 crossref_primary_10_1038_s41598_025_09236_z crossref_primary_10_3390_diagnostics13233592 crossref_primary_10_1208_s12249_022_02403_9 crossref_primary_10_3389_fpsyt_2021_574440 crossref_primary_10_1109_ACCESS_2021_3059960 crossref_primary_10_1007_s43681_022_00175_3 crossref_primary_10_1111_pbi_70208 crossref_primary_10_3390_jpm14030277 crossref_primary_10_1016_j_knosys_2025_113419 crossref_primary_10_1145_3696319 crossref_primary_10_1109_ACCESS_2024_3423425 crossref_primary_10_2196_44131 crossref_primary_10_1145_3510030 crossref_primary_10_3390_su142215273 crossref_primary_10_1145_3623399 crossref_primary_10_1016_j_compenvurbsys_2025_102322 crossref_primary_10_1061_JCCEE5_CPENG_6209 crossref_primary_10_57125_FEM_2025_09_30_01 crossref_primary_10_3390_healthcare10122440 crossref_primary_10_3390_jmse11030571 crossref_primary_10_1016_j_copsyc_2024_101839 crossref_primary_10_1057_s41599_024_02894_w crossref_primary_10_1016_j_engappai_2025_110145 crossref_primary_10_1016_j_ijmedinf_2024_105377 crossref_primary_10_1109_TII_2024_3361489 crossref_primary_10_1111_cgf_15108 crossref_primary_10_1016_j_engappai_2025_110146 crossref_primary_10_1016_j_engappai_2025_110140 crossref_primary_10_1016_j_ajp_2022_103316 crossref_primary_10_1016_j_compbiomed_2023_107085 crossref_primary_10_1016_j_softx_2025_102347 crossref_primary_10_17721_2706_9699_2023_2_02 crossref_primary_10_3390_info13110536 crossref_primary_10_1109_LSP_2025_3554511 crossref_primary_10_1007_s41469_023_00155_9 crossref_primary_10_1080_08839514_2021_2008148 crossref_primary_10_1016_j_scitotenv_2023_168588 crossref_primary_10_1016_j_indmarman_2023_09_012 crossref_primary_10_1007_s44174_025_00320_6 crossref_primary_10_1016_j_eswa_2022_119027 crossref_primary_10_3390_a17060227 crossref_primary_10_1049_2023_6623718 crossref_primary_10_1108_DTA_12_2021_0359 crossref_primary_10_1016_j_cmpb_2024_108576 crossref_primary_10_1073_pnas_2206625119 crossref_primary_10_1016_j_indmarman_2023_09_007 crossref_primary_10_1145_3477127_3477128 crossref_primary_10_2196_28921 crossref_primary_10_1016_j_ins_2023_119549 crossref_primary_10_1108_ET_06_2024_0272 crossref_primary_10_1177_0272989X211011160 crossref_primary_10_1007_s10140_023_02135_8 crossref_primary_10_1016_j_ccell_2022_09_012 crossref_primary_10_1016_j_mineng_2025_109741 crossref_primary_10_1007_s41870_021_00694_y crossref_primary_10_1016_j_procs_2025_07_119 crossref_primary_10_1108_CI_10_2024_0325 crossref_primary_10_1016_j_ejdp_2023_100033 crossref_primary_10_1007_s00603_024_04068_1 crossref_primary_10_1016_j_jksuci_2024_101962 crossref_primary_10_1365_s40702_022_00847_y crossref_primary_10_1109_JSTARS_2024_3359647 crossref_primary_10_4103_tjo_tjo_8_22 crossref_primary_10_3390_math10040554 crossref_primary_10_3390_app11115098 crossref_primary_10_7717_peerj_cs_584 crossref_primary_10_1080_02642069_2024_2369322 crossref_primary_10_3389_frai_2022_824197 crossref_primary_10_1007_s12325_025_03273_w crossref_primary_10_1016_j_jii_2025_100827 crossref_primary_10_1016_j_bspc_2023_105646 crossref_primary_10_1109_ACCESS_2023_3314336 crossref_primary_10_1016_j_compositesb_2023_111177 crossref_primary_10_1016_j_energy_2024_132094 crossref_primary_10_1016_j_eswa_2023_121620 crossref_primary_10_1007_s10489_024_05509_8 crossref_primary_10_1016_j_ijmedinf_2023_105041 crossref_primary_10_1016_j_ijmedinf_2023_105040 crossref_primary_10_1016_j_rse_2023_113550 crossref_primary_10_14254_1795_6889_2024_20_2_0 crossref_primary_10_1108_IMDS_07_2021_0419 crossref_primary_10_3389_fmed_2025_1596335 crossref_primary_10_1038_s41598_024_78778_5 crossref_primary_10_1016_j_ipm_2023_103373 crossref_primary_10_3390_smartcities7040064 crossref_primary_10_1007_s40815_021_01188_6 crossref_primary_10_1016_j_neucom_2021_01_138 crossref_primary_10_1111_exsy_13250 crossref_primary_10_1109_TAI_2022_3228834 crossref_primary_10_1145_3592762 crossref_primary_10_3390_a16090435 crossref_primary_10_1002_cctc_202200355 crossref_primary_10_1016_j_irfa_2024_103577 crossref_primary_10_1111_avsc_12660 crossref_primary_10_1016_j_smhl_2025_100540 crossref_primary_10_1145_3686927 crossref_primary_10_1016_j_jbi_2023_104367 crossref_primary_10_1186_s42162_023_00259_2 crossref_primary_10_1016_j_jmsy_2024_09_014 crossref_primary_10_2196_29386 crossref_primary_10_1007_s43681_021_00114_8 crossref_primary_10_1016_j_ijpe_2023_109137 crossref_primary_10_1016_j_jmva_2025_105444 crossref_primary_10_3390_info15040218 crossref_primary_10_3390_s22134865 crossref_primary_10_1016_j_aei_2024_102800 crossref_primary_10_3390_s25154864 crossref_primary_10_1080_00207543_2021_1951868 crossref_primary_10_1016_j_geoderma_2021_114967 crossref_primary_10_3390_network4010005 crossref_primary_10_3390_rs17061000 crossref_primary_10_1016_j_ipm_2023_103369 crossref_primary_10_1007_s11146_024_09998_9 crossref_primary_10_1016_j_neuroimage_2024_120695 crossref_primary_10_1146_annurev_statistics_040120_030919 crossref_primary_10_1371_journal_pone_0271723 crossref_primary_10_3390_electronics12122594 crossref_primary_10_1145_3519264 crossref_primary_10_1016_j_knosys_2022_109366 crossref_primary_10_1016_j_ejrh_2025_102483 crossref_primary_10_1371_journal_pone_0257426 crossref_primary_10_1016_j_eswa_2023_122986 crossref_primary_10_1007_s11263_025_02446_y crossref_primary_10_1109_ACCESS_2024_3467062 crossref_primary_10_3390_math9212794 crossref_primary_10_1016_j_scitotenv_2024_175999 crossref_primary_10_1109_TNSM_2022_3169988 crossref_primary_10_38124_ijisrt_25jul1197 crossref_primary_10_1016_j_engappai_2025_110133 crossref_primary_10_3390_electronics14132666 crossref_primary_10_3390_math10152552 crossref_primary_10_1016_j_engappai_2025_110135 crossref_primary_10_3390_philosophies10040077 crossref_primary_10_1016_j_engappai_2025_110132 crossref_primary_10_1016_j_eswa_2023_121662 crossref_primary_10_2196_46717 crossref_primary_10_1016_j_engappai_2025_110137 crossref_primary_10_1080_00295450_2024_2411153 crossref_primary_10_1016_j_jksuci_2023_03_016 crossref_primary_10_1080_23311886_2023_2270751 crossref_primary_10_1109_COMST_2024_3387124 crossref_primary_10_1186_s40854_022_00338_5 crossref_primary_10_1016_j_ifacol_2022_09_440 crossref_primary_10_3390_app13063412 crossref_primary_10_1109_TAI_2024_3515937 crossref_primary_10_1109_ACCESS_2021_3051171 crossref_primary_10_1007_s10676_024_09778_2 crossref_primary_10_1016_j_est_2024_110614 crossref_primary_10_1016_j_ejmp_2021_04_016 crossref_primary_10_1016_j_aei_2024_102835 crossref_primary_10_1109_SR_2025_3595500 crossref_primary_10_3390_act12100391 crossref_primary_10_1016_j_jss_2023_111676 crossref_primary_10_1002_aisy_202100054 crossref_primary_10_1108_JSTPM_09_2020_0134 crossref_primary_10_1007_s10961_025_10233_7 crossref_primary_10_1109_MCOM_001_2000050 crossref_primary_10_1007_s12207_020_09389_4 crossref_primary_10_1016_j_hrmr_2022_100899 crossref_primary_10_1109_IOTM_001_2300286 crossref_primary_10_55813_gaea_rcym_v3_n2_3 crossref_primary_10_3390_s21248401 crossref_primary_10_1155_2022_7117986 crossref_primary_10_1016_j_aei_2024_102843 crossref_primary_10_1109_TIM_2025_3548240 crossref_primary_10_1007_s13347_023_00636_5 crossref_primary_10_1016_j_jnca_2022_103464 crossref_primary_10_1109_ACCESS_2024_3418900 crossref_primary_10_1007_s43681_021_00091_y crossref_primary_10_1109_ACCESS_2021_3093824 crossref_primary_10_2196_41089 crossref_primary_10_3390_app131810068 crossref_primary_10_1155_2023_9919269 crossref_primary_10_1080_03080188_2021_1872874 crossref_primary_10_1038_s41598_024_70031_3 crossref_primary_10_3389_fpubh_2021_561873 crossref_primary_10_1007_s10506_021_09288_2 crossref_primary_10_1109_TFUZZ_2023_3243935 crossref_primary_10_3389_feduc_2025_1595209 crossref_primary_10_1016_j_compbiomed_2023_106613 crossref_primary_10_3390_biomimetics7030127 crossref_primary_10_1002_smtd_202301243 crossref_primary_10_3390_data7070093 crossref_primary_10_3390_asi8030057 crossref_primary_10_1016_j_knosys_2023_110685 crossref_primary_10_5772_acrt_15 crossref_primary_10_1109_TMI_2024_3467384 crossref_primary_10_3389_fpsyg_2023_1069426 crossref_primary_10_1007_s43681_024_00490_x crossref_primary_10_1186_s12910_022_00746_3 crossref_primary_10_2118_204462_PA crossref_primary_10_1145_3546872 crossref_primary_10_1007_s42600_025_00432_4 crossref_primary_10_1080_10426914_2020_1747627 crossref_primary_10_1016_j_compbiomed_2023_106625 crossref_primary_10_1016_j_addr_2023_114974 crossref_primary_10_1016_j_compbiomed_2023_106624 crossref_primary_10_1109_ACCESS_2020_3028039 crossref_primary_10_1108_SCM_11_2020_0563 crossref_primary_10_1016_j_procs_2021_08_025 crossref_primary_10_1016_j_cviu_2025_104304 crossref_primary_10_1016_j_rse_2024_114302 crossref_primary_10_1016_j_jhep_2023_01_006 crossref_primary_10_1109_TITS_2022_3207665 crossref_primary_10_3390_drones7050327 crossref_primary_10_1007_s12559_024_10332_x crossref_primary_10_3389_fpls_2023_1257947 crossref_primary_10_1016_j_ins_2020_08_064 crossref_primary_10_4467_25444654SPP_22_011_15685 crossref_primary_10_1016_j_bspc_2024_106457 crossref_primary_10_1108_TECHS_04_2024_0033 crossref_primary_10_1186_s13059_020_02220_y crossref_primary_10_3390_rs12091389 crossref_primary_10_1016_j_chbah_2023_100021 crossref_primary_10_1002_mp_16947 crossref_primary_10_1080_10447318_2025_2502983 crossref_primary_10_1177_14738716231216030 crossref_primary_10_1017_S1471068422000163 crossref_primary_10_1016_j_ecoinf_2023_102240 crossref_primary_10_1029_2023JD039154 crossref_primary_10_1016_j_ijdrr_2025_105798 crossref_primary_10_3390_atmos16091107 crossref_primary_10_59403_2yhh9pa crossref_primary_10_1016_j_autcon_2022_104348 crossref_primary_10_1016_j_conengprac_2022_105304 crossref_primary_10_3390_rs17071313 crossref_primary_10_1007_s11633_024_1519_z crossref_primary_10_1016_j_envres_2025_122069 crossref_primary_10_1177_09520767231202334 crossref_primary_10_1016_j_compag_2024_108627 crossref_primary_10_1016_j_scitotenv_2024_170330 crossref_primary_10_3390_s21134489 crossref_primary_10_3390_en18133315 crossref_primary_10_1080_24725854_2022_2100050 crossref_primary_10_1016_j_eswa_2024_124963 crossref_primary_10_1016_j_ijpe_2025_109789 crossref_primary_10_3390_plants14182841 crossref_primary_10_1080_1359432X_2023_2169140 crossref_primary_10_1016_j_ins_2022_11_144 crossref_primary_10_1016_j_neucom_2023_126267 crossref_primary_10_1016_j_atech_2025_101174 crossref_primary_10_1007_s11095_022_03448_y crossref_primary_10_2196_72155 crossref_primary_10_3390_e23081047 crossref_primary_10_3390_diagnostics15182300 crossref_primary_10_3389_frai_2025_1526221 crossref_primary_10_1097_MAT_0000000000001275 crossref_primary_10_3390_s20226626 crossref_primary_10_1109_ACCESS_2021_3061368 crossref_primary_10_1016_j_ejrad_2022_110592 crossref_primary_10_1007_s10489_025_06790_x crossref_primary_10_1016_j_compbiomed_2023_106668 crossref_primary_10_1016_j_ymssp_2024_111948 crossref_primary_10_1109_ACCESS_2025_3570643 crossref_primary_10_1007_s10994_021_06010_w crossref_primary_10_1016_j_energy_2024_131583 crossref_primary_10_1039_D5CC01291K crossref_primary_10_1016_j_inffus_2025_103524 crossref_primary_10_1080_00140139_2024_2334427 crossref_primary_10_3389_fenvs_2024_1426942 crossref_primary_10_1007_s43681_022_00145_9 crossref_primary_10_1155_2024_8885760 crossref_primary_10_3390_polym15204147 crossref_primary_10_53941_tai_2025_100009 crossref_primary_10_1007_s10270_023_01090_9 crossref_primary_10_1080_14778238_2022_2075808 crossref_primary_10_1109_MS_2024_3441101 crossref_primary_10_1016_j_retram_2025_103541 crossref_primary_10_1109_TAFFC_2023_3296373 crossref_primary_10_1080_15309576_2024_2443140 crossref_primary_10_1109_JBHI_2024_3495975 crossref_primary_10_1145_3563391 crossref_primary_10_1080_00207543_2023_2238083 crossref_primary_10_1016_j_jenvman_2024_123588 crossref_primary_10_1155_2024_4628855 crossref_primary_10_1016_j_cmpb_2023_107879 crossref_primary_10_1109_TSUSC_2024_3382157 crossref_primary_10_1016_j_ipm_2022_103061 crossref_primary_10_1016_j_ultras_2022_106776 crossref_primary_10_1038_s42256_023_00635_3 crossref_primary_10_1007_s10462_021_10088_y crossref_primary_10_1016_j_esci_2025_100373 crossref_primary_10_3390_electronics14071311 crossref_primary_10_1007_s00766_022_00385_5 crossref_primary_10_1007_s44163_022_00030_8 crossref_primary_10_21926_obm_neurobiol_2503298 crossref_primary_10_3390_photonics11050442 crossref_primary_10_1093_jcde_qwab054 crossref_primary_10_1038_s41598_024_79139_y crossref_primary_10_1080_10291954_2025_2523661 crossref_primary_10_59940_jismar_1577691 crossref_primary_10_1016_j_geoen_2023_212231 crossref_primary_10_3390_bdcc6040126 crossref_primary_10_1109_ACCESS_2025_3565279 crossref_primary_10_1016_j_coelec_2024_101629 crossref_primary_10_1016_j_knosys_2021_106779 crossref_primary_10_3390_systems12110463 crossref_primary_10_1029_2023WR035139 crossref_primary_10_1186_s13195_023_01225_6 crossref_primary_10_1038_s41598_021_99400_y crossref_primary_10_63802_afs_v1_i1_80 crossref_primary_10_1109_JSTARS_2022_3195200 crossref_primary_10_1109_ACCESS_2024_3373552 crossref_primary_10_1145_3551385 crossref_primary_10_1016_j_jmapro_2023_03_043 crossref_primary_10_1186_s12859_022_04767_y crossref_primary_10_3390_ai2010007 crossref_primary_10_3390_electronics11040610 crossref_primary_10_3389_fpubh_2022_817570 crossref_primary_10_1016_j_frl_2023_104145 crossref_primary_10_55959_MSU0130_0105_6_60_3_14 crossref_primary_10_1051_e3sconf_202561201002 crossref_primary_10_1016_j_ijhcs_2022_102839 crossref_primary_10_1016_j_future_2021_04_007 crossref_primary_10_1016_j_chbah_2023_100015 crossref_primary_10_1038_s41612_024_00638_w crossref_primary_10_3390_math12193119 crossref_primary_10_1109_TSM_2023_3322142 crossref_primary_10_1007_s10796_021_10146_4 crossref_primary_10_1109_ACCESS_2021_3070212 crossref_primary_10_1016_j_inffus_2020_09_006 crossref_primary_10_1088_1741_2552_acae07 crossref_primary_10_1371_journal_pone_0282398 crossref_primary_10_7759_cureus_79409 crossref_primary_10_3390_s21175888 crossref_primary_10_3390_diagnostics12092084 crossref_primary_10_1145_3627820 crossref_primary_10_3390_electronics14081561 crossref_primary_10_1016_j_cie_2024_110449 crossref_primary_10_1080_10447318_2022_2062113 crossref_primary_10_3390_bdcc6040117 crossref_primary_10_3390_electronics10070871 crossref_primary_10_1080_1206212X_2024_2404082 crossref_primary_10_1109_TITS_2021_3083957 crossref_primary_10_1016_j_inffus_2020_09_003 crossref_primary_10_1016_j_jbusres_2024_114610 crossref_primary_10_1097_MOU_0000000000000884 crossref_primary_10_1007_s00500_023_08258_x crossref_primary_10_3390_a16040177 crossref_primary_10_1155_2022_8167821 crossref_primary_10_1145_3662178 crossref_primary_10_1080_10934529_2024_2309102 crossref_primary_10_1016_j_compmedimag_2022_102171 crossref_primary_10_1016_j_jksuci_2022_10_015 crossref_primary_10_1029_2025JH000703 crossref_primary_10_1109_TVT_2024_3359426 crossref_primary_10_1016_j_neucom_2022_07_025 crossref_primary_10_1016_j_comnet_2024_110303 crossref_primary_10_1016_j_compag_2023_108387 crossref_primary_10_1038_s41592_021_01205_4 crossref_primary_10_1109_TIV_2023_3318113 crossref_primary_10_1016_j_artint_2024_104107 crossref_primary_10_1016_j_artmed_2024_103030 crossref_primary_10_1007_s10677_023_10390_4 crossref_primary_10_1177_10944281251323248 crossref_primary_10_1002_msd2_70004 crossref_primary_10_1038_s41598_025_12003_9 crossref_primary_10_1093_eurheartj_ehac238 crossref_primary_10_1007_s10462_022_10355_6 crossref_primary_10_1016_j_watres_2024_122751 crossref_primary_10_1016_j_engappai_2024_109767 crossref_primary_10_1016_j_asoc_2025_113300 crossref_primary_10_1145_3506734 crossref_primary_10_1038_s43018_025_00917_2 crossref_primary_10_1109_ACCESS_2025_3572423 crossref_primary_10_3390_app15010146 crossref_primary_10_1016_j_tele_2024_102227 crossref_primary_10_1186_s43093_025_00462_5 crossref_primary_10_1007_s12144_025_07357_2 crossref_primary_10_1093_bib_bbaf414 crossref_primary_10_1007_s41870_023_01289_5 crossref_primary_10_1145_3686164 crossref_primary_10_2196_53863 crossref_primary_10_1371_journal_pone_0300670 crossref_primary_10_1002_minf_202100315 crossref_primary_10_3390_s25020531 crossref_primary_10_1016_j_icte_2024_09_008 crossref_primary_10_3390_info14070401 crossref_primary_10_3389_frobt_2021_650325 crossref_primary_10_1016_j_compmedimag_2022_102158 crossref_primary_10_1016_j_chemolab_2024_105196 crossref_primary_10_1145_3705724 crossref_primary_10_3390_app142311288 crossref_primary_10_3390_ai6010016 crossref_primary_10_1016_j_patrec_2021_06_030 crossref_primary_10_1016_j_watres_2024_122779 crossref_primary_10_1016_j_watres_2024_122777 crossref_primary_10_1108_DTS_01_2023_0003 crossref_primary_10_1016_j_techfore_2025_124272 crossref_primary_10_51477_mejs_1640908 crossref_primary_10_2478_am_2023_0006 crossref_primary_10_1177_1071181321651063 crossref_primary_10_1002_aisy_202200236 crossref_primary_10_1186_s12911_024_02576_2 crossref_primary_10_1016_j_neucom_2021_05_109 crossref_primary_10_1057_s41599_023_02464_6 crossref_primary_10_1038_s41598_024_53169_y crossref_primary_10_1016_j_ecss_2022_108062 crossref_primary_10_1109_TII_2022_3146552 crossref_primary_10_1002_msd2_70017 crossref_primary_10_1016_j_cag_2021_09_002 crossref_primary_10_1007_s10140_023_02121_0 crossref_primary_10_1038_s44334_024_00006_9 crossref_primary_10_1111_2041_210X_14061 crossref_primary_10_1016_j_neucom_2023_02_040 crossref_primary_10_3390_diagnostics15050612 crossref_primary_10_1016_j_eswa_2022_117230 crossref_primary_10_1155_2021_9991535 crossref_primary_10_3390_ma17164038 crossref_primary_10_1007_s00146_024_02040_9 crossref_primary_10_1007_s11747_023_00986_8 crossref_primary_10_1007_s43681_024_00485_8 crossref_primary_10_1016_j_asoc_2024_111269 crossref_primary_10_51473_rcmos_v2i2_2022_1233 crossref_primary_10_1007_s10489_024_05981_2 crossref_primary_10_1109_LRA_2022_3214789 crossref_primary_10_1145_3491209 crossref_primary_10_3390_app11136073 crossref_primary_10_1109_TAI_2022_3150647 crossref_primary_10_1016_j_iot_2022_100673 crossref_primary_10_1016_j_iot_2023_100993 crossref_primary_10_1007_s10489_024_05808_0 crossref_primary_10_4018_JGIM_372081 crossref_primary_10_1016_j_chb_2021_107095 crossref_primary_10_1016_j_inffus_2024_102782 crossref_primary_10_1016_j_jag_2024_103878 crossref_primary_10_1109_MC_2024_3354040 crossref_primary_10_1088_1742_6596_2438_1_012082 crossref_primary_10_1016_j_autcon_2024_105411 crossref_primary_10_1002_asi_24642 crossref_primary_10_3390_a15060199 crossref_primary_10_1088_2632_2153_ad16a0 |
| Cites_doi | 10.1016/S0893-6080(01)00127-7 10.1016/j.ins.2012.10.039 10.25300/MISQ/2014/38.1.04 10.32614/CRAN.package.inTrees 10.1109/DSAA.2018.00018 10.1007/s11063-006-9007-8 10.1111/j.2517-6161.1996.tb02080.x 10.1109/TPAMI.2005.78 10.1109/GlobalSIP45357.2019.8969491 10.1016/j.inffus.2017.02.007 10.32470/CCN.2018.1113-0 10.1080/09540091.2017.1310182 10.1111/geb.12335 10.1145/2594473.2594475 10.1016/j.artmed.2007.07.008 10.1089/big.2016.0051 10.1016/S0362-546X(96)00267-2 10.1016/j.neucom.2005.12.118 10.1080/01621459.1998.10473750 10.1145/1007730.1007734 10.1007/s10618-014-0368-8 10.1089/big.2017.0074 10.1023/A:1022643204877 10.1080/10618600.2014.907095 10.1016/S0304-3800(02)00204-1 10.1002/asmb.658 10.1109/MCI.2018.2881645 10.1177/2053951715622512 10.1093/bioinformatics/bth098 10.1109/CVPR.2019.00509 10.1007/s11063-011-9207-8 10.1145/3236386.3241340 10.1038/538020a 10.1016/j.inffus.2018.11.019 10.1038/nmat3568 10.1007/s00521-013-1362-6 10.23915/distill.00007 10.1016/j.artint.2018.07.007 10.18653/v1/D19-1250 10.1016/S0031-3203(98)00181-2 10.1145/2700832 10.18653/v1/D16-1011 10.1016/j.inffus.2019.05.004 10.1016/S0020-7373(87)80053-6 10.1093/icesjms/fsp105 10.1089/big.2016.0050 10.1038/s42256-019-0048-x 10.23915/distill.00010 10.1186/1758-2946-3-11 10.1109/TKDE.2007.190734 10.1109/TNNLS.2018.2886017 10.1109/TITB.2006.880553 10.1109/21.299696 10.1016/j.cub.2016.10.015 10.1016/j.dss.2011.01.013 10.1109/ACCESS.2019.2949286 10.1109/TVCG.2016.2598831 10.1214/15-AOAS848 10.1371/journal.pone.0130140 10.1093/esr/jcp006 10.1089/big.2016.0047 10.1016/j.csda.2006.11.006 10.18653/v1/D16-1044 10.1038/nmat1691 10.1016/j.inffus.2017.10.001 10.1023/A:1022699900025 10.1109/ICRA40945.2020.9196653 10.1016/j.inffus.2018.10.005 10.1016/j.aca.2007.03.023 10.32614/RJ-2018-072 10.1016/S0304-3800(02)00064-9 10.2139/ssrn.3518482 10.1109/TVCG.2019.2934262 10.1109/69.774103 10.1016/j.eswa.2011.08.040 10.1109/TNN.2005.863472 10.1016/j.inffus.2018.11.002 10.1109/59.336122 10.1023/A:1014858517172 10.1080/02331930701618740 10.3150/13-BEJSP14 10.1126/sciadv.aao5580 10.1016/j.ejor.2006.04.051 10.1007/978-3-030-53352-6_24 10.1016/j.patcog.2016.11.008 10.1007/s11229-011-0020-8 10.1007/978-1-4757-1904-8_7 10.1093/idpl/ipx005 10.1007/s10115-011-0463-8 10.1007/s11263-016-0966-6 10.1177/1471082X0901000404 10.1093/oxfordjournals.aje.a009864 10.1016/j.neucom.2014.08.081 10.1097/00001888-199805000-00024 10.18653/v1/N16-1082 10.1080/00220670209598786 10.1609/aaai.v31i1.10924 10.1109/CVPR.2018.00175 10.1177/2053951716674238 10.1109/TCDS.2016.2628365 10.1155/2010/901095 10.1186/1751-0473-3-17 10.1016/j.dsp.2017.10.011 10.1109/72.623216 10.1023/A:1008307919726 10.1007/s10044-006-0025-y 10.1111/1745-9133.12047 10.1089/big.2016.0054 10.1016/j.inffus.2018.12.001 10.1145/219717.219768 10.1007/978-3-319-46493-0_1 10.18653/v1/W17-5221 10.1109/MSP.2018.2701164 10.1016/j.cobeha.2018.12.010 10.1073/pnas.1711236115 10.1109/TKDE.2007.190610 10.1111/j.0006-341X.2000.00909.x 10.1109/72.839008 10.1016/0020-0190(76)90095-8 10.1089/big.2016.0007 10.1109/ACCESS.2019.2905015 10.1109/72.728352 10.1016/j.dss.2010.12.003 10.1007/978-3-030-01219-9_47 10.1109/CVPRW.2014.131 10.18653/v1/D16-1092 10.1089/big.2016.0048 10.1080/02664760120074979 10.1023/A:1022683529158 10.1109/TKDE.2009.191 10.1016/S1088-467X(98)00023-7 10.1021/cm100795d 10.1109/72.809084 10.1109/ACCESS.2018.2870052 10.1023/A:1012489924661 10.1093/intqhc/mzg031 10.1016/j.media.2015.06.008 10.1006/jmsc.1998.0425 10.1016/j.mineng.2012.05.008 10.1007/s10115-017-1116-3 10.1609/aimag.v38i3.2741 10.1016/j.inffus.2017.12.007 10.1016/S0893-6080(00)00026-5 10.1016/j.inffus.2018.11.007 10.1007/978-3-030-46147-8_31 10.1016/j.fss.2008.05.016 10.1109/TKDE.2017.2720168 10.1109/CVPR.2018.00915 |
| ContentType | Journal Article |
| Copyright | 2019 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2019 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC |
| DOI | 10.1016/j.inffus.2019.12.012 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1872-6305 |
| EndPage | 115 |
| ExternalDocumentID | oai:HAL:hal-02381211v1 10_1016_j_inffus_2019_12_012 S1566253519308103 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K UHS ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 1XC |
| ID | FETCH-LOGICAL-c386t-c4cc47fde54644eb355aa1968c3c48c109f71260bf0c64e60c844b018aacd2543 |
| ISICitedReferencesCount | 5163 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000516799200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1566-2535 |
| IngestDate | Tue Oct 14 20:32:22 EDT 2025 Tue Nov 18 22:10:31 EST 2025 Sat Nov 29 07:06:43 EST 2025 Fri Feb 23 02:47:02 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Explainable Artificial Intelligence Privacy Data Fusion Comprehensibility Transparency Interpretability Accountability Machine Learning Responsible Artificial Intelligence Deep Learning Fairness |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c386t-c4cc47fde54644eb355aa1968c3c48c109f71260bf0c64e60c844b018aacd2543 |
| ORCID | 0000-0001-7822-0634 0000-0003-3362-9326 |
| OpenAccessLink | http://hdl.handle.net/20.500.11824/1166 |
| PageCount | 34 |
| ParticipantIDs | hal_primary_oai_HAL_hal_02381211v1 crossref_primary_10_1016_j_inffus_2019_12_012 crossref_citationtrail_10_1016_j_inffus_2019_12_012 elsevier_sciencedirect_doi_10_1016_j_inffus_2019_12_012 |
| PublicationCentury | 2000 |
| PublicationDate | June 2020 2020-06-00 2020-06 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Information fusion |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Aditya, Sen, Druschel, Joon Oh, Benenson, Fritz, Schiele, Bhattacharjee, Wu (bib0421) 2016 Olah, Satyanarayan, Johnson, Carter, Schubert, Ye, Mordvintsev (bib0295) 2018 Schrodt, Kattge, Shan, Fazayeli, Joswig, Banerjee, Reichstein, Bönisch, Díaz, Dickie (bib0382) 2015; 24 Kim, Glassman, Johnson, Shah (bib0031) 2015 Cortez, Embrechts (bib0222) 2011 R. Guidotti, A. Monreale, S. Ruggieri, D. Pedreschi, F. Turini, F. Giannotti, Local rule-based explanations of black box decision systems, 2018. G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network, 2015. Utgoff (bib0181) 1989; 4 Lau, Marakkalage, Zhou, Hassan, Yuen, Zhang, Tan (bib0412) 2019; 52 Neelon, O’Malley, Normand (bib0202) 2010; 10 Sundararajan, Taly, Yan (bib0262) 2017; 70 N. Papernot, P. McDaniel, Deep k-nearest neighbors: Towards confident, interpretable and robust deep learning, 2018. J.T. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller, Striving for simplicity: The all convolutional net, 2014. F.J.C. Garcia, D.A. Robb, X. Liu, A. Laskov, P. Patron, H. Hastie, Explain yourself: A natural language interface for scrutable autonomous robots, 2018. D. Smilkov, N. Thorat, B. Kim, F. Viégas, M. Wattenberg, SmoothGrad: removing noise by adding noise, 2017. B. Biggio, I. Pillai, S.R. Bulò, D. Ariu, M. Pelillo, F. Roli, Is data clustering in adversarial settings secure?, 2018. Fu, Ong, Keerthi, Hung, Goh (bib0098) 2004; 1 Oh, Schiele, Fritz (bib0357) 2019 Neerincx, van der Waa, Kaptein, van Diggelen (bib0065) 2018 Freitas (bib0053) 2014; 15 M.T. Ribeiro, S. Singh, C. Guestrin, Model-agnostic interpretability of machine learning, 2016. Goudet, Kalainathan, Caillou, Guyon, Lopez-Paz, Sebag (bib0040) 2018 Domingos (bib0119) 1998; 2 Dos̃ilović, Brc̃ić, Hlupić (bib0010) 2018 O. Bastani, C. Kim, H. Bastani, Interpretability via model extraction, 2017. Yu (bib0167) 2013; 19 G. Su, D. Wei, K.R. Varshney, D.M. Malioutov, Interpretable two-level boolean rule learning for classification, 2015. Ribeiro, Singh, Guestrin (bib0032) 2016 Letham, Rudin, McCormick, Madigan (bib0049) 2015; 9 Staniak, Biecek (bib0141) 2018; 10 Taylan, Weber, Beck (bib0195) 2007; 56 Agrawal, Gollapudi, Halverson, Ieong (bib0405) 2009 Montavon, Lapuschkin, Binder, Samek, Müller (bib0060) 2017; 65 Johansson, Niklasson (bib0149) 2009 D. Bouchacourt, L. Denoyer, EDUCE: explaining model decisions through unsupervised concepts extraction, 2019. Zhu, Liapis, Risi, Bidarra, Youngblood (bib0009) 2018 Jiang, Pang, Wu, Kuang (bib0189) 2012; 39 Q. Zhang, Y. Yang, Y. Liu, Y. Nian Wu, S.-C. Zhu, Unsupervised Learning of Neural Networks to Explain Neural Networks, 2018. Zheng, Jayasumana, Romera-Paredes, Vineet, Su, Du, Huang, Torr (bib0305) 2015 Pope, Kolouri, Rostami, Martin, Hoffmann (bib0155) 2019 R. Shwartz-Ziv, N. Tishby, Opening the black box of deep neural networks via information, 2017. D.P. Kingma, M. Welling, Auto-Encoding Variational Bayes, 2013. Athey, Imbens (bib0041) 2015; 1050 Hosmer Jr, Lemeshow, Sturdivant (bib0176) 2013; 398 I.J. Goodfellow, N. Papernot, P.D. McDaniel, cleverhans v0.1: an adversarial machine learning library, 2016. Wang, Fratiglioni, Frisoni, Viitanen, Winblad (bib0159) 1999; 149 Rani, Liu, Sarkar, Vanman (bib0160) 2006; 9 Miller (bib0012) 2019; 267 H. Lakkaraju, E. Kamar, R. Caruana, J. Leskovec, Interpretable & explorable approximations of black box models, 2017. James, Witten, Hastie, Tibshirani (bib0163) 2013; 112 Martens, Provost (bib0236) 2014; 38 Lerman (bib0404) 2013; 66 Barakat, Bradley (bib0093) 2007; 19 United-Nations (bib0387) 2015 C. Dwork, C. Ilvento, Composition of fairsystems, 2018. Wang, Yang, Li, Chen, Hu (bib0407) 2019; 51 G.D. Hager, A. Drobnis, F. Fang, R. Ghani, A. Greenwald, T. Lyons, D.C. Parkes, J. Schultz, S. Saria, S.F. Smith, M. Tambe, Artificial intelligence for social good, 2019. D. Huk Park, L.A. Hendricks, Z. Akata, A. Rohrbach, B. Schiele, T. Darrell, M. Rohrbach, Multimodal Explanations: Justifying Decisions and Pointing to the Evidence, 2018. Clos, Wiratunga, Massie (bib0282) 2017 Tibshirani (bib0170) 1996; 58 Bach, Binder, Müller, Samek (bib0063) 2016 Caruana, Lou, Gehrke, Koch, Sturm, Elhadad (bib0044) 2015 Zeiler, Taylor, Fergus (bib0291) 2011; 1 d’Alessandro, O’Neil, LaGatta (bib0391) 2017; 5 W.J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, B. Yu, Interpretable machine learning: definitions, methods, and applications, 2019. Berg (bib0193) 2007; 23 J. Adebayo, J. Gilmer, I. Goodfellow, B. Kim, Local explanation methods for deep neural networks lack sensitivity to parameter values, 2018. M. Kearns, S. Neel, A. Roth, Z.S. Wu, Preventing fairness gerrymandering: Auditing and learning for subgroup fairness, 2017. Higgins, Matthey, Pal, Burgess, Glorot, Botvinick, Mohamed, Lerchner (bib0339) 2017 Lundberg, Lee (bib0224) 2017 Johansson, König, Niklasson (bib0321) 2005; 2 S. Sabour, N. Frosst, G. E Hinton, Dynamic Routing Between Capsules, 2017. Xu, Ba, Kiros, Cho, Courville, Salakhudinov, Zemel, Bengio (bib0091) 2015 Santoro, Raposo, Barrett, Malinowski, Pascanu, Battaglia, Lillicrap (bib0075) 2017 Shane T. Mueller, Hoffman, Clancey, Klein (bib0016) 2019 Basu, Kumbier, Brown, Yu (bib0166) 2018; 115 A. Preece, D. Harborne, D. Braines, R. Tomsett, S. Chakraborty, Stakeholders in Explainable AI, 2018. Rosenbaum, Hinselmann, Jahn, Zell (bib0068) 2011; 3 A. Shrikumar, P. Greenside, A. Kundaje, Learning Important Features Through Propagating Activation Differences, 2017. T. Hailesilassie, Rule extraction algorithm for deep neural networks: A review, 2016. B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viegas, R. Sayres, Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (TCAV), 2017. Griffiths, Kemp, Tenenbaum (bib0201) 2008 Hoffrage, Gigerenzer (bib0178) 1998; 73 Zilke, Mencía, Janssen (bib0257) 2016 High Level Expert Group on Artificial Intelligence (bib0390) 2019 B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Object Detectors Emerge in Deep Scene CNNs, 2014. Zhao, Xie, Xu, Sun (bib0419) 2017; 38 Datta, Sen, Zick (bib0173) 2016 Arbatli, Akin (bib0148) 1997; 30 Krishnan, Wu (bib0233) 2017 Zhou, Khosla, Lapedriza, Oliva, Torralba (bib0096) 2016 Wu, Hughes, Parbhoo, Zazzi, Roth, Doshi-Velez (bib0079) 2018 Attenberg, Ipeirotis, Provost (bib0371) 2015; 6 Jakulin, Možina, Demšar, Bratko, Zupan (bib0250) 2005 Louizos, Shalit, Mooij, Sontag, Zemel, Welling (bib0039) 2017 Curtarolo, Hart, Nardelli, Mingo, Sanvito, Levy (bib0377) 2013; 12 Krening, Harrison, Feigh, Isabell, Riedl, Thomaz (bib0070) 2017; 9 Sollich (bib0248) 2000 Manhaeve, Dumancic, Kimmig, Demeester, De Raedt (bib0300) 2018 Y. Zhang, X. Chen, Explainable Recommendation: A Survey and New Perspectives, 2018. C. Barabas, K. Dinakar, J. Ito, M. Virza, J. Zittrain, Interventions over predictions: Reframing the ethical debate for actuarial risk assessment, 2017. Schetinin, Fieldsend, Partridge, Coats, Krzanowski, Everson, Bailey, Hernandez (bib0054) 2007; 11 Gleicher (bib0020) 2016; 4 Bursac, Gauss, Williams, Hosmer (bib0174) 2008; 3 P. Gajane, M. Pechenizkiy, On formalizing fairness in prediction with machine learning, 2017. A. Fukui, D. Huk Park, D. Yang, A. Rohrbach, T. Darrell, M. Rohrbach, Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding, 2016. Caruana (bib0317) 2000 Drosou, Jagadish, Pitoura, Stoyanovich (bib0403) 2017; 5 Núñez, Angulo, Català (bib0246) 2002 Baumgartner, Koch, Can Tezcan, Xi Ang, Konukoglu (bib0366) 2018 Adebayo, Gilmer, Muelly, Goodfellow, Hardt, Kim (bib0294) 2018 X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, P. Abbeel, InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets, 2016. Larsen, Petersen, Budtz-Jørgensen, Endahl (bib0115) 2000; 56 Martens, Baesens, Van Gestel, Vanthienen (bib0095) 2007; 183 Speicher, Heidari, Grgic-Hlaca, Gummadi, Singla, Weller, Zafar (bib0394) 2018 Zeiler, Krishnan, Taylor, Fergus (bib0142) 2010; 10 A. Lucic, H. Haned, M. de Rijke, Explaining predictions from tree-based boosting ensembles, 2019. Ding, Jing, Yan, Yang (bib0408) 2019; 51 Gaonkar, Shinohara, Davatzikos, Initiative (bib0116) 2015; 24 Gunning (bib0007) 2017 Barocas, Hardt, Narayanan (bib0158) 2019 Nguyen, Dosovitskiy, Yosinski, Brox, Clune (bib0268) 2016 G. Marra, F. Giannini, M. Diligenti, M. Gori, Integrating learning and reasoning with deep logic models, 2019. Sharma, Henderson, Ghosh (bib0402) 2019 Lou, Caruana, Gehrke (bib0171) 2012 Tan, Caruana, Hooker, Lou (bib0120) 2018 T. Orekondy, B. Schiele, M. Fritz, Knockoff nets: Stealing functionality of black-box models, 2018. Zhang, Nie, Li, Wei (bib0418) 2019; 50 Jaccard (bib0175) 2001 A.S. d’Avila Garcez, M. Gori, L.C. Lamb, L. Serafini, M. Spranger, S.N. Tran, Neural-symbolic computing: An effective methodology for principled integration of machine learning and reasoning, 2019. Kelley, Clark, Brown, Sitzia (bib0354) 2003; 15 L.H. Gilpin, D. Bau, B.Z. Yuan, A. Bajwa, M. Specter, L. Kagal, Explaining Explanations: An Overview of Interpretability of Machine Learning, 2018. S. Wisdom, T. Powers, J. Pitton, L. Atlas, Interpretable recurrent neural networks using sequential sparse recovery, 2016. Ahn, Lin (bib0398) 2019 Michalski (bib0022) 1983 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, Attention Is All You Need, 2017. Lipton (bib0005) 2018; 16 E. Akyol, C. Langbort, T. Basar, Price of transparency in strategic machine learning, 2016. Bollacker, Díaz-Rodríguez, Li (bib0309) 2019 Narodytska, Ignatiev, Pereira, Marques-Silva (bib0306) 2018 Ribeiro, Singh, Guestrin (bib0235) 2018 Guisan, Edwards Jr, Hastie (bib0198) 2002; 157 Rudin (bib0384) 2018 S. Liu, B. Kailkhura, D. Loveland, Y. Han, Generative counterfactual introspection for explainable deep learning, 2019. Theodorou, Wortham, Bryson (bib0045) 2017; 29 Min, Simonis, Hense (bib0205) 2007; 365 Breiman (bib0286) 2017 Zemel, Wu, Swersky, Pitassi, Dwork (bib0396) 2013 Synnaeve, Bessiere (bib0204) 2011 Auret, Aldrich (bib0241) 2012; 35 Zolotas, Demiris (bib0311) 2019 Soares, Angelov (bib0399) 2019 Leslie (10.1016/j.inffus.2019.12.012_bib0383) 2019 Zeiler (10.1016/j.inffus.2019.12.012_bib0136) 2014 Arbatli (10.1016/j.inffus.2019.12.012_bib0148) 1997; 30 Pierrot (10.1016/j.inffus.2019.12.012_bib0200) 2011 Adadi (10.1016/j.inffus.2019.12.012_bib0014) 2018; 6 Craven (10.1016/j.inffus.2019.12.012_bib0021) 1996 Pearl (10.1016/j.inffus.2019.12.012_bib0161) 2009 Zeiler (10.1016/j.inffus.2019.12.012_bib0291) 2011; 1 Taylan (10.1016/j.inffus.2019.12.012_bib0195) 2007; 56 Dong (10.1016/j.inffus.2019.12.012_bib0423) 2013 Stahl (10.1016/j.inffus.2019.12.012_bib0389) 2018; 16 Soares (10.1016/j.inffus.2019.12.012_bib0399) 2019 Russell (10.1016/j.inffus.2019.12.012_bib0001) 2016 Barocas (10.1016/j.inffus.2019.12.012_bib0392) 2016; 104 Basu (10.1016/j.inffus.2019.12.012_bib0166) 2018; 115 Krishnan (10.1016/j.inffus.2019.12.012_bib0097) 1999; 32 Calabrese (10.1016/j.inffus.2019.12.012_bib0194) 2012 Baumgartner (10.1016/j.inffus.2019.12.012_bib0366) 2018 Lerman (10.1016/j.inffus.2019.12.012_bib0404) 2013; 66 Larsen (10.1016/j.inffus.2019.12.012_bib0115) 2000; 56 Letham (10.1016/j.inffus.2019.12.012_bib0049) 2015; 9 Chen (10.1016/j.inffus.2019.12.012_bib0237) 2017; 5 Barakat (10.1016/j.inffus.2019.12.012_bib0057) 2008; 2 Berk (10.1016/j.inffus.2019.12.012_bib0121) 2013; 12 Zemel (10.1016/j.inffus.2019.12.012_bib0396) 2013 Kim (10.1016/j.inffus.2019.12.012_bib0209) 2014 Berry (10.1016/j.inffus.2019.12.012_bib0337) 2007; 52 Olden (10.1016/j.inffus.2019.12.012_bib0066) 2002; 154 Zhao (10.1016/j.inffus.2019.12.012_bib0419) 2017; 38 Zhang (10.1016/j.inffus.2019.12.012_bib0078) 2019 Zeiler (10.1016/j.inffus.2019.12.012_bib0142) 2010; 10 Taha (10.1016/j.inffus.2019.12.012_bib0255) 1999; 11 Berg (10.1016/j.inffus.2019.12.012_bib0193) 2007; 23 Oh (10.1016/j.inffus.2019.12.012_bib0420) 2016 Zhang (10.1016/j.inffus.2019.12.012_bib0424) 2015 Quinlan (10.1016/j.inffus.2019.12.012_bib0191) 1987; 87 Cortez (10.1016/j.inffus.2019.12.012_bib0222) 2011 Bach (10.1016/j.inffus.2019.12.012_bib0063) 2016 Diez-Olivan (10.1016/j.inffus.2019.12.012_bib0348) 2019; 50 Biffi (10.1016/j.inffus.2019.12.012_bib0367) 2018 McAllister (10.1016/j.inffus.2019.12.012_bib0203) 1998; 55 Lau (10.1016/j.inffus.2019.12.012_bib0412) 2019; 52 Michalski (10.1016/j.inffus.2019.12.012_bib0022) 1983 Choi (10.1016/j.inffus.2019.12.012_bib0285) 2016 Kim (10.1016/j.inffus.2019.12.012_bib0210) 2016 Schmitz (10.1016/j.inffus.2019.12.012_bib0258) 1999; 10 Donahue (10.1016/j.inffus.2019.12.012_bib0274) 2015 Agrawal (10.1016/j.inffus.2019.12.012_bib0405) 2009 Tolomei (10.1016/j.inffus.2019.12.012_bib0240) 2017 Neelon (10.1016/j.inffus.2019.12.012_bib0202) 2010; 10 Tan (10.1016/j.inffus.2019.12.012_bib0120) 2018 Goodman (10.1016/j.inffus.2019.12.012_bib0003) 2017; 38 Utgoff (10.1016/j.inffus.2019.12.012_bib0181) 1989; 4 Koh (10.1016/j.inffus.2019.12.012_bib0221) 2017 Staniak (10.1016/j.inffus.2019.12.012_bib0141) 2018; 10 Sharma (10.1016/j.inffus.2019.12.012_bib0402) 2019 Zolotas (10.1016/j.inffus.2019.12.012_bib0311) 2019 Liu (10.1016/j.inffus.2019.12.012_bib0270) 2016; 23 Ramírez-Gallego (10.1016/j.inffus.2019.12.012_bib0413) 2018; 42 Loyola-González (10.1016/j.inffus.2019.12.012_bib0307) 2019; 7 Ding (10.1016/j.inffus.2019.12.012_bib0410) 2019; 51 Towell (10.1016/j.inffus.2019.12.012_bib0252) 1993; 13 Ruppert (10.1016/j.inffus.2019.12.012_bib0165) 1987 Tickle (10.1016/j.inffus.2019.12.012_bib0038) 1998; 9 Mahendran (10.1016/j.inffus.2019.12.012_bib0137) 2015 Donadello (10.1016/j.inffus.2019.12.012_bib0298) 2018 Harbers (10.1016/j.inffus.2019.12.012_bib0050) 2010; 2 Guisan (10.1016/j.inffus.2019.12.012_bib0198) 2002; 157 Buciluǎ (10.1016/j.inffus.2019.12.012_bib0289) 2006 Hardt (10.1016/j.inffus.2019.12.012_bib0393) 2016 Etchells (10.1016/j.inffus.2019.12.012_bib0073) 2006; 17 Lipton (10.1016/j.inffus.2019.12.012_bib0005) 2018; 16 Ras (10.1016/j.inffus.2019.12.012_bib0062) 2018 Edwards (10.1016/j.inffus.2019.12.012_bib0089) 2017; 16 Zhu (10.1016/j.inffus.2019.12.012_bib0009) 2018 Montavon (10.1016/j.inffus.2019.12.012_bib0018) 2018; 73 Burrell (10.1016/j.inffus.2019.12.012_bib0109) 2016; 3 Hooker (10.1016/j.inffus.2019.12.012_bib0219) 2004 Yuan (10.1016/j.inffus.2019.12.012_bib0048) 2019; 30 Synnaeve (10.1016/j.inffus.2019.12.012_bib0204) 2011 Cassandra (10.1016/j.inffus.2019.12.012_bib0207) 1996; 2 Du (10.1016/j.inffus.2019.12.012_bib0326) 2017 Aung (10.1016/j.inffus.2019.12.012_bib0051) 2007 Sun (10.1016/j.inffus.2019.12.012_bib0417) 2013; 23 Xu (10.1016/j.inffus.2019.12.012_bib0379) 2015 Thrun (10.1016/j.inffus.2019.12.012_bib0253) 1994 Ribeiro (10.1016/j.inffus.2019.12.012_bib0032) 2016 Gunning (10.1016/j.inffus.2019.12.012_bib0007) 2017 Vellido (10.1016/j.inffus.2019.12.012_bib0026) 2012; 12 Zheng (10.1016/j.inffus.2019.12.012_bib0305) 2015 Núñez (10.1016/j.inffus.2019.12.012_bib0127) 2006; 24 Donadello (10.1016/j.inffus.2019.12.012_bib0297) 2017 Schrodt (10.1016/j.inffus.2019.12.012_bib0382) 2015; 24 Goldstein (10.1016/j.inffus.2019.12.012_bib0238) 2015; 24 Wachter (10.1016/j.inffus.2019.12.012_bib0355) 2017; 7 Sundararajan (10.1016/j.inffus.2019.12.012_bib0262) 2017; 70 Oh (10.1016/j.inffus.2019.12.012_bib0357) 2019 Lu (10.1016/j.inffus.2019.12.012_bib0331) 2016 Biran (10.1016/j.inffus.2019.12.012_bib0015) 2017; 8 Casalicchio (10.1016/j.inffus.2019.12.012_bib0239) 2018 Domingos (10.1016/j.inffus.2019.12.012_bib0119) 1998; 2 Green (10.1016/j.inffus.2019.12.012_bib0099) 2018 Curtarolo (10.1016/j.inffus.2019.12.012_bib0377) 2013; 12 Zhou (10.1016/j.inffus.2019.12.012_bib0083) 2003; 16 Huysmans (10.1016/j.inffus.2019.12.012_bib0092) 2011; 51 Craven (10.1016/j.inffus.2019.12.012_bib0147) 1994 Drosou (10.1016/j.inffus.2019.12.012_bib0403) 2017; 5 Speicher (10.1016/j.inffus.2019.12.012_bib0394) 2018 Sollich (10.1016/j.inffus.2019.12.012_bib0247) 2002; 46 Setiono (10.1016/j.inffus.2019.12.012_bib0254) 2000; 12 Shane T. Mueller (10.1016/j.inffus.2019.12.012_bib0016) 2019 Xiao (10.1016/j.inffus.2019.12.012_bib0278) 2015 Montavon (10.1016/j.inffus.2019.12.012_bib0060) 2017; 65 Zhou (10.1016/j.inffus.2019.12.012_bib0108) 2008; 159 Landecker (10.1016/j.inffus.2019.12.012_bib0249) 2013 Pope (10.1016/j.inffus.2019.12.012_bib0155) 2019 Wang (10.1016/j.inffus.2019.12.012_bib0407) 2019; 51 Weiss (10.1016/j.inffus.2019.12.012_bib0370) 2004; 6 McMahan (10.1016/j.inffus.2019.12.012_bib0415) 2017 Peng (10.1016/j.inffus.2019.12.012_bib0076) 2002; 43 Bellini (10.1016/j.inffus.2019.12.012_bib0313) 2018 10.1016/j.inffus.2019.12.012_bib0319 Sollich (10.1016/j.inffus.2019.12.012_bib0248) 2000 Fernandez (10.1016/j.inffus.2019.12.012_bib0019) 2019; 14 10.1016/j.inffus.2019.12.012_bib0312 Zhang (10.1016/j.inffus.2019.12.012_bib0397) 2018 10.1016/j.inffus.2019.12.012_bib0314 10.1016/j.inffus.2019.12.012_bib0315 10.1016/j.inffus.2019.12.012_bib0318 Üstün (10.1016/j.inffus.2019.12.012_bib0077) 2007; 595 10.1016/j.inffus.2019.12.012_bib0308 Navia-Vázquez (10.1016/j.inffus.2019.12.012_bib0134) 2006; 69 10.1016/j.inffus.2019.12.012_bib0302 10.1016/j.inffus.2019.12.012_bib0303 Seo (10.1016/j.inffus.2019.12.012_bib0114) 2017 Hastie (10.1016/j.inffus.2019.12.012_bib0124) 2017 10.1016/j.inffus.2019.12.012_bib0310 Núñez (10.1016/j.inffus.2019.12.012_bib0246) 2002 Pan (10.1016/j.inffus.2019.12.012_bib0425) 2009; 22 Benitez (10.1016/j.inffus.2019.12.012_bib0320) 1997; 8 Kanehira (10.1016/j.inffus.2019.12.012_bib0139) 2019 Núñez (10.1016/j.inffus.2019.12.012_bib0244) 2006; 24 Lopez-Paz (10.1016/j.inffus.2019.12.012_bib0042) 2017 Martens (10.1016/j.inffus.2019.12.012_bib0055) 2011; 51 Zhang (10.1016/j.inffus.2019.12.012_bib0074) 2017 10.1016/j.inffus.2019.12.012_bib0414 Donadello (10.1016/j.inffus.2019.12.012_bib0301) 2019 10.1016/j.inffus.2019.12.012_bib0416 Wu (10.1016/j.inffus.2019.12.012_bib0079) 2018 Nefeslioglu (10.1016/j.inffus.2019.12.012_bib0185) 2010; 2010 Bau (10.1016/j.inffus.2019.12.012_bib0125) 2017 Tsukimoto (10.1016/j.inffus.2019.12.012_bib0256) 2000; 11 Kelley (10.1016/j.inffus.2019.12.012_bib0354) 2003; 15 Rokach (10.1016/j.inffus.2019.12.012_bib0183) 2014; 69 Ribeiro (10.1016/j.inffus.2019.12.012_bib0235) 2018 Lundberg (10.1016/j.inffus.2019.12.012_bib0224) 2017 Varshney (10.1016/j.inffus.2019.12.012_bib0369) 2017; 5 Goudet (10.1016/j.inffus.2019.12.012_bib0040) 2018 Che (10.1016/j.inffus.2019.12.012_bib0056) 2016; 2016 Henelius (10.1016/j.inffus.2019.12.012_bib0228) 2014; 28 Aditya (10.1016/j.inffus.2019.12.012_bib0421) 2016 Olah (10.1016/j.inffus.2019.12.012_bib0295) 2018 Neerincx (10.1016/j.inffus.2019.12.012_bib0065) 2018 Min (10.1016/j.inffus.2019.12.012_bib0205) 2007; 365 Dong (10.1016/j.inffus.2019.12.012_bib0111) 2017 Attenberg (10.1016/j.inffus.2019.12.012_bib0371) 2015; 6 Haasdonk (10.1016/j.inffus.2019.12.012_bib0102) 2005; 27 10.1016/j.inffus.2019.12.012_bib0356 Manhaeve (10.1016/j.inffus.2019.12.012_bib0300) 2018 10.1016/j.inffus.2019.12.012_bib0358 10.1016/j.inffus.2019.12.012_bib0117 10.1016/j.inffus.2019.12.012_bib0359 10.1016/j.inffus.2019.12.012_bib0118 10.1016/j.inffus.2019.12.012_bib0360 Mood (10.1016/j.inffus.2019.12.012_bib0179) 2010; 26 10.1016/j.inffus.2019.12.012_bib0363 10.1016/j.inffus.2019.12.012_bib0122 10.1016/j.inffus.2019.12.012_bib0123 Martens (10.1016/j.inffus.2019.12.012_bib0236) 2014; 38 Adler (10.1016/j.inffus.2019.12.012_bib0220) 2018; 54 Jaccard (10.1016/j.inffus.2019.12.012_bib0175) 2001 Johansson (10.1016/j.inffus.2019.12.012_bib0149) 2009 Rothery (10.1016/j.inffus.2019.12.012_bib0199) 2001; 28 Konig (10.1016/j.inffus.2019.12.012_bib0212) 2008 Johansson (10.1016/j.inffus.2019.12.012_bib0190) 2004 Griffiths (10.1016/j.inffus.2019.12.012_bib0201) 2008 Miller (10.1016/j.inffus.2019.12.012_bib0012) 2019; 267 Jakulin (10.1016/j.inffus.2019.12.012_bib0250) 2005 Bursac (10.1016/j.inffus.2019.12.012_bib0174) 2008; 3 Hyvärinen (10.1016/j.inffus.2019.12.012_bib0336) 2000; 13 10.1016/j.inffus.2019.12.012_bib0344 Smirnov (10.1016/j.inffus.2019.12.012_bib0409) 2019; 52 10.1016/j.inffus.2019.12.012_bib0345 10.1016/j.inffus.2019.12.012_bib0104 10.1016/j.inffus.2019.12.012_bib0226 10.1016/j.inffus.2019.12.012_bib0347 Tan (10.1016/j.inffus.2019.12.012_bib0069) 2014 10.1016/j.inffus.2019.12.012_bib0107 10.1016/j.inffus.2019.12.012_bib0349 10.1016/j.inffus.2019.12.012_ |
| References_xml | – volume: 12 start-page: 191 year: 2013 ident: bib0377 article-title: The high-throughput highway to computational materials design publication-title: Nature materials – start-page: 83 year: 1983 end-page: 134 ident: bib0022 article-title: A theory and methodology of inductive learning publication-title: Machine learning – volume: 17 start-page: 374 year: 2006 end-page: 384 ident: bib0073 article-title: Orthogonal search-based rule extraction (OSRE) for trained neural networks: a practical and efficient approach publication-title: IEEE Transactions on Neural Networks – reference: M. Karl, M. Soelch, J. Bayer, P. van der Smagt, Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data, 2016. – start-page: 457 year: 2016 end-page: 473 ident: bib0257 article-title: Deepred–rule extraction from deep neural networks publication-title: International Conference on Discovery Science – reference: S. Wisdom, T. Powers, J. Pitton, L. Atlas, Interpretable recurrent neural networks using sequential sparse recovery, 2016. – year: 2005 ident: bib0034 article-title: Explainable artificial intelligence for training and tutoring publication-title: Technical Report – start-page: 1529 year: 2015 end-page: 1537 ident: bib0305 article-title: Conditional random fields as recurrent neural networks publication-title: Proceedings of the IEEE international conference on computer vision – start-page: 2048 year: 2015 end-page: 2057 ident: bib0091 article-title: Show, attend and tell: Neural image caption generation with visual attention publication-title: International Conference on Machine Learning – reference: G. Su, D. Wei, K.R. Varshney, D.M. Malioutov, Interpretable two-level boolean rule learning for classification, 2015. – year: 2019 ident: bib0016 article-title: Explanation in Human-AI Systems: A Literature Meta-Review Synopsis of Key Ideas and Publications and Bibliography for Explainable AI publication-title: Technical Report – start-page: 559 year: 2004 end-page: 570 ident: bib0188 article-title: An KNN model-based approach and its application in text categorization publication-title: International Conference on Intelligent Text Processing and Computational Linguistics – volume: 115 start-page: 1943 year: 2018 end-page: 1948 ident: bib0166 article-title: Iterative random forests to discover predictive and stable high-order interactions publication-title: Proceedings of the National Academy of Sciences – start-page: 325 year: 2013 end-page: 333 ident: bib0396 article-title: Learning fair representations publication-title: International Conference on Machine Learning – volume: 51 start-page: 129 year: 2019 end-page: 144 ident: bib0410 article-title: A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion publication-title: Information Fusion – reference: T. Lei, R. Barzilay, T. Jaakkola, Rationalizing neural predictions, 2016. – reference: C. Dwork, C. Ilvento, Composition of fairsystems, 2018. – year: 2019 ident: bib0390 article-title: Ethics Guidelines for Trustworthy AI publication-title: Technical Report – start-page: 203 year: 2019 end-page: 233 ident: bib0309 article-title: Extending knowledge graphs with subjective influence networks for personalized fashion publication-title: Designing Cognitive Cities – reference: H. Lakkaraju, E. Kamar, R. Caruana, J. Leskovec, Interpretable & explorable approximations of black box models, 2017. – reference: J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, H. Lipson, Understanding neural networks through deep visualization, 2015. – volume: 3 start-page: 1 year: 2016 end-page: 12 ident: bib0109 article-title: How the machine ‘thinks’: Understanding opacity in machine learning algorithms publication-title: Big Data & Society – reference: O. Bastani, C. Kim, H. Bastani, Interpretability via model extraction, 2017. – start-page: 2280 year: 2016 end-page: 2288 ident: bib0210 article-title: Examples are not enough, learn to criticize! criticism for interpretability publication-title: Advances in Neural Information Processing Systems – start-page: 2271 year: 2016 end-page: 2275 ident: bib0063 article-title: Controlling explanatory heatmap resolution and semantics via decomposition depth publication-title: IEEE International Conference on Image Processing (ICIP) – volume: 1355 start-page: 1 year: 2010 ident: bib0130 article-title: Understanding representations learned in deep architectures publication-title: Department dInformatique et Recherche Operationnelle, University of Montreal, QC, Canada, Tech. Rep – volume: 16 start-page: 3 year: 2003 end-page: 15 ident: bib0083 article-title: Extracting symbolic rules from trained neural network ensembles publication-title: AI Communications – volume: 225 start-page: 1 year: 2013 end-page: 17 ident: bib0223 article-title: Using sensitivity analysis and visualization techniques to open black box data mining models publication-title: Information Sciences – start-page: 204 year: 2018 end-page: 214 ident: bib0065 article-title: Using perceptual and cognitive explanations for enhanced human-agent team performance publication-title: International Conference on Engineering Psychology and Cognitive Ergonomics – volume: 5 start-page: 197 year: 2017 end-page: 212 ident: bib0237 article-title: Enhancing transparency and control when drawing data-driven inferences about individuals publication-title: Big data – volume: P-88 start-page: 17 year: 2006 end-page: 32 ident: bib0346 article-title: Design and Implementation of a Backward-In-Time Debugger publication-title: NODe 2006 – volume: 43 start-page: 259 year: 2002 end-page: 293 ident: bib0076 article-title: The use and interpretation of logistic regression in higher education journals: 1988–1999 publication-title: Research in Higher Education – volume: 52 start-page: 155 year: 2007 end-page: 173 ident: bib0337 article-title: Algorithms and applications for approximate nonnegative matrix factorization publication-title: Computational Statistics & Data Analysis – reference: C. Wadsworth, F. Vera, C. Piech, Achieving fairness through adversarial learning: an application to recidivism prediction, 2018. – year: 2017 ident: bib0293 article-title: Feature visualization. publication-title: Distill – volume: 104 start-page: 671 year: 2016 ident: bib0392 article-title: Big data’s disparate impact publication-title: Calif. L. Rev. – volume: 23 start-page: 2031 year: 2013 end-page: 2038 ident: bib0417 article-title: A survey of multi-view machine learning publication-title: Neural computing and applications – volume: 15 start-page: 261 year: 2003 end-page: 266 ident: bib0354 article-title: Good practice in the conduct and reporting of survey research publication-title: International Journal for Quality in Health Care – reference: B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viegas, R. Sayres, Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (TCAV), 2017. – start-page: 37 year: 1994 end-page: 45 ident: bib0147 article-title: Using sampling and queries to extract rules from trained neural networks publication-title: Machine learning proceedings 1994 – start-page: 3315 year: 2016 end-page: 3323 ident: bib0393 article-title: Equality of opportunity in supervised learning publication-title: Advances in neural information processing systems – volume: 11 start-page: 312 year: 2007 end-page: 319 ident: bib0054 article-title: Confident interpretation of bayesian decision tree ensembles for clinical applications publication-title: IEEE Transactions on Information Technology in Biomedicine – volume: 24 start-page: 1 year: 2006 end-page: 18 ident: bib0127 article-title: Rule-based learning systems for support vector machines publication-title: Neural Processing Letters – volume: 38 start-page: 73 year: 2014 end-page: 100 ident: bib0236 article-title: Explaining data-driven document classifications publication-title: MIS Quarterly – volume: 3 start-page: 1870 year: 2001 end-page: 1875 ident: bib0259 article-title: Rule extraction from neural networks via decision tree induction publication-title: IJCNN’01. International Joint Conference on Neural Networks. Proceedings (Cat. No. 01CH37222) – volume: 6 start-page: 52138 year: 2018 end-page: 52160 ident: bib0014 article-title: Peeking inside the black-box: A survey on explainable artificial intelligence (XAI) publication-title: IEEE Access – reference: R. Shwartz-Ziv, N. Tishby, Opening the black box of deep neural networks via information, 2017. – reference: J. Konečný, H.B. McMahan, D. Ramage, P. Richtárik, Federated optimization: Distributed machine learning for on-device intelligence, 2016. – volume: 10 start-page: 1392 year: 1999 end-page: 1401 ident: bib0258 article-title: ANN-DT: an algorithm for extraction of decision trees from artificial neural networks publication-title: IEEE Transactions on Neural Networks – volume: 50 start-page: 92 year: 2019 end-page: 111 ident: bib0348 article-title: Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0 publication-title: Information Fusion – volume: 3 year: 2016 ident: bib0373 article-title: Critical data studies: An introduction publication-title: Big Data & Society – reference: F.J.C. Garcia, D.A. Robb, X. Liu, A. Laskov, P. Patron, H. Hastie, Explain yourself: A natural language interface for scrutable autonomous robots, 2018. – reference: A. Karpathy, J. Johnson, L. Fei-Fei, Visualizing and understanding recurrent networks, 2015. – reference: M. Cornia, L. Baraldi, R. Cucchiara, Smart: Training shallow memory-aware transformers for robotic explainability, 2019. – reference: L.H. Gilpin, D. Bau, B.Z. Yuan, A. Bajwa, M. Specter, L. Kagal, Explaining Explanations: An Overview of Interpretability of Machine Learning, 2018. – start-page: 5686 year: 2016 end-page: 5697 ident: bib0067 article-title: Interacting with predictions: Visual inspection of black-box machine learning models publication-title: CHI Conference on Human Factors in Computing Systems – volume: 267 start-page: 1 year: 2019 end-page: 38 ident: bib0012 article-title: Explanation in artificial intelligence: Insights from the social sciences publication-title: Artif. Intell. – reference: A. Slavin Ross, M.C. Hughes, F. Doshi-Velez, Right for the Right Reasons: Training Differentiable Models by Constraining their Explanations, 2017. – volume: 14 start-page: 69 year: 2019 end-page: 81 ident: bib0019 article-title: Evolutionary fuzzy systems for explainable artificial intelligence: Why, when, what for, and where to? publication-title: IEEE Computational Intelligence Magazine – volume: 26 start-page: 67 year: 2010 end-page: 82 ident: bib0179 article-title: Logistic regression: Why we cannot do what we think we can do, and what we can do about it publication-title: European sociological review – volume: 35 start-page: 131 year: 2012 end-page: 150 ident: bib0082 article-title: Reverse engineering the neural networks for rule extraction in classification problems publication-title: Neural Processing Letters – volume: 23 start-page: 91 year: 2016 end-page: 100 ident: bib0270 article-title: Towards better analysis of deep convolutional neural networks publication-title: IEEE transactions on visualization and computer graphics – start-page: 335 year: 2005 end-page: 340 ident: bib0094 article-title: Fuzzy rule extraction from support vector machines publication-title: International Conference on Hybrid Intelligent Systems – reference: A. Holzinger, C. Biemann, C.S. Pattichis, D.B. Kell, What do we need to build explainable Ai systems for the medical domain?, 2017. – reference: J. Frankle, M. Carbin, The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, 2018. – volume: 5 start-page: 153 year: 2017 end-page: 163 ident: bib0100 article-title: Fair prediction with disparate impact: A study of bias in recidivism prediction instruments publication-title: Big Data – volume: 50 start-page: 158 year: 2019 end-page: 167 ident: bib0418 article-title: Feature selection with multi-view data: A survey publication-title: Information Fusion – start-page: 617 year: 2015 end-page: 623 ident: bib0266 article-title: Improving the interpretability of deep neural networks with stimulated learning publication-title: 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU) – reference: J.T. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller, Striving for simplicity: The all convolutional net, 2014. – volume: 55 start-page: 1031 year: 1998 end-page: 1060 ident: bib0203 article-title: Bayesian stock assessment: a review and example application using the logistic model publication-title: ICES Journal of Marine Science – reference: A. Das, H. Agrawal, C.L. Zitnick, D. Parikh, D. Batra, Human Attention in Visual Question Answering: Do Humans and Deep Networks Look at the Same Regions?, 2016. – start-page: 297 year: 2017 end-page: 305 ident: bib0114 article-title: Interpretable convolutional neural networks with dual local and global attention for review rating prediction publication-title: Proceedings of the Eleventh ACM Conference on Recommender Systems – volume: 38 start-page: 43 year: 2017 end-page: 54 ident: bib0419 article-title: Multi-view learning overview: Recent progress and new challenges publication-title: Information Fusion – start-page: 6261 year: 2019 end-page: 6270 ident: bib0078 article-title: Interpreting CNNs via decision trees publication-title: IEEE Conference on Computer Vision and Pattern Recognition – start-page: 1670 year: 2018 end-page: 1678 ident: bib0079 article-title: Beyond sparsity: Tree regularization of deep models for interpretability publication-title: AAAI Conference on Artificial Intelligence – reference: S.H. Welling, H.H. Refsgaard, P.B. Brockhoff, L.H. Clemmensen, Forest floor visualizations of random forests, 2016. – year: 2015 ident: bib0387 article-title: Transforming our World: the 2030 Agenda for Sustainable Development publication-title: Technical Report – start-page: 61 year: 2005 end-page: 70 ident: bib0106 article-title: Rule extraction from trained support vector machines publication-title: Pacific-Asia Conference on Knowledge Discovery and Data Mining – volume: 44 start-page: 78 year: 2018 end-page: 96 ident: bib0365 article-title: A practical tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models, software and guidelines publication-title: Information Fusion – reference: X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, P. Abbeel, InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets, 2016. – start-page: 623 year: 2013 end-page: 631 ident: bib0090 article-title: Accurate intelligible models with pairwise interactions publication-title: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – year: 2015 ident: bib0031 article-title: iBCM: Interactive Bayesian case model empowering humans via intuitive interaction publication-title: Technical Report – volume: 27 start-page: 221 year: 1987 end-page: 234 ident: bib0132 article-title: Simplifying decision trees publication-title: International journal of man-machine studies – start-page: 289 year: 2016 end-page: 297 ident: bib0331 article-title: Hierarchical question-image co-attention for visual question answering publication-title: Proceedings of the 30th International Conference on Neural Information Processing Systems – volume: 42 start-page: 51 year: 2018 end-page: 61 ident: bib0413 article-title: Big data: Tutorial and guidelines on information and process fusion for analytics algorithms with mapreduce publication-title: Information Fusion – start-page: 8603 year: 2019 end-page: 8611 ident: bib0139 article-title: Learning to explain with complemental examples publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – reference: Y. Zhang, X. Chen, Explainable Recommendation: A Survey and New Perspectives, 2018. – volume: 7 start-page: 36322 year: 2019 end-page: 36333 ident: bib0364 article-title: Recent progress on generative adversarial networks (gans): A survey publication-title: IEEE Access – volume: 149 start-page: 640 year: 1999 end-page: 644 ident: bib0159 article-title: Smoking and the occurence of alzheimer’s disease: Cross-sectional and longitudinal data in a population-based study publication-title: American journal of epidemiology – start-page: 220 year: 2019 end-page: 229 ident: bib0426 article-title: Model cards for model reporting publication-title: Proceedings of the Conference on Fairness, Accountability, and Transparency – reference: H. Chen, S. Lundberg, S.-I. Lee, Explaining models by propagating shapley values of local components, 2019. – start-page: 347 year: 2001 end-page: 361 ident: bib0406 article-title: Similarity vs. diversity publication-title: International conference on case-based reasoning – reference: B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Object Detectors Emerge in Deep Scene CNNs, 2014. – reference: R. Guidotti, A. Monreale, S. Ruggieri, D. Pedreschi, F. Turini, F. Giannotti, Local rule-based explanations of black box decision systems, 2018. – reference: D. Linsley, D. Shiebler, S. Eberhardt, T. Serre, Global-and-local attention networks for visual recognition, 2018. – reference: D.W. Apley, Visualizing the effects of predictor variables in black box supervised learning models, 2016. – reference: J. Adebayo, J. Gilmer, I. Goodfellow, B. Kim, Local explanation methods for deep neural networks lack sensitivity to parameter values, 2018. – reference: G.D. Hager, A. Drobnis, F. Fang, R. Ghani, A. Greenwald, T. Lyons, D.C. Parkes, J. Schultz, S. Saria, S.F. Smith, M. Tambe, Artificial intelligence for social good, 2019. – start-page: 658 year: 2004 end-page: 663 ident: bib0190 article-title: The truth is in there-rule extraction from opaque models using genetic programming. publication-title: FLAIRS Conference – volume: 56 start-page: 675 year: 2007 end-page: 698 ident: bib0195 article-title: New approaches to regression by generalized additive models and continuous optimization for modern applications in finance, science and technology publication-title: Optimization – start-page: 3156 year: 2017 end-page: 3164 ident: bib0277 article-title: Residual attention network for image classification publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 9097 year: 2019 end-page: 9107 ident: bib0138 article-title: Interpretable and fine-grained visual explanations for convolutional neural networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2017 ident: bib0339 article-title: beta-vae: Learning basic visual concepts with a constrained variational framework publication-title: ICLR – reference: S. Sabour, N. Frosst, G. E Hinton, Dynamic Routing Between Capsules, 2017. – start-page: 19 year: 2018 end-page: 36 ident: bib0062 article-title: Explanation methods in deep learning: Users, values, concerns and challenges publication-title: Explainable and Interpretable Models in Computer Vision and Machine Learning – year: 2017 ident: bib0286 article-title: Classification and regression trees – start-page: 3387 year: 2016 end-page: 3395 ident: bib0268 article-title: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks publication-title: Advances in Neural Information Processing Systems – volume: 87 start-page: 304 year: 1987 end-page: 307 ident: bib0191 article-title: Generating production rules from decision trees. publication-title: ijcai – volume: 73 start-page: 1 year: 2018 end-page: 15 ident: bib0018 article-title: Methods for interpreting and understanding deep neural networks publication-title: Digital Signal Processing – start-page: 842 year: 2015 end-page: 850 ident: bib0278 article-title: The application of two-level attention models in deep convolutional neural network for fine-grained image classification publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2008 ident: bib0201 article-title: Bayesian models of cognition. – volume: 32 start-page: 1999 year: 1999 end-page: 2009 ident: bib0097 article-title: Extracting decision trees from trained neural networks publication-title: Pattern Recognition – start-page: 465 year: 2017 end-page: 474 ident: bib0240 article-title: Interpretable predictions of tree-based ensembles via actionable feature tweaking publication-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – start-page: 4967 year: 2017 end-page: 4976 ident: bib0075 article-title: A simple neural network module for relational reasoning publication-title: Advances in Neural Information Processing Systems – start-page: 19 year: 2017 ident: bib0282 article-title: Towards explainable text classification by jointly learning lexicon and modifier terms publication-title: IJCAI-17 Workshop on Explainable AI (XAI) – year: 2018 ident: bib0298 publication-title: Semantic image interpretation-integration of numerical data and logical knowledge for cognitive vision – start-page: 1177 year: 2007 end-page: 1186 ident: bib0051 article-title: Comparing analytical decision support models through boolean rule extraction: A case study of ovarian tumour malignancy publication-title: International Symposium on Neural Networks – reference: W.J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, B. Yu, Interpretable machine learning: definitions, methods, and applications, 2019. – reference: A. Polino, R. Pascanu, D. Alistarh, Model compression via distillation and quantization, 2018. – reference: D. Bouchacourt, L. Denoyer, EDUCE: explaining model decisions through unsupervised concepts extraction, 2019. – volume: 3 start-page: 17 year: 2008 ident: bib0174 article-title: Purposeful selection of variables in logistic regression publication-title: Source code for biology and medicine – start-page: 5116 year: 2017 end-page: 5120 ident: bib0088 article-title: Logic meets probability: Towards explainable AI systems for uncertain worlds publication-title: International Joint Conference on Artificial Intelligence – start-page: 537 year: 2017 end-page: 543 ident: bib0214 article-title: Local interpretable model-agnostic explanations for music content analysis. publication-title: ISMIR – volume: 2016 start-page: 371 year: 2016 ident: bib0056 article-title: Interpretable deep models for ICU outcome prediction publication-title: AMIA Annual Symposium Proceedings – reference: D. Huk Park, L.A. Hendricks, Z. Akata, A. Rohrbach, B. Schiele, T. Darrell, M. Rohrbach, Multimodal Explanations: Justifying Decisions and Pointing to the Evidence, 2018. – year: 2016 ident: bib0269 article-title: Convergent learning: Do different neural networks learn the same representations? publication-title: ICLR – reference: A. Agrawal, J. Lu, S. Antol, M. Mitchell, C.L. Zitnick, D. Batra, D. Parikh, VQA: Visual Question Answering, 2015. – volume: 73 start-page: 538 year: 1998 end-page: 540 ident: bib0178 article-title: Using natural frequencies to improve diagnostic inferences publication-title: Academic medicine – reference: A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, Attention Is All You Need, 2017. – volume: 10 start-page: 421 year: 2010 end-page: 439 ident: bib0202 article-title: A bayesian model for repeated measures zero-inflated count data with application to outpatient psychiatric service use publication-title: Statistical modelling – start-page: 119 year: 2018 end-page: 120 ident: bib0036 article-title: Explanations and expectations: Trust building in automated vehicles publication-title: Companion of the ACM/IEEE International Conference on Human-Robot Interaction – volume: 30 start-page: 1639 year: 1997 end-page: 1648 ident: bib0148 article-title: Rule extraction from trained neural networks using genetic algorithms publication-title: Nonlinear Analysis: Theory, Methods & Applications – reference: J.J. Thiagarajan, B. Kailkhura, P. Sattigeri, K.N. Ramamurthy, Treeview: Peeking into deep neural networks via feature-space partitioning, 2016. – start-page: 598 year: 2016 end-page: 617 ident: bib0173 article-title: Algorithmic transparency via quantitative input influence: Theory and experiments with learning systems publication-title: 2016 IEEE symposium on security and privacy (SP) – start-page: 193 year: 2014 end-page: 218 ident: bib0103 article-title: Interpreting random forest classification models using a feature contribution method publication-title: Integration of Reusable Systems – volume: 8 start-page: 1156 year: 1997 end-page: 1164 ident: bib0320 article-title: Are artificial neural networks black boxes? publication-title: IEEE Trans. Neural Networks – start-page: 303 year: 2018 end-page: 310 ident: bib0120 article-title: Distill-and-compare: Auditing black-box models using transparent model distillation publication-title: AAAI/ACM Conference on AI, Ethics, and Society – volume: 54 start-page: 95 year: 2018 end-page: 122 ident: bib0220 article-title: Auditing black-box models for indirect influence publication-title: Knowledge and Information Systems – volume: 24 start-page: 190 year: 2015 end-page: 204 ident: bib0116 article-title: Interpreting support vector machine models for multivariate group wise analysis in neuroimaging publication-title: Medical image analysis – reference: G. Marra, F. Giannini, M. Diligenti, M. Gori, Integrating learning and reasoning with deep logic models, 2019. – volume: 157 start-page: 89 year: 2002 end-page: 100 ident: bib0198 article-title: Generalized linear and generalized additive models in studies of species distributions: setting the scene publication-title: Ecological Modelling – volume: 5 start-page: 15 year: 1976 end-page: 17 ident: bib0180 article-title: Constructing optimal binary decision trees is Np-complete publication-title: Information processing letters – volume: 1 start-page: 81 year: 1986 end-page: 106 ident: bib0182 article-title: Induction of decision trees publication-title: Machine learning – year: 2019 ident: bib0301 article-title: Persuasive explanation of reasoning inferences on dietary data publication-title: First Workshop on Semantic Explainability @ ISWC 2019 – reference: I.T. Jolliffe, Principal Component Analysis and Factor Analysis, Springer New York, pp. 115–128. – reference: S.M. Lundberg, G.G. Erion, S.-I. Lee, Consistent individualized feature attribution for tree ensembles, 2018. – volume: 11 start-page: 377 year: 2000 end-page: 389 ident: bib0256 article-title: Extracting rules from trained neural networks publication-title: IEEE Transactions on Neural Networks – start-page: 464 year: 2018 end-page: 471 ident: bib0367 article-title: Learning interpretable anatomical features through deep generative models: Application to cardiac remodeling publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 519 year: 2015 end-page: 527 ident: bib0379 article-title: Robust transmural electrophysiological imaging: Integrating sparse and dynamic physiological models into ecg-based inference publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 190 start-page: 379 year: 2013 end-page: 396 ident: bib0023 article-title: General theories of explanation: buyer beware publication-title: Synthese – volume: 13 start-page: 71 year: 1993 end-page: 101 ident: bib0252 article-title: Extracting refined rules from knowledge-based neural networks publication-title: Machine Learning – volume: 1 start-page: 6 year: 2011 ident: bib0291 article-title: Adaptive deconvolutional networks for mid and high level feature learning. publication-title: ICCV – start-page: 6276 year: 2019 end-page: 6282 ident: bib0351 article-title: Counterfactuals in explainable artificial intelligence (XAI): Evidence from human reasoning publication-title: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19 – volume: 27 start-page: 62 year: 2017 end-page: 67 ident: bib0381 article-title: View-tolerant face recognition and hebbian learning imply mirror-symmetric neural tuning to head orientation publication-title: Current Biology – volume: 35 start-page: 27 year: 2012 end-page: 42 ident: bib0241 article-title: Interpretation of nonlinear relationships between process variables by use of random forests publication-title: Minerals Engineering – reference: S. Mohseni, N. Zarei, E.D. Ragan, A multidisciplinary survey and framework for design and evaluation of explainable ai systems, 2018. – start-page: 2239 year: 2018 end-page: 2248 ident: bib0394 article-title: A unified approach to quantifying algorithmic unfairness: Measuring individual group unfairness via inequality indices publication-title: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery Data Mining – year: 2019 ident: bib0402 article-title: Certifai: Counterfactual explanations for robustness, transparency, interpretability, and fairness of artificial intelligence models publication-title: arXiv preprint arXiv:1905.07857 – volume: 11 start-page: 1803 year: 2010 end-page: 1831 ident: bib0230 article-title: How to explain individual classification decisions publication-title: Journal of Machine Learning Research – reference: C. Rudin, Please stop explaining black box models for high stakes decisions, 2018. – reference: G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network, 2015. – start-page: 427 year: 2015 end-page: 436 ident: bib0273 article-title: Deep neural networks are easily fooled: High confidence predictions for unrecognizable images publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – reference: A. Radford, R. Jozefowicz, I. Sutskever, Learning to generate reviews and discovering sentiment, 2017. – volume: 51 start-page: 782 year: 2011 end-page: 793 ident: bib0055 article-title: Performance of classification models from a user perspective publication-title: Decision Support Systems – volume: 10 start-page: 395 year: 2018 end-page: 409 ident: bib0141 article-title: Explanations of Model Predictions with live and breakDown Packages publication-title: The R Journal – year: 2019 ident: bib0169 article-title: Towards explainable neural-symbolic visual reasoning publication-title: NeSy Workshop IJCAI 2019, Macau, China – volume: 33 start-page: 1 year: 2012 end-page: 33 ident: bib0395 article-title: Data preprocessing techniques for classification without discrimination publication-title: Knowledge and Information Systems – start-page: 1245 year: 2013 end-page: 1248 ident: bib0423 article-title: Big data integration publication-title: 2013 IEEE 29th international conference on data engineering (ICDE) – volume: 3 start-page: 605 year: 2013 end-page: 610 ident: bib0186 article-title: Application of k-nearest neighbor (knn) approach for predicting economic events: Theoretical background publication-title: International Journal of Engineering Research and Applications – reference: A. Shrikumar, P. Greenside, A. Kundaje, Learning Important Features Through Propagating Activation Differences, 2017. – start-page: 235 year: 2016 end-page: 248 ident: bib0421 article-title: I-pic: A platform for privacy-compliant image capture publication-title: Proceedings of the 14th annual international conference on mobile systems, applications, and services – volume: 26 year: 2013 ident: bib0162 article-title: Applied predictive modeling – reference: D. Smilkov, N. Thorat, B. Kim, F. Viégas, M. Wattenberg, SmoothGrad: removing noise by adding noise, 2017. – reference: T. Hailesilassie, Rule extraction algorithm for deep neural networks: A review, 2016. – volume: 8 start-page: 1041 year: 2014 end-page: 1052 ident: bib0197 article-title: A modified geosite assessment model (M-GAM) and its application on the lazar canyon area (serbia) publication-title: International journal of environmental research – reference: M. Garnelo, K. Arulkumaran, M. Shanahan, Towards deep symbolic reinforcement learning, 2016. – reference: C. Barabas, K. Dinakar, J. Ito, M. Virza, J. Zittrain, Interventions over predictions: Reframing the ethical debate for actuarial risk assessment, 2017. – volume: 12 start-page: 15 year: 2000 end-page: 25 ident: bib0254 article-title: FERNN: An algorithm for fast extraction of rules from neural networks publication-title: Applied Intelligence – volume: 160 start-page: 53 year: 2015 end-page: 62 ident: bib0361 article-title: Support vector machines under adversarial label contamination publication-title: Neurocomputing – reference: T. Lesort, M. Seurin, X. Li, N. Díaz-Rodríguez, D. Filliat, Unsupervised state representation learning with robotic priors: a robustness benchmark, 2017. – volume: 39 start-page: 1503 year: 2012 end-page: 1509 ident: bib0189 article-title: An improved k-nearest-neighbor algorithm for text categorization publication-title: Expert Systems with Applications – reference: A. Weller, Challenges for transparency, 2017. – start-page: 618 year: 2017 end-page: 626 ident: bib0292 article-title: Grad-cam: Visual explanations from deep networks via gradient-based localization publication-title: Proceedings of the IEEE International Conference on Computer Vision – start-page: 495 year: 2017 end-page: 496 ident: bib0124 article-title: MIRIAM: a multimodal chat-based interface for autonomous systems publication-title: ACM International Conference on Multimodal Interaction – reference: K. Xu, D.H. Park, C. Yi, C. Sutton, Interpreting deep classifier by visual distillation of dark knowledge, 2018. – start-page: 4765 year: 2017 end-page: 4774 ident: bib0224 article-title: A unified approach to interpreting model predictions publication-title: Advances in Neural Information Processing Systems – start-page: 40 year: 2015 ident: bib0424 article-title: comobile: Real-time human mobility modeling at urban scale using multi-view learning publication-title: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems – year: 2009 ident: bib0161 article-title: Causality – start-page: 387 year: 2013 end-page: 402 ident: bib0362 article-title: Evasion attacks against machine learning at test time publication-title: Proceedings of the 2013th European Conference on Machine Learning and Knowledge Discovery in Databases - Volume Part III – year: 2018 ident: bib0002 article-title: The future of work: robots, AI, and automation – reference: S. Hara, K. Hayashi, Making tree ensembles interpretable, 2016. – start-page: 1135 year: 2016 end-page: 1144 ident: bib0032 article-title: Why should I trust you?: Explaining the predictions of any classifier publication-title: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 27 start-page: 482 year: 2005 end-page: 492 ident: bib0102 article-title: Feature space interpretation of SVMs with indefinite kernels publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 24 start-page: 44 year: 2015 end-page: 65 ident: bib0238 article-title: Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation publication-title: Journal of Computational and Graphical Statistics – year: 2018 ident: bib0037 article-title: Working with beliefs: AI transparency in the enterprise. publication-title: Workshops of the ACM Conference on Intelligent User Interfaces – reference: N. Frosst, G. Hinton, Distilling a neural network into a soft decision tree, 2017. – start-page: 2217 year: 2018 end-page: 2226 ident: bib0242 article-title: Stacking with auxiliary features for visual question answering publication-title: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers) – volume: 66 start-page: 55 year: 2013 ident: bib0404 article-title: Big data and its exclusions publication-title: Stan. L. Rev. Online – reference: I.J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing adversarial examples, 2014. – volume: 51 start-page: 42 year: 2019 end-page: 57 ident: bib0411 article-title: Data fusion in cyber-physical-social systems: State-of-the-art and perspectives publication-title: Information Fusion – volume: 12 start-page: 513 year: 2013 end-page: 544 ident: bib0121 article-title: Statistical procedures for forecasting criminal behavior: A comparative assessment publication-title: Criminology & Public Policy – start-page: 32 year: 2013 end-page: 38 ident: bib0249 article-title: Interpreting individual classifications of hierarchical networks publication-title: 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM) – reference: D. Doran, S. Schulz, T.R. Besold, What does explainable AI really mean? a new conceptualization of perspectives, 2017. – reference: M.T. Keane, E.M. Kenny, The Twin-System Approach as One Generic Solution for XAI: An Overview of ANN-CBR Twins for Explaining Deep Learning, 2019. – reference: W. Shang, A. Trott, S. Zheng, C. Xiong, R. Socher, Learning world graphs to accelerate hierarchical reinforcement learning, 2019. – reference: R. Traoré, H. Caselles-Dupré, T. Lesort, T. Sun, G. Cai, N.D. Rodríguez, D. Filliat, DisCoRL: Continual reinforcement learning via policy distillation, 2019. – volume: 16 start-page: 26 year: 2018 end-page: 33 ident: bib0389 article-title: Ethics and privacy in ai and big data: Implementing responsible research and innovation publication-title: IEEE Security & Privacy – start-page: 410 year: 2011 end-page: 415 ident: bib0200 article-title: Short-term electricity load forecasting with generalized additive models publication-title: 16th Intelligent System Applications to Power Systems Conference, ISAP 2011 – volume: 20 start-page: 589 year: 2008 end-page: 600 ident: bib0234 article-title: Explaining classifications for individual instances publication-title: IEEE Transactions on Knowledge and Data Engineering – reference: P.-J. Kindermans, K.T. Schütt, M. Alber, K.-R. Müller, D. Erhan, B. Kim, S. Dähne, Learning how to explain neural networks: Patternnet and patternattribution, 2017. – volume: 22 start-page: 1345 year: 2009 end-page: 1359 ident: bib0425 article-title: A survey on transfer learning publication-title: IEEE Transactions on knowledge and data engineering – volume: 183 start-page: 1466 year: 2007 end-page: 1476 ident: bib0095 article-title: Comprehensible credit scoring models using rule extraction from support vector machines publication-title: European Journal of Operational Research – reference: P. Hall, On the Art and Science of Machine Learning Explanations, 2018. – reference: W. Samek, T. Wiegand, K.-R. Müller, Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models, 2017. – volume: 7 start-page: 76 year: 2017 end-page: 99 ident: bib0355 article-title: Why a right to explanation of automated decision-making does not exist in the general data protection regulation publication-title: International Data Privacy Law – reference: B. Biggio, I. Pillai, S.R. Bulò, D. Ariu, M. Pelillo, F. Roli, Is data clustering in adversarial settings secure?, 2018. – start-page: 1885 year: 2017 end-page: 1894 ident: bib0221 article-title: Understanding black-box predictions via influence functions publication-title: Proceedings of the 34th International Conference on Machine Learning-Volume 70 – volume: 66 start-page: 1417 year: 2009 end-page: 1424 ident: bib0196 article-title: Application of a generalized additive model (GAM) to reveal relationships between environmental factors and distributions of pelagic fish and krill: a case study in sendai bay, Japan publication-title: ICES Journal of Marine Science – reference: R.R. Hoffman, S.T. Mueller, G. Klein, J. Litman, Metrics for explainable ai: Challenges and prospects, 2018. – volume: 38 start-page: 50 year: 2017 end-page: 57 ident: bib0003 article-title: European union regulations on algorithmic decision-making and a “right to explanation” publication-title: AI Magazine – volume: 10 start-page: e0130140 year: 2015 ident: bib0072 article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation publication-title: PloS one – volume: 30 start-page: 2805 year: 2019 end-page: 2824 ident: bib0048 article-title: Adversarial examples: Attacks and defenses for deep learning publication-title: IEEE Transactions on Neural Networks and Learning Systems – reference: Y. Zhang, B. Wallace, A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification, 2015. – year: 2019 ident: bib0158 article-title: Fairness and Machine Learning – reference: K. Burns, L.A. Hendricks, K. Saenko, T. Darrell, A. Rohrbach, Women also Snowboard: Overcoming Bias in Captioning Models, 2018. – volume: 69 year: 2014 ident: bib0183 article-title: Data mining with decision trees: theory and applications – reference: E. Akyol, C. Langbort, T. Basar, Price of transparency in strategic machine learning, 2016. – start-page: 24 year: 2018 end-page: 31 ident: bib0313 article-title: Knowledge-aware autoencoders for explainable recommender systems publication-title: Proceedings of the 3rd Workshop on Deep Learning for Recommender Systems – reference: A.S. d’Avila Garcez, M. Gori, L.C. Lamb, L. Serafini, M. Spranger, S.N. Tran, Neural-symbolic computing: An effective methodology for principled integration of machine learning and reasoning, 2019. – start-page: 3749 year: 2018 end-page: 3759 ident: bib0300 article-title: DeepProbLog: Neural probabilistic logic programming publication-title: Advances in Neural Information Processing Systems 31 – start-page: 4842 year: 2018 end-page: 4852 ident: bib0101 article-title: Fairness through computationally-bounded awareness publication-title: Advances in Neural Information Processing Systems – year: 2008 ident: bib0028 article-title: Elements of Argumentation – volume: 159 start-page: 3091 year: 2008 end-page: 3131 ident: bib0108 article-title: Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling publication-title: Fuzzy Sets and Systems – volume: 22 start-page: 3762 year: 2010 end-page: 3767 ident: bib0375 article-title: Finding nature’s missing ternary oxide compounds using machine learning and density functional theory publication-title: Chemistry of Materials – volume: 19 start-page: 729 year: 2007 end-page: 741 ident: bib0093 article-title: Rule extraction from support vector machines: A sequential covering approach publication-title: IEEE Transactions on Knowledge and Data Engineering – reference: L. Rieger, C. Singh, W.J. Murdoch, B. Yu, Interpretations are useful: penalizing explanations to align neural networks with prior knowledge, 2019. – volume: 15 start-page: 237 year: 2002 end-page: 246 ident: bib0260 article-title: A methodology to explain neural network classification publication-title: Neural networks – reference: A. Fukui, D. Huk Park, D. Yang, A. Rohrbach, T. Darrell, M. Rohrbach, Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding, 2016. – start-page: 2921 year: 2016 end-page: 2929 ident: bib0096 article-title: Learning deep features for discriminative localization publication-title: IEEE Conference on Computer Vision and Pattern Recognition – start-page: 39 year: 2018 end-page: 80 ident: bib0040 article-title: Learning functional causal models with generative neural networks publication-title: Explainable and Interpretable Models in Computer Vision and Machine Learning – year: 2019 ident: bib0398 article-title: Fairsight: Visual analytics for fairness in decision making publication-title: IEEE transactions on visualization and computer graphics – volume: 56 start-page: 909 year: 2000 end-page: 914 ident: bib0115 article-title: Interpreting parameters in the logistic regression model with random effects publication-title: Biometrics – volume: 6 start-page: 7 year: 2004 end-page: 19 ident: bib0370 article-title: Mining with rarity: a unifying framework publication-title: ACM Sigkdd Explorations Newsletter – start-page: 1952 year: 2014 end-page: 1960 ident: bib0209 article-title: The bayesian case model: A generative approach for case-based reasoning and prototype classification publication-title: Advances in Neural Information Processing Systems – volume: 9 start-page: 1057 year: 1998 end-page: 1068 ident: bib0038 article-title: The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks publication-title: IEEE Transactions on Neural Networks – year: 2007 ident: bib0206 article-title: Bayesian econometric methods – reference: M.T. Ribeiro, S. Singh, C. Guestrin, Model-agnostic interpretability of machine learning, 2016. – start-page: 1313 year: 2017 end-page: 1320 ident: bib0074 article-title: Plan explicability and predictability for robot task planning publication-title: 2017 IEEE International Conference on Robotics and Automation (ICRA) – year: 2019 ident: bib0383 article-title: Understanding artificial intelligence ethics and safety – reference: H.F. Tan, G. Hooker, M.T. Wells, Tree space prototypes: Another look at making tree ensembles interpretable, 2016. – reference: W.J. Murdoch, A. Szlam, Automatic rule extraction from long short term memory networks, 2017. – year: 2018 ident: bib0295 article-title: The building blocks of interpretability publication-title: Distill – start-page: 107 year: 2002 end-page: 112 ident: bib0126 article-title: Rule extraction from support vector machines. publication-title: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) – start-page: 1 year: 2018 end-page: 8 ident: bib0009 article-title: Explainable AI for designers: A human-centered perspective on mixed-initiative co-creation publication-title: 2018 IEEE Conference on Computational Intelligence and Games (CIG) – year: 2019 ident: bib0399 article-title: Fair-by-design explainable models for prediction of recidivism publication-title: arXiv preprint arXiv:1910.02043 – volume: 112 year: 2013 ident: bib0163 article-title: An introduction to statistical learning – volume: 29 start-page: 17 year: 2019 end-page: 23 ident: bib0352 article-title: Reconciling deep learning with symbolic artificial intelligence: representing objects and relations publication-title: Current Opinion in Behavioral Sciences – volume: 4 start-page: 75 year: 2016 end-page: 88 ident: bib0020 article-title: A framework for considering comprehensibility in modeling publication-title: Big data – start-page: 121 year: 2019 end-page: 144 ident: bib0357 article-title: Towards reverse-engineering black-box neural networks publication-title: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning – start-page: 349 year: 2000 end-page: 355 ident: bib0248 article-title: Probabilistic methods for support vector machines publication-title: Advances in neural information processing systems – volume: 20 start-page: 1638 year: 2004 end-page: 1640 ident: bib0187 article-title: Application of the GA/KNN method to SELDI proteomics data publication-title: Bioinformatics – reference: Y. Goyal, A. Mohapatra, D. Parikh, D. Batra, Towards transparent AI systems: Interpreting visual question answering models, 2016. – volume: 7 start-page: 154096 year: 2019 end-page: 154113 ident: bib0307 article-title: Black-box vs. white-box: Understanding their advantages and weaknesses from a practical point of view publication-title: IEEE Access – start-page: 818 year: 2014 end-page: 833 ident: bib0136 article-title: Visualizing and understanding convolutional networks publication-title: European conference on computer vision – volume: 19 start-page: 1484 year: 2013 end-page: 1500 ident: bib0167 article-title: Stability publication-title: Bernoulli – year: 2017 ident: bib0326 article-title: Self-driving car steering angle prediction based on image recognition publication-title: Technical Report – reference: F. Petroni, T. Rocktäschel, P. Lewis, A. Bakhtin, Y. Wu, A.H. Miller, S. Riedel, Language models as knowledge bases?, 2019. – start-page: 4306 year: 2017 end-page: 4314 ident: bib0111 article-title: Improving interpretability of deep neural networks with semantic information publication-title: IEEE Conference on Computer Vision and Pattern Recognition – start-page: 586 year: 2016 end-page: 594 ident: bib0172 article-title: Deep learning without poor local minima publication-title: Advances in neural information processing systems – reference: K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno, D. Song, Robust physical-world attacks on deep learning models, 2017. – volume: 538 start-page: 20 year: 2016 ident: bib0004 article-title: Can we open the black box of AI? publication-title: Nature News – volume: 41 start-page: 161 year: 2007 end-page: 175 ident: bib0245 article-title: A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue publication-title: Artificial Intelligence in Medicine – volume: 51 start-page: 129 year: 2019 end-page: 144 ident: bib0408 article-title: A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion publication-title: Information Fusion – volume: 365 start-page: 2103 year: 2007 end-page: 2116 ident: bib0205 article-title: Probabilistic climate change predictions applying bayesian model averaging publication-title: Philosophical transactions of the royal society of london a: mathematical, physical and engineering sciences – reference: G.J. Katuwal, R. Chen, Machine learning model interpretability for precision medicine, 2016. – volume: 6 start-page: 1 year: 2015 ident: bib0371 article-title: Beat the machine: Challenging humans to find a predictive model’s “unknown unknowns” publication-title: Journal of Data and Information Quality (JDIQ) – start-page: 19 year: 2016 end-page: 35 ident: bib0420 article-title: Faceless person recognition: Privacy implications in social media publication-title: Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, Proceedings, Part III – reference: F. Doshi-Velez, B. Kim, Towards a rigorous science of interpretable machine learning, 2017. – start-page: 9505 year: 2018 end-page: 9515 ident: bib0294 article-title: Sanity checks for saliency maps publication-title: Advances in Neural Information Processing Systems – volume: 7 start-page: 39 year: 1994 end-page: 59 ident: bib0316 article-title: Case-based reasoning: Foundational issues publication-title: Methodological Variations, and System Approaches – reference: A. Shrikumar, P. Greenside, A. Shcherbina, A. Kundaje, Not just a black box: Learning important features through propagating activation differences, 2016. – year: 2012 ident: bib0194 article-title: Estimating bank loans loss given default by generalized additive models publication-title: UCD Geary Institute Discussion Paper Series, WP2012/24 – year: 2018 ident: bib0099 article-title: “Fair” risk assessments: A precarious approach for criminal justice reform publication-title: 5th Workshop on Fairness, Accountability, and Transparency in Machine Learning – volume: 9 start-page: 44 year: 2017 end-page: 55 ident: bib0070 article-title: Learning from explanations using sentiment and advice in RL publication-title: IEEE Transactions on Cognitive and Developmental Systems – reference: J. Fjeld, H. Hilligoss, N. Achten, M.L. Daniel, J. Feldman, S. Kagay, Principled artificial intelligence: A map of ethical and rights-based approaches, 2019. – reference: F. Rossi, AI Ethics for Enterprise AI, 2019. – volume: 51 start-page: 141 year: 2011 end-page: 154 ident: bib0092 article-title: An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models publication-title: Decision Support Systems – start-page: 4762 year: 2017 end-page: 4763 ident: bib0059 article-title: Explainable agency for intelligent autonomous systems publication-title: AAAI Conference on Artificial Intelligence – start-page: 142 year: 2002 end-page: 147 ident: bib0246 article-title: Support vector machines with symbolic interpretation publication-title: VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings. – volume: 15 start-page: 1 year: 2014 end-page: 10 ident: bib0053 article-title: Comprehensible classification models: a position paper publication-title: ACM SIGKDD explorations newsletter – volume: 2 start-page: 187 year: 1998 end-page: 202 ident: bib0119 article-title: Knowledge discovery via multiple models publication-title: Intelligent Data Analysis – volume: 16 start-page: 18 year: 2017 ident: bib0089 article-title: Slave to the algorithm: Why a right to an explanation is probably not the remedy you are looking for publication-title: Duke L. & Tech. Rev. – reference: I.J. Goodfellow, N. Papernot, P.D. McDaniel, cleverhans v0.1: an adversarial machine learning library, 2016. – reference: J. Moeyersoms, B. d’Alessandro, F. Provost, D. Martens, Explaining classification models built on high-dimensional sparse data, 2016. – volume: 69 start-page: 1754 year: 2006 end-page: 1759 ident: bib0134 article-title: Support vector machine interpretation publication-title: Neurocomputing – volume: 13 start-page: 411 year: 2000 end-page: 430 ident: bib0336 article-title: Oja, e.: Independent component analysis: Algorithms and applications. neural networks 13(4-5), 411-430 publication-title: Neural networks – volume: 38 start-page: 54 year: 1995 end-page: 64 ident: bib0192 article-title: Applications of machine learning and rule induction publication-title: Communications of the ACM – volume: 24 start-page: 1 year: 2006 end-page: 18 ident: bib0244 article-title: Rule-based learning systems for support vector machines publication-title: Neural Processing Letters – reference: N. Papernot, P. McDaniel, Deep k-nearest neighbors: Towards confident, interpretable and robust deep learning, 2018. – reference: R. Benjamins, A. Barbado, D. Sierra, Responsible AI by design, 2019. – reference: K. Simonyan, A. Vedaldi, A. Zisserman, Deep inside convolutional networks: Visualising image classification models and saliency maps, 2013. – volume: 12 start-page: 163 year: 2012 end-page: 172 ident: bib0026 article-title: Making machine learning models interpretable. publication-title: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) – start-page: 101 year: 1998 end-page: 104 ident: bib0112 article-title: Interpretable boosted naïve bayes classification. publication-title: ACM SIGKDD Conference on Knowledge Discovery and Data Mining – start-page: 6541 year: 2017 end-page: 6549 ident: bib0125 article-title: Network dissection: Quantifying interpretability of deep visual representations publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 3 start-page: 11 year: 2011 ident: bib0068 article-title: Interpreting linear support vector machine models with heat map molecule coloring publication-title: Journal of Cheminformatics – volume: 154 start-page: 135 year: 2002 end-page: 150 ident: bib0066 article-title: Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks publication-title: Ecological modelling – volume: 5 start-page: 73 year: 2017 end-page: 84 ident: bib0403 article-title: Diversity in big data: A review publication-title: Big data – volume: 2 start-page: 125 year: 2010 end-page: 132 ident: bib0050 article-title: Design and evaluation of explainable BDI agents publication-title: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology – start-page: 971 year: 2008 end-page: 974 ident: bib0212 article-title: G-rex: A versatile framework for evolutionary data mining publication-title: 2008 IEEE International Conference on Data Mining Workshops – volume: 595 start-page: 299 year: 2007 end-page: 309 ident: bib0077 article-title: Visualisation and interpretation of support vector regression models publication-title: Analytica Chimica Acta – start-page: 210 year: 2018 end-page: 215 ident: bib0010 article-title: Explainable artificial intelligence: A survey publication-title: 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) – start-page: 5188 year: 2015 end-page: 5196 ident: bib0137 article-title: Understanding deep image representations by inverting them publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 6979 year: 2017 end-page: 6987 ident: bib0042 article-title: Discovering causal signals in images publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 23 start-page: 129 year: 2007 end-page: 143 ident: bib0193 article-title: Bankruptcy prediction by generalized additive models publication-title: Applied Stochastic Models in Business and Industry – start-page: 281 year: 2011 end-page: 288 ident: bib0204 article-title: A bayesian model for opening prediction in RTS games with application to starcraft publication-title: Computational Intelligence and Games (CIG), 2011 IEEE Conference on – year: 2016 ident: bib0001 article-title: Artificial intelligence: a modern approach – reference: Z. Che, S. Purushotham, R. Khemani, Y. Liu, Distilling knowledge from deep networks with applications to healthcare domain, 2015. – reference: J. Konečnỳ, H.B. McMahan, F.X. Yu, P. Richtárik, A.T. Suresh, D. Bacon, Federated learning: Strategies for improving communication efficiency, 2016. – start-page: 655 year: 2018 end-page: 670 ident: bib0239 article-title: Visualizing the feature importance for black box models publication-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases – volume: 28 start-page: 1503 year: 2014 end-page: 1529 ident: bib0228 article-title: A peek into the black box: exploring classifiers by randomization publication-title: Data mining and knowledge discovery – reference: L. Arras, G. Montavon, K.-R. Müller, W. Samek, Explaining recurrent neural network predictions in sentiment analysis, 2017. – volume: 24 start-page: 1114 year: 1994 end-page: 1124 ident: bib0251 article-title: Rule generation from neural networks publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 2 start-page: 963 year: 1996 end-page: 972 ident: bib0207 article-title: Acting under uncertainty: Discrete bayesian models for mobile-robot navigation publication-title: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS’96 – reference: V. Krakovna, F. Doshi-Velez, Increasing the interpretability of recurrent neural networks using hidden markov models, 2016. – start-page: 3504 year: 2016 end-page: 3512 ident: bib0285 article-title: Retain: An interpretable predictive model for healthcare using reverse time attention mechanism publication-title: Advances in Neural Information Processing Systems – year: 2017 ident: bib0007 article-title: Explainable artificial intelligence (xAI) publication-title: Technical Report – reference: A. Sharif Razavian, H. Azizpour, J. Sullivan, S. Carlsson, CNN Features off-the-shelf: an Astounding Baseline for Recognition, 2014. – volume: 36 start-page: 36 year: 2017 end-page: 40 ident: bib0086 article-title: Explainable AI: Beware of inmates running the asylum publication-title: International Joint Conference on Artificial Intelligence, Workshop on Explainable AI (XAI) – volume: 9 start-page: 58 year: 2006 end-page: 69 ident: bib0160 article-title: An empirical study of machine learning techniques for affect recognition in human–robot interaction publication-title: Pattern Analysis and Applications – start-page: 161 year: 2019 end-page: 170 ident: bib0401 article-title: Fairwashing: the risk of rationalization publication-title: International Conference on Machine Learning – reference: C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R. Fergus, Intriguing properties of neural networks, 2013. – volume: 398 year: 2013 ident: bib0176 article-title: Applied logistic regression – start-page: 535 year: 2006 end-page: 541 ident: bib0289 article-title: Model compression publication-title: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – start-page: 132 year: 2014 end-page: 143 ident: bib0069 article-title: Unsupervised feature construction and knowledge extraction from genome-wide assays of breast cancer with denoising autoencoders publication-title: Pacific Symposium on Biocomputing Co-Chairs – volume: 2 start-page: 1672 year: 2008 end-page: 1675 ident: bib0057 article-title: Eclectic rule-extraction from support vector machines publication-title: International Journal of Computer, Electrical, Automation, Control and Information Engineering – reference: Y. Zhou, G. Hooker, Interpreting models via single tree approximation, 2016. – start-page: 238 year: 2009 end-page: 244 ident: bib0149 article-title: Evolving decision trees using oracle guides publication-title: 2009 IEEE Symposium on Computational Intelligence and Data Mining – volume: 1 start-page: 295 year: 2004 end-page: 300 ident: bib0211 article-title: Accuracy vs. comprehensibility in data mining models publication-title: Proceedings of the seventh international conference on information fusion – volume: 5 start-page: 641 year: 2006 ident: bib0376 article-title: Predicting crystal structure by merging data mining with quantum mechanics publication-title: Nature materials – volume: 5 start-page: 85 year: 2017 end-page: 97 ident: bib0372 article-title: Critique and contribute: A practice-based framework for improving critical data studies and data science publication-title: Big data – start-page: 6967 year: 2017 end-page: 6976 ident: bib0227 article-title: Real time image saliency for black box classifiers publication-title: Advances in Neural Information Processing Systems – reference: Q. Zhang, Y. Yang, Y. Liu, Y. Nian Wu, S.-C. Zhu, Unsupervised Learning of Neural Networks to Explain Neural Networks, 2018. – volume: 16 start-page: 30:31 year: 2018 end-page: 30:57 ident: bib0005 article-title: The mythos of model interpretability publication-title: Queue – start-page: 8309 year: 2018 end-page: 8319 ident: bib0366 article-title: Visual feature attribution using wasserstein gans publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 1987 ident: bib0165 article-title: Robust statistics: The approach based on influence functions – start-page: 108 year: 2005 end-page: 117 ident: bib0250 article-title: Nomograms for visualizing support vector machines publication-title: Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining – reference: S. Liu, B. Kailkhura, D. Loveland, Y. Han, Generative counterfactual introspection for explainable deep learning, 2019. – volume: 2010 year: 2010 ident: bib0185 article-title: Assessment of landslide susceptibility by decision trees in the metropolitan area of istanbul, turkey publication-title: Mathematical Problems in Engineering – start-page: 341 year: 2011 end-page: 348 ident: bib0222 article-title: Opening black box data mining models using sensitivity analysis publication-title: 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM) – start-page: 32 year: 2005 end-page: 40 ident: bib0105 article-title: Rule extraction from linear support vector machines publication-title: ACM SIGKDD International Conference on Knowledge Discovery in Data Mining – reference: D.P. Kingma, M. Welling, Auto-Encoding Variational Bayes, 2013. – start-page: 3429 year: 2017 end-page: 3437 ident: bib0085 article-title: Interpretable explanations of black boxes by meaningful perturbation publication-title: IEEE International Conference on Computer Vision – year: 2001 ident: bib0175 article-title: Interaction effects in logistic regression: Quantitative applications in the social sciences – volume: 29 start-page: 230 year: 2017 end-page: 241 ident: bib0045 article-title: Designing and implementing transparency for real time inspection of autonomous robots publication-title: Connection Science – start-page: 10772 year: 2019 end-page: 10781 ident: bib0155 article-title: Explainability methods for graph convolutional neural networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 335 year: 2018 end-page: 340 ident: bib0397 article-title: Mitigating unwanted biases with adversarial learning publication-title: Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society – volume: 9 start-page: 1350 year: 2015 end-page: 1371 ident: bib0049 article-title: Interpretable classifiers using rules and bayesian analysis: Building a better stroke prediction model publication-title: The Annals of Applied Statistics – volume: 52 start-page: 31 year: 2019 end-page: 40 ident: bib0409 article-title: Knowledge fusion patterns: A survey publication-title: Information Fusion – volume: 8 start-page: 1 year: 2017 ident: bib0015 article-title: Explanation and justification in machine learning: A survey publication-title: IJCAI-17 workshop on explainable AI (XAI) – volume: 4 start-page: eaao5580 year: 2018 ident: bib0400 article-title: The accuracy, fairness, and limits of predicting recidivism publication-title: Science advances – reference: A. Lucic, H. Haned, M. de Rijke, Explaining predictions from tree-based boosting ensembles, 2019. – volume: 11 start-page: 1 year: 2010 end-page: 18 ident: bib0225 article-title: An efficient explanation of individual classifications using game theory publication-title: Journal of Machine Learning Research – year: 2008 ident: bib0027 article-title: Cambridge advanced learner’s dictionary – start-page: 8827 year: 2018 end-page: 8836 ident: bib0113 article-title: Interpretable convolutional neural networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 5 start-page: 246 year: 2017 end-page: 255 ident: bib0369 article-title: On the safety of machine learning: Cyber-physical systems, decision sciences, and data products publication-title: Big data – start-page: 295 year: 2018 end-page: 303 ident: bib0087 article-title: Explainable AI: the new 42? publication-title: International Cross-Domain Conference for Machine Learning and Knowledge Extraction – start-page: 150 year: 2012 end-page: 158 ident: bib0171 article-title: Intelligible models for classification and regression publication-title: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 70 start-page: 3319 year: 2017 end-page: 3328 ident: bib0262 article-title: Axiomatic attribution for deep networks publication-title: International Conference on Machine Learning – start-page: 4 year: 2017 ident: bib0233 article-title: Palm: Machine learning explanations for iterative debugging publication-title: Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics – start-page: 575 year: 2004 end-page: 580 ident: bib0219 article-title: Discovering additive structure in black box functions publication-title: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining – start-page: 1362 year: 2018 end-page: 1368 ident: bib0306 article-title: Learning optimal decision trees with SAT publication-title: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18 – volume: 5 start-page: 120 year: 2017 end-page: 134 ident: bib0391 article-title: Conscientious classification: A data scientist’s guide to discrimination-aware classification publication-title: Big data – volume: 65 start-page: 211 year: 2017 end-page: 222 ident: bib0060 article-title: Explaining nonlinear classification decisions with deep taylor decomposition publication-title: Pattern Recognition – reference: P. Gajane, M. Pechenizkiy, On formalizing fairness in prediction with machine learning, 2017. – volume: 46 start-page: 21 year: 2002 end-page: 52 ident: bib0247 article-title: Bayesian methods for support vector machines: Evidence and predictive class probabilities publication-title: Machine learning – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bib0170 article-title: Regression shrinkage and selection via the lasso publication-title: Journal of the Royal Statistical Society: Series B (Methodological) – reference: E. Tjoa, C. Guan, A survey on explainable artificial intelligence (XAI): Towards medical XAI, 2019. – start-page: 2625 year: 2015 end-page: 2634 ident: bib0274 article-title: Long-term recurrent convolutional networks for visual recognition and description publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 1596 year: 2017 end-page: 1602 ident: bib0297 article-title: Logic tensor networks for semantic image interpretation publication-title: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI – year: 1996 ident: bib0217 publication-title: Extracting Comprehensible Models from Trained Neural Networks – reference: M. Lin, Q. Chen, S. Yan, Network in network, 2013. – reference: M. Fox, D. Long, D. Magazzeni, Explainable planning, 2017. – start-page: 1721 year: 2015 end-page: 1730 ident: bib0044 article-title: Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission publication-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – year: 2018 ident: bib0384 article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead – start-page: 155 year: 2018 end-page: 172 ident: bib0243 article-title: Ensembling visual explanations publication-title: Explainable and Interpretable Models in Computer Vision and Machine Learning – volume: 51 start-page: 42 year: 2019 end-page: 57 ident: bib0407 article-title: Data fusion in cyber-physical-social systems: State-of-the-art and perspectives publication-title: Information Fusion – start-page: 553 year: 2018 end-page: 569 ident: bib0422 article-title: A hybrid model for identity obfuscation by face replacement publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – volume: 96 start-page: 3 year: 2002 end-page: 14 ident: bib0177 article-title: An introduction to logistic regression analysis and reporting publication-title: The journal of educational research – reference: A. Preece, D. Harborne, D. Braines, R. Tomsett, S. Chakraborty, Stakeholders in Explainable AI, 2018. – reference: Q. Zhang, R. Cao, Y. Nian Wu, S.-C. Zhu, Growing Interpretable Part Graphs on ConvNets via Multi-Shot Learning, 2016. – volume: 52 start-page: 357 year: 2019 end-page: 374 ident: bib0412 article-title: A survey of data fusion in smart city applications publication-title: Information Fusion – volume: 2 start-page: 7pp. year: 2005 ident: bib0321 article-title: Automatically balancing accuracy and comprehensibility in predictive modeling publication-title: Proceedings of the 8th International Conference on Information Fusion – start-page: 229 year: 2009 end-page: 238 ident: bib0378 article-title: Active model with orthotropic hyperelastic material for cardiac image analysis publication-title: International Conference on Functional Imaging and Modeling of the Heart – volume: 24 start-page: 1510 year: 2015 end-page: 1521 ident: bib0382 article-title: Bhpmf–a hierarchical bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography publication-title: Global Ecology and Biogeography – volume: 28 start-page: 897 year: 2001 end-page: 909 ident: bib0199 article-title: Application of generalized additive models to butterfly transect count data publication-title: Journal of Applied Statistics – volume: 51 start-page: 93:1 year: 2018 end-page: 93:42 ident: bib0017 article-title: A survey of methods for explaining black box models publication-title: ACM Computing Surveys – reference: M. Kearns, S. Neel, A. Roth, Z.S. Wu, Preventing fairness gerrymandering: Auditing and learning for subgroup fairness, 2017. – reference: H. Deng, Interpreting tree ensembles with intrees, 2014. – reference: R.R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, D. Batra, Grad-CAM: Why did you say that?, 2016. – volume: 10 start-page: 7 year: 2010 ident: bib0142 article-title: Deconvolutional networks. publication-title: CVPR – volume: 9 start-page: 1417 year: 1994 end-page: 1426 ident: bib0184 article-title: Decision trees for real-time transient stability prediction publication-title: IEEE Transactions on Power Systems – start-page: 2946 year: 2016 end-page: 2954 ident: bib0304 article-title: Composing graphical models with neural networks for structured representations and fast inference publication-title: Advances in Neural Information Processing Systems 29 – start-page: 303 year: 2000 end-page: 308 ident: bib0317 article-title: Case-based explanation for artificial neural nets publication-title: Artificial Neural Networks in Medicine and Biology, Proceedings of the ANNIMAB-1 Conference – reference: C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, N. Shazeer, C. Hawthorne, A.M. Dai, M.D. Hoffman, D. Eck, Music transformer: Generating music with long-term structure, 2018. – start-page: 1273 year: 2017 end-page: 1282 ident: bib0415 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: Artificial Intelligence and Statistics – start-page: 6446 year: 2017 end-page: 6456 ident: bib0039 article-title: Causal effect inference with deep latent-variable models publication-title: Advances in Neural Information Processing Systems – reference: L.A. Hendricks, Z. Akata, M. Rohrbach, J. Donahue, B. Schiele, T. Darrell, Generating Visual Explanations, 2016. – reference: T. Orekondy, B. Schiele, M. Fritz, Knockoff nets: Stealing functionality of black-box models, 2018. – volume: 29 start-page: 2318 year: 2017 end-page: 2331 ident: bib0374 article-title: Theory-guided data science: A new paradigm for scientific discovery from data publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 1 start-page: 291 year: 2004 end-page: 296 ident: bib0098 article-title: Extracting the knowledge embedded in support vector machines publication-title: IEEE International Joint Conference on Neural Networks – start-page: 1527 year: 2018 end-page: 1535 ident: bib0235 article-title: Anchors: High-precision model-agnostic explanations publication-title: AAAI Conference on Artificial Intelligence – volume: 1050 year: 2015 ident: bib0041 article-title: Machine learning methods for estimating heterogeneous causal effects publication-title: stat – volume: 4 start-page: 161 year: 1989 end-page: 186 ident: bib0181 article-title: Incremental induction of decision trees publication-title: Machine learning – reference: J. Adebayo, L. Kagal, Iterative orthogonal feature projection for diagnosing bias in black-box models, 2016. – start-page: 5 year: 2009 end-page: 14 ident: bib0405 article-title: Diversifying search results publication-title: Proceedings of the second ACM international conference on web search and data mining – reference: M.T. Ribeiro, S. Singh, C. Guestrin, Nothing else matters: Model-agnostic explanations by identifying prediction invariance, 2016. – year: 2019 ident: bib0311 article-title: Towards explainable shared control using augmented reality – start-page: 505 year: 1994 end-page: 512 ident: bib0253 article-title: Extracting rules from artificial neural networks with distributed representations publication-title: Proceedings of the 7th International Conference on Neural Information Processing Systems – reference: J. Li, X. Chen, E. Hovy, D. Jurafsky, Visualizing and understanding neural models in NLP, 2015. – reference: R.G. Krishnan, U. Shalit, D. Sontag, Deep Kalman Filters, 2015. – volume: 11 start-page: 448 year: 1999 end-page: 463 ident: bib0255 article-title: Symbolic interpretation of artificial neural networks publication-title: IEEE Transactions on Knowledge and Data Engineering – reference: M. Ancona, E. Ceolini, C. Öztireli, M. Gross, Towards better understanding of gradient-based attribution methods for Deep Neural Networks, 2017. – reference: A. Henelius, K. Puolamäki, A. Ukkonen, Interpreting classifiers through attribute interactions in datasets, 2017. – volume: 93 start-page: 935 year: 1998 end-page: 948 ident: bib0208 article-title: Bayesian cart model search publication-title: Journal of the American Statistical Association – year: 1996 ident: bib0021 article-title: Extracting comprehensible models from trained neural networks publication-title: Technical Report – reference: J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features in deep neural networks?, 2014. – ident: 10.1016/j.inffus.2019.12.012_bib0008 – ident: 10.1016/j.inffus.2019.12.012_bib0329 – volume: 15 start-page: 237 issue: 2 year: 2002 ident: 10.1016/j.inffus.2019.12.012_bib0260 article-title: A methodology to explain neural network classification publication-title: Neural networks doi: 10.1016/S0893-6080(01)00127-7 – ident: 10.1016/j.inffus.2019.12.012_bib0341 – ident: 10.1016/j.inffus.2019.12.012_bib0043 – start-page: 1952 year: 2014 ident: 10.1016/j.inffus.2019.12.012_bib0209 article-title: The bayesian case model: A generative approach for case-based reasoning and prototype classification – start-page: 2280 year: 2016 ident: 10.1016/j.inffus.2019.12.012_bib0210 article-title: Examples are not enough, learn to criticize! criticism for interpretability – volume: 225 start-page: 1 year: 2013 ident: 10.1016/j.inffus.2019.12.012_bib0223 article-title: Using sensitivity analysis and visualization techniques to open black box data mining models publication-title: Information Sciences doi: 10.1016/j.ins.2012.10.039 – year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0383 – start-page: 3315 year: 2016 ident: 10.1016/j.inffus.2019.12.012_bib0393 article-title: Equality of opportunity in supervised learning – start-page: 519 year: 2015 ident: 10.1016/j.inffus.2019.12.012_bib0379 article-title: Robust transmural electrophysiological imaging: Integrating sparse and dynamic physiological models into ecg-based inference – ident: 10.1016/j.inffus.2019.12.012_bib0146 – ident: 10.1016/j.inffus.2019.12.012_bib0123 – start-page: 3749 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0300 article-title: DeepProbLog: Neural probabilistic logic programming – volume: 38 start-page: 73 issue: 1 year: 2014 ident: 10.1016/j.inffus.2019.12.012_bib0236 article-title: Explaining data-driven document classifications publication-title: MIS Quarterly doi: 10.25300/MISQ/2014/38.1.04 – year: 2008 ident: 10.1016/j.inffus.2019.12.012_bib0027 – ident: 10.1016/j.inffus.2019.12.012_bib0118 doi: 10.32614/CRAN.package.inTrees – start-page: 289 year: 2016 ident: 10.1016/j.inffus.2019.12.012_bib0331 article-title: Hierarchical question-image co-attention for visual question answering – start-page: 8309 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0366 article-title: Visual feature attribution using wasserstein gans – ident: 10.1016/j.inffus.2019.12.012_bib0013 doi: 10.1109/DSAA.2018.00018 – volume: 24 start-page: 1 issue: 1 year: 2006 ident: 10.1016/j.inffus.2019.12.012_bib0127 article-title: Rule-based learning systems for support vector machines publication-title: Neural Processing Letters doi: 10.1007/s11063-006-9007-8 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 10.1016/j.inffus.2019.12.012_bib0170 article-title: Regression shrinkage and selection via the lasso publication-title: Journal of the Royal Statistical Society: Series B (Methodological) doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: 10.1016/j.inffus.2019.12.012_bib0284 – volume: 27 start-page: 482 issue: 4 year: 2005 ident: 10.1016/j.inffus.2019.12.012_bib0102 article-title: Feature space interpretation of SVMs with indefinite kernels publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2005.78 – ident: 10.1016/j.inffus.2019.12.012_bib0368 doi: 10.1109/GlobalSIP45357.2019.8969491 – volume: 38 start-page: 43 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0419 article-title: Multi-view learning overview: Recent progress and new challenges publication-title: Information Fusion doi: 10.1016/j.inffus.2017.02.007 – start-page: 335 year: 2005 ident: 10.1016/j.inffus.2019.12.012_bib0094 article-title: Fuzzy rule extraction from support vector machines – ident: 10.1016/j.inffus.2019.12.012_bib0107 doi: 10.32470/CCN.2018.1113-0 – ident: 10.1016/j.inffus.2019.12.012_bib0330 – ident: 10.1016/j.inffus.2019.12.012_bib0272 – start-page: 427 year: 2015 ident: 10.1016/j.inffus.2019.12.012_bib0273 article-title: Deep neural networks are easily fooled: High confidence predictions for unrecognizable images – start-page: 101 year: 1998 ident: 10.1016/j.inffus.2019.12.012_bib0112 article-title: Interpretable boosted naïve bayes classification. – volume: 11 start-page: 1803 issue: Jun year: 2010 ident: 10.1016/j.inffus.2019.12.012_bib0230 article-title: How to explain individual classification decisions publication-title: Journal of Machine Learning Research – start-page: 1273 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0415 article-title: Communication-efficient learning of deep networks from decentralized data – start-page: 32 year: 2005 ident: 10.1016/j.inffus.2019.12.012_bib0105 article-title: Rule extraction from linear support vector machines – start-page: 535 year: 2006 ident: 10.1016/j.inffus.2019.12.012_bib0289 article-title: Model compression – ident: 10.1016/j.inffus.2019.12.012_bib0318 – start-page: 325 year: 2013 ident: 10.1016/j.inffus.2019.12.012_bib0396 article-title: Learning fair representations – volume: 29 start-page: 230 issue: 3 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0045 article-title: Designing and implementing transparency for real time inspection of autonomous robots publication-title: Connection Science doi: 10.1080/09540091.2017.1310182 – start-page: 658 year: 2004 ident: 10.1016/j.inffus.2019.12.012_bib0190 article-title: The truth is in there-rule extraction from opaque models using genetic programming. – start-page: 842 year: 2015 ident: 10.1016/j.inffus.2019.12.012_bib0278 article-title: The application of two-level attention models in deep convolutional neural network for fine-grained image classification – volume: 24 start-page: 1510 issue: 12 year: 2015 ident: 10.1016/j.inffus.2019.12.012_bib0382 article-title: Bhpmf–a hierarchical bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography publication-title: Global Ecology and Biogeography doi: 10.1111/geb.12335 – volume: 15 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.inffus.2019.12.012_bib0053 article-title: Comprehensible classification models: a position paper publication-title: ACM SIGKDD explorations newsletter doi: 10.1145/2594473.2594475 – start-page: 3504 year: 2016 ident: 10.1016/j.inffus.2019.12.012_bib0285 article-title: Retain: An interpretable predictive model for healthcare using reverse time attention mechanism – ident: 10.1016/j.inffus.2019.12.012_bib0363 – volume: 41 start-page: 161 issue: 2 year: 2007 ident: 10.1016/j.inffus.2019.12.012_bib0245 article-title: A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2007.07.008 – volume: 7 start-page: 39 issue: 1 year: 1994 ident: 10.1016/j.inffus.2019.12.012_bib0316 article-title: Case-based reasoning: Foundational issues publication-title: Methodological Variations, and System Approaches – ident: 10.1016/j.inffus.2019.12.012_bib0388 – volume: 5 start-page: 246 issue: 3 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0369 article-title: On the safety of machine learning: Cyber-physical systems, decision sciences, and data products publication-title: Big data doi: 10.1089/big.2016.0051 – start-page: 83 year: 1983 ident: 10.1016/j.inffus.2019.12.012_bib0022 article-title: A theory and methodology of inductive learning – ident: 10.1016/j.inffus.2019.12.012_bib0261 – ident: 10.1016/j.inffus.2019.12.012_bib0145 – start-page: 108 year: 2005 ident: 10.1016/j.inffus.2019.12.012_bib0250 article-title: Nomograms for visualizing support vector machines – volume: 1 start-page: 6 year: 2011 ident: 10.1016/j.inffus.2019.12.012_bib0291 article-title: Adaptive deconvolutional networks for mid and high level feature learning. – start-page: 6979 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0042 article-title: Discovering causal signals in images – start-page: 1721 year: 2015 ident: 10.1016/j.inffus.2019.12.012_bib0044 article-title: Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission – volume: 30 start-page: 1639 issue: 3 year: 1997 ident: 10.1016/j.inffus.2019.12.012_bib0148 article-title: Rule extraction from trained neural networks using genetic algorithms publication-title: Nonlinear Analysis: Theory, Methods & Applications doi: 10.1016/S0362-546X(96)00267-2 – volume: 69 start-page: 1754 issue: 13-15 year: 2006 ident: 10.1016/j.inffus.2019.12.012_bib0134 article-title: Support vector machine interpretation publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.118 – volume: 93 start-page: 935 issue: 443 year: 1998 ident: 10.1016/j.inffus.2019.12.012_bib0208 article-title: Bayesian cart model search publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1998.10473750 – ident: 10.1016/j.inffus.2019.12.012_bib0213 – volume: 6 start-page: 7 issue: 1 year: 2004 ident: 10.1016/j.inffus.2019.12.012_bib0370 article-title: Mining with rarity: a unifying framework publication-title: ACM Sigkdd Explorations Newsletter doi: 10.1145/1007730.1007734 – start-page: 4842 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0101 article-title: Fairness through computationally-bounded awareness – year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0390 article-title: Ethics Guidelines for Trustworthy AI – volume: 2 start-page: 963 year: 1996 ident: 10.1016/j.inffus.2019.12.012_bib0207 article-title: Acting under uncertainty: Discrete bayesian models for mobile-robot navigation – volume: 28 start-page: 1503 issue: 5-6 year: 2014 ident: 10.1016/j.inffus.2019.12.012_bib0228 article-title: A peek into the black box: exploring classifiers by randomization publication-title: Data mining and knowledge discovery doi: 10.1007/s10618-014-0368-8 – volume: 5 start-page: 197 issue: 3 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0237 article-title: Enhancing transparency and control when drawing data-driven inferences about individuals publication-title: Big data doi: 10.1089/big.2017.0074 – volume: 2 start-page: 1672 issue: 5 year: 2008 ident: 10.1016/j.inffus.2019.12.012_bib0057 article-title: Eclectic rule-extraction from support vector machines publication-title: International Journal of Computer, Electrical, Automation, Control and Information Engineering – ident: 10.1016/j.inffus.2019.12.012_bib0328 – volume: 16 start-page: 3 issue: 1 year: 2003 ident: 10.1016/j.inffus.2019.12.012_bib0083 article-title: Extracting symbolic rules from trained neural network ensembles publication-title: AI Communications – volume: 1 start-page: 81 issue: 1 year: 1986 ident: 10.1016/j.inffus.2019.12.012_bib0182 article-title: Induction of decision trees publication-title: Machine learning doi: 10.1023/A:1022643204877 – volume: 24 start-page: 44 issue: 1 year: 2015 ident: 10.1016/j.inffus.2019.12.012_bib0238 article-title: Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation publication-title: Journal of Computational and Graphical Statistics doi: 10.1080/10618600.2014.907095 – ident: 10.1016/j.inffus.2019.12.012_bib0340 – volume: 157 start-page: 89 issue: 2-3 year: 2002 ident: 10.1016/j.inffus.2019.12.012_bib0198 article-title: Generalized linear and generalized additive models in studies of species distributions: setting the scene publication-title: Ecological Modelling doi: 10.1016/S0304-3800(02)00204-1 – volume: 23 start-page: 129 issue: 2 year: 2007 ident: 10.1016/j.inffus.2019.12.012_bib0193 article-title: Bankruptcy prediction by generalized additive models publication-title: Applied Stochastic Models in Business and Industry doi: 10.1002/asmb.658 – ident: 10.1016/j.inffus.2019.12.012_bib0263 – volume: 14 start-page: 69 issue: 1 year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0019 article-title: Evolutionary fuzzy systems for explainable artificial intelligence: Why, when, what for, and where to? publication-title: IEEE Computational Intelligence Magazine doi: 10.1109/MCI.2018.2881645 – volume: 3 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.inffus.2019.12.012_bib0109 article-title: How the machine ‘thinks’: Understanding opacity in machine learning algorithms publication-title: Big Data & Society doi: 10.1177/2053951715622512 – ident: 10.1016/j.inffus.2019.12.012_bib0030 – start-page: 559 year: 2004 ident: 10.1016/j.inffus.2019.12.012_bib0188 article-title: An KNN model-based approach and its application in text categorization – volume: 20 start-page: 1638 issue: 10 year: 2004 ident: 10.1016/j.inffus.2019.12.012_bib0187 article-title: Application of the GA/KNN method to SELDI proteomics data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth098 – year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0286 – ident: 10.1016/j.inffus.2019.12.012_bib0356 doi: 10.1109/CVPR.2019.00509 – year: 2016 ident: 10.1016/j.inffus.2019.12.012_bib0001 – ident: 10.1016/j.inffus.2019.12.012_bib0064 – ident: 10.1016/j.inffus.2019.12.012_bib0327 – volume: 10 start-page: 7 year: 2010 ident: 10.1016/j.inffus.2019.12.012_bib0142 article-title: Deconvolutional networks. – ident: 10.1016/j.inffus.2019.12.012_bib0157 – volume: 35 start-page: 131 issue: 2 year: 2012 ident: 10.1016/j.inffus.2019.12.012_bib0082 article-title: Reverse engineering the neural networks for rule extraction in classification problems publication-title: Neural Processing Letters doi: 10.1007/s11063-011-9207-8 – volume: 16 start-page: 30:31 issue: 3 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0005 article-title: The mythos of model interpretability publication-title: Queue doi: 10.1145/3236386.3241340 – start-page: 537 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0214 article-title: Local interpretable model-agnostic explanations for music content analysis. – start-page: 1135 year: 2016 ident: 10.1016/j.inffus.2019.12.012_bib0032 article-title: Why should I trust you?: Explaining the predictions of any classifier – year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0169 article-title: Towards explainable neural-symbolic visual reasoning – ident: 10.1016/j.inffus.2019.12.012_bib0296 – year: 2005 ident: 10.1016/j.inffus.2019.12.012_bib0034 article-title: Explainable artificial intelligence for training and tutoring – start-page: 2921 year: 2016 ident: 10.1016/j.inffus.2019.12.012_bib0096 article-title: Learning deep features for discriminative localization – ident: 10.1016/j.inffus.2019.12.012_bib0135 – volume: 538 start-page: 20 issue: 7623 year: 2016 ident: 10.1016/j.inffus.2019.12.012_bib0004 article-title: Can we open the black box of AI? publication-title: Nature News doi: 10.1038/538020a – volume: 50 start-page: 158 year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0418 article-title: Feature selection with multi-view data: A survey publication-title: Information Fusion doi: 10.1016/j.inffus.2018.11.019 – start-page: 193 year: 2014 ident: 10.1016/j.inffus.2019.12.012_bib0103 article-title: Interpreting random forest classification models using a feature contribution method – start-page: 8603 year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0139 article-title: Learning to explain with complemental examples – volume: 12 start-page: 191 issue: 3 year: 2013 ident: 10.1016/j.inffus.2019.12.012_bib0377 article-title: The high-throughput highway to computational materials design publication-title: Nature materials doi: 10.1038/nmat3568 – volume: 23 start-page: 2031 issue: 7-8 year: 2013 ident: 10.1016/j.inffus.2019.12.012_bib0417 article-title: A survey of multi-view machine learning publication-title: Neural computing and applications doi: 10.1007/s00521-013-1362-6 – year: 2017 ident: 10.1016/j.inffus.2019.12.012_sbref0221 article-title: Feature visualization. publication-title: Distill doi: 10.23915/distill.00007 – volume: 70 start-page: 3319 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0262 article-title: Axiomatic attribution for deep networks – volume: 267 start-page: 1 year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0012 article-title: Explanation in artificial intelligence: Insights from the social sciences publication-title: Artif. Intell. doi: 10.1016/j.artint.2018.07.007 – volume: 24 start-page: 1 issue: 1 year: 2006 ident: 10.1016/j.inffus.2019.12.012_bib0244 article-title: Rule-based learning systems for support vector machines publication-title: Neural Processing Letters doi: 10.1007/s11063-006-9007-8 – ident: 10.1016/j.inffus.2019.12.012_bib0308 doi: 10.18653/v1/D19-1250 – volume: 32 start-page: 1999 issue: 12 year: 1999 ident: 10.1016/j.inffus.2019.12.012_bib0097 article-title: Extracting decision trees from trained neural networks publication-title: Pattern Recognition doi: 10.1016/S0031-3203(98)00181-2 – volume: 6 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.inffus.2019.12.012_bib0371 article-title: Beat the machine: Challenging humans to find a predictive model’s “unknown unknowns” publication-title: Journal of Data and Information Quality (JDIQ) doi: 10.1145/2700832 – start-page: 1362 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0306 article-title: Learning optimal decision trees with SAT – start-page: 971 year: 2008 ident: 10.1016/j.inffus.2019.12.012_bib0212 article-title: G-rex: A versatile framework for evolutionary data mining – year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0339 article-title: beta-vae: Learning basic visual concepts with a constrained variational framework – volume: 51 start-page: 93:1 issue: 5 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0017 article-title: A survey of methods for explaining black box models publication-title: ACM Computing Surveys – ident: 10.1016/j.inffus.2019.12.012_bib0052 – ident: 10.1016/j.inffus.2019.12.012_bib0150 doi: 10.18653/v1/D16-1011 – ident: 10.1016/j.inffus.2019.12.012_bib0143 – start-page: 2271 year: 2016 ident: 10.1016/j.inffus.2019.12.012_bib0063 article-title: Controlling explanatory heatmap resolution and semantics via decomposition depth – volume: 52 start-page: 357 year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0412 article-title: A survey of data fusion in smart city applications publication-title: Information Fusion doi: 10.1016/j.inffus.2019.05.004 – start-page: 24 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0313 article-title: Knowledge-aware autoencoders for explainable recommender systems – volume: 27 start-page: 221 issue: 3 year: 1987 ident: 10.1016/j.inffus.2019.12.012_bib0132 article-title: Simplifying decision trees publication-title: International journal of man-machine studies doi: 10.1016/S0020-7373(87)80053-6 – volume: 66 start-page: 1417 issue: 6 year: 2009 ident: 10.1016/j.inffus.2019.12.012_bib0196 article-title: Application of a generalized additive model (GAM) to reveal relationships between environmental factors and distributions of pelagic fish and krill: a case study in sendai bay, Japan publication-title: ICES Journal of Marine Science doi: 10.1093/icesjms/fsp105 – volume: 5 start-page: 85 issue: 2 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0372 article-title: Critique and contribute: A practice-based framework for improving critical data studies and data science publication-title: Big data doi: 10.1089/big.2016.0050 – ident: 10.1016/j.inffus.2019.12.012_bib0347 doi: 10.1038/s42256-019-0048-x – year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0295 article-title: The building blocks of interpretability publication-title: Distill doi: 10.23915/distill.00010 – ident: 10.1016/j.inffus.2019.12.012_bib0006 – volume: 3 start-page: 11 issue: 1 year: 2011 ident: 10.1016/j.inffus.2019.12.012_bib0068 article-title: Interpreting linear support vector machine models with heat map molecule coloring publication-title: Journal of Cheminformatics doi: 10.1186/1758-2946-3-11 – volume: 20 start-page: 589 issue: 5 year: 2008 ident: 10.1016/j.inffus.2019.12.012_bib0234 article-title: Explaining classifications for individual instances publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2007.190734 – ident: 10.1016/j.inffus.2019.12.012_bib0029 – start-page: 161 year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0401 article-title: Fairwashing: the risk of rationalization – volume: 30 start-page: 2805 issue: 9 year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0048 article-title: Adversarial examples: Attacks and defenses for deep learning publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2018.2886017 – volume: 11 start-page: 312 issue: 3 year: 2007 ident: 10.1016/j.inffus.2019.12.012_bib0054 article-title: Confident interpretation of bayesian decision tree ensembles for clinical applications publication-title: IEEE Transactions on Information Technology in Biomedicine doi: 10.1109/TITB.2006.880553 – ident: 10.1016/j.inffus.2019.12.012_bib0281 – volume: 24 start-page: 1114 issue: 8 year: 1994 ident: 10.1016/j.inffus.2019.12.012_bib0251 article-title: Rule generation from neural networks publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/21.299696 – start-page: 3429 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0085 article-title: Interpretable explanations of black boxes by meaningful perturbation – ident: 10.1016/j.inffus.2019.12.012_bib0310 – start-page: 281 year: 2011 ident: 10.1016/j.inffus.2019.12.012_bib0204 article-title: A bayesian model for opening prediction in RTS games with application to starcraft – volume: 3 start-page: 605 issue: 5 year: 2013 ident: 10.1016/j.inffus.2019.12.012_bib0186 article-title: Application of k-nearest neighbor (knn) approach for predicting economic events: Theoretical background publication-title: International Journal of Engineering Research and Applications – volume: 27 start-page: 62 issue: 1 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0381 article-title: View-tolerant face recognition and hebbian learning imply mirror-symmetric neural tuning to head orientation publication-title: Current Biology doi: 10.1016/j.cub.2016.10.015 – start-page: 586 year: 2016 ident: 10.1016/j.inffus.2019.12.012_bib0172 article-title: Deep learning without poor local minima – volume: P-88 start-page: 17 year: 2006 ident: 10.1016/j.inffus.2019.12.012_bib0346 article-title: Design and Implementation of a Backward-In-Time Debugger – volume: 51 start-page: 782 issue: 4 year: 2011 ident: 10.1016/j.inffus.2019.12.012_bib0055 article-title: Performance of classification models from a user perspective publication-title: Decision Support Systems doi: 10.1016/j.dss.2011.01.013 – ident: 10.1016/j.inffus.2019.12.012_bib0156 – start-page: 655 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0239 article-title: Visualizing the feature importance for black box models – start-page: 229 year: 2009 ident: 10.1016/j.inffus.2019.12.012_bib0378 article-title: Active model with orthotropic hyperelastic material for cardiac image analysis – start-page: 349 year: 2000 ident: 10.1016/j.inffus.2019.12.012_bib0248 article-title: Probabilistic methods for support vector machines – volume: 7 start-page: 154096 year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0307 article-title: Black-box vs. white-box: Understanding their advantages and weaknesses from a practical point of view publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2949286 – ident: 10.1016/j.inffus.2019.12.012_bib0131 – ident: 10.1016/j.inffus.2019.12.012_bib0216 – year: 1987 ident: 10.1016/j.inffus.2019.12.012_bib0165 – start-page: 617 year: 2015 ident: 10.1016/j.inffus.2019.12.012_bib0266 article-title: Improving the interpretability of deep neural networks with stimulated learning – start-page: 1313 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0074 article-title: Plan explicability and predictability for robot task planning – volume: 23 start-page: 91 issue: 1 year: 2016 ident: 10.1016/j.inffus.2019.12.012_bib0270 article-title: Towards better analysis of deep convolutional neural networks publication-title: IEEE transactions on visualization and computer graphics doi: 10.1109/TVCG.2016.2598831 – volume: 9 start-page: 1350 issue: 3 year: 2015 ident: 10.1016/j.inffus.2019.12.012_bib0049 article-title: Interpretable classifiers using rules and bayesian analysis: Building a better stroke prediction model publication-title: The Annals of Applied Statistics doi: 10.1214/15-AOAS848 – volume: 10 start-page: e0130140 issue: 7 year: 2015 ident: 10.1016/j.inffus.2019.12.012_bib0072 article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation publication-title: PloS one doi: 10.1371/journal.pone.0130140 – year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0301 article-title: Persuasive explanation of reasoning inferences on dietary data – volume: 26 start-page: 67 issue: 1 year: 2010 ident: 10.1016/j.inffus.2019.12.012_bib0179 article-title: Logistic regression: Why we cannot do what we think we can do, and what we can do about it publication-title: European sociological review doi: 10.1093/esr/jcp006 – ident: 10.1016/j.inffus.2019.12.012_bib0283 – start-page: 4765 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0224 article-title: A unified approach to interpreting model predictions – year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0326 article-title: Self-driving car steering angle prediction based on image recognition – start-page: 40 year: 2015 ident: 10.1016/j.inffus.2019.12.012_bib0424 article-title: comobile: Real-time human mobility modeling at urban scale using multi-view learning – year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0002 – start-page: 6276 year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0351 article-title: Counterfactuals in explainable artificial intelligence (XAI): Evidence from human reasoning – volume: 5 start-page: 153 issue: 2 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0100 article-title: Fair prediction with disparate impact: A study of bias in recidivism prediction instruments publication-title: Big Data doi: 10.1089/big.2016.0047 – start-page: 19 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0282 article-title: Towards explainable text classification by jointly learning lexicon and modifier terms – start-page: 1177 year: 2007 ident: 10.1016/j.inffus.2019.12.012_bib0051 article-title: Comparing analytical decision support models through boolean rule extraction: A case study of ovarian tumour malignancy – start-page: 2239 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0394 article-title: A unified approach to quantifying algorithmic unfairness: Measuring individual group unfairness via inequality indices – start-page: 210 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0010 article-title: Explainable artificial intelligence: A survey – ident: 10.1016/j.inffus.2019.12.012_bib0133 – volume: 52 start-page: 155 year: 2007 ident: 10.1016/j.inffus.2019.12.012_bib0337 article-title: Algorithms and applications for approximate nonnegative matrix factorization publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2006.11.006 – year: 2009 ident: 10.1016/j.inffus.2019.12.012_bib0161 – start-page: 341 year: 2011 ident: 10.1016/j.inffus.2019.12.012_bib0222 article-title: Opening black box data mining models using sensitivity analysis – ident: 10.1016/j.inffus.2019.12.012_bib0154 – volume: 87 start-page: 304 year: 1987 ident: 10.1016/j.inffus.2019.12.012_bib0191 article-title: Generating production rules from decision trees. – start-page: 303 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0120 article-title: Distill-and-compare: Auditing black-box models using transparent model distillation – ident: 10.1016/j.inffus.2019.12.012_bib0122 – volume: 1 start-page: 295 year: 2004 ident: 10.1016/j.inffus.2019.12.012_bib0211 article-title: Accuracy vs. comprehensibility in data mining models – ident: 10.1016/j.inffus.2019.12.012_bib0386 – volume: 1355 start-page: 1 year: 2010 ident: 10.1016/j.inffus.2019.12.012_bib0130 article-title: Understanding representations learned in deep architectures publication-title: Department dInformatique et Recherche Operationnelle, University of Montreal, QC, Canada, Tech. Rep – ident: 10.1016/j.inffus.2019.12.012_bib0344 doi: 10.18653/v1/D16-1044 – start-page: 6541 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0125 article-title: Network dissection: Quantifying interpretability of deep visual representations – start-page: 335 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0397 article-title: Mitigating unwanted biases with adversarial learning – start-page: 32 year: 2013 ident: 10.1016/j.inffus.2019.12.012_bib0249 article-title: Interpreting individual classifications of hierarchical networks – volume: 5 start-page: 641 issue: 8 year: 2006 ident: 10.1016/j.inffus.2019.12.012_bib0376 article-title: Predicting crystal structure by merging data mining with quantum mechanics publication-title: Nature materials doi: 10.1038/nmat1691 – start-page: 37 year: 1994 ident: 10.1016/j.inffus.2019.12.012_bib0147 article-title: Using sampling and queries to extract rules from trained neural networks – start-page: 107 year: 2002 ident: 10.1016/j.inffus.2019.12.012_bib0126 article-title: Rule extraction from support vector machines. – volume: 42 start-page: 51 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0413 article-title: Big data: Tutorial and guidelines on information and process fusion for analytics algorithms with mapreduce publication-title: Information Fusion doi: 10.1016/j.inffus.2017.10.001 – start-page: 6446 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0039 article-title: Causal effect inference with deep latent-variable models – volume: 4 start-page: 161 issue: 2 year: 1989 ident: 10.1016/j.inffus.2019.12.012_bib0181 article-title: Incremental induction of decision trees publication-title: Machine learning doi: 10.1023/A:1022699900025 – start-page: 1529 year: 2015 ident: 10.1016/j.inffus.2019.12.012_bib0305 article-title: Conditional random fields as recurrent neural networks – ident: 10.1016/j.inffus.2019.12.012_bib0215 – ident: 10.1016/j.inffus.2019.12.012_bib0315 doi: 10.1109/ICRA40945.2020.9196653 – ident: 10.1016/j.inffus.2019.12.012_bib0144 – ident: 10.1016/j.inffus.2019.12.012_bib0084 – ident: 10.1016/j.inffus.2019.12.012_bib0271 – start-page: 2217 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0242 article-title: Stacking with auxiliary features for visual question answering – volume: 50 start-page: 92 year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0348 article-title: Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0 publication-title: Information Fusion doi: 10.1016/j.inffus.2018.10.005 – volume: 595 start-page: 299 issue: 1-2 year: 2007 ident: 10.1016/j.inffus.2019.12.012_bib0077 article-title: Visualisation and interpretation of support vector regression models publication-title: Analytica Chimica Acta doi: 10.1016/j.aca.2007.03.023 – ident: 10.1016/j.inffus.2019.12.012_bib0342 – ident: 10.1016/j.inffus.2019.12.012_bib0319 – ident: 10.1016/j.inffus.2019.12.012_bib0110 – volume: 10 start-page: 395 issue: 2 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0141 article-title: Explanations of Model Predictions with live and breakDown Packages publication-title: The R Journal doi: 10.32614/RJ-2018-072 – ident: 10.1016/j.inffus.2019.12.012_bib0117 – ident: 10.1016/j.inffus.2019.12.012_bib0358 – year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0007 article-title: Explainable artificial intelligence (xAI) – start-page: 1527 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0235 article-title: Anchors: High-precision model-agnostic explanations – volume: 154 start-page: 135 issue: 1-2 year: 2002 ident: 10.1016/j.inffus.2019.12.012_bib0066 article-title: Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks publication-title: Ecological modelling doi: 10.1016/S0304-3800(02)00064-9 – ident: 10.1016/j.inffus.2019.12.012_bib0385 doi: 10.2139/ssrn.3518482 – ident: 10.1016/j.inffus.2019.12.012_bib0232 – year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0398 article-title: Fairsight: Visual analytics for fairness in decision making publication-title: IEEE transactions on visualization and computer graphics doi: 10.1109/TVCG.2019.2934262 – volume: 11 start-page: 448 issue: 3 year: 1999 ident: 10.1016/j.inffus.2019.12.012_bib0255 article-title: Symbolic interpretation of artificial neural networks publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/69.774103 – volume: 39 start-page: 1503 issue: 1 year: 2012 ident: 10.1016/j.inffus.2019.12.012_bib0189 article-title: An improved k-nearest-neighbor algorithm for text categorization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.08.040 – start-page: 155 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0243 article-title: Ensembling visual explanations – volume: 17 start-page: 374 issue: 2 year: 2006 ident: 10.1016/j.inffus.2019.12.012_bib0073 article-title: Orthogonal search-based rule extraction (OSRE) for trained neural networks: a practical and efficient approach publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2005.863472 – ident: 10.1016/j.inffus.2019.12.012_bib0312 – volume: 51 start-page: 42 year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0411 article-title: Data fusion in cyber-physical-social systems: State-of-the-art and perspectives publication-title: Information Fusion doi: 10.1016/j.inffus.2018.11.002 – year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0016 article-title: Explanation in Human-AI Systems: A Literature Meta-Review Synopsis of Key Ideas and Publications and Bibliography for Explainable AI – start-page: 5686 year: 2016 ident: 10.1016/j.inffus.2019.12.012_bib0067 article-title: Interacting with predictions: Visual inspection of black-box machine learning models – ident: 10.1016/j.inffus.2019.12.012_bib0164 – volume: 9 start-page: 1417 issue: 3 year: 1994 ident: 10.1016/j.inffus.2019.12.012_bib0184 article-title: Decision trees for real-time transient stability prediction publication-title: IEEE Transactions on Power Systems doi: 10.1109/59.336122 – start-page: 347 year: 2001 ident: 10.1016/j.inffus.2019.12.012_bib0406 article-title: Similarity vs. diversity – start-page: 121 year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0357 article-title: Towards reverse-engineering black-box neural networks – volume: 43 start-page: 259 issue: 3 year: 2002 ident: 10.1016/j.inffus.2019.12.012_bib0076 article-title: The use and interpretation of logistic regression in higher education journals: 1988–1999 publication-title: Research in Higher Education doi: 10.1023/A:1014858517172 – year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0384 – ident: 10.1016/j.inffus.2019.12.012_bib0324 – start-page: 1885 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0221 article-title: Understanding black-box predictions via influence functions – ident: 10.1016/j.inffus.2019.12.012_bib0267 – year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0402 article-title: Certifai: Counterfactual explanations for robustness, transparency, interpretability, and fairness of artificial intelligence models publication-title: arXiv preprint arXiv:1905.07857 – volume: 56 start-page: 675 issue: 5-6 year: 2007 ident: 10.1016/j.inffus.2019.12.012_bib0195 article-title: New approaches to regression by generalized additive models and continuous optimization for modern applications in finance, science and technology publication-title: Optimization doi: 10.1080/02331930701618740 – ident: 10.1016/j.inffus.2019.12.012_bib0061 – volume: 1 start-page: 291 year: 2004 ident: 10.1016/j.inffus.2019.12.012_bib0098 article-title: Extracting the knowledge embedded in support vector machines – volume: 51 start-page: 42 year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0407 article-title: Data fusion in cyber-physical-social systems: State-of-the-art and perspectives publication-title: Information Fusion doi: 10.1016/j.inffus.2018.11.002 – start-page: 5188 year: 2015 ident: 10.1016/j.inffus.2019.12.012_bib0137 article-title: Understanding deep image representations by inverting them – ident: 10.1016/j.inffus.2019.12.012_bib0290 – volume: 19 start-page: 1484 issue: 4 year: 2013 ident: 10.1016/j.inffus.2019.12.012_bib0167 article-title: Stability publication-title: Bernoulli doi: 10.3150/13-BEJSP14 – year: 2001 ident: 10.1016/j.inffus.2019.12.012_bib0175 – ident: 10.1016/j.inffus.2019.12.012_bib0140 – volume: 3 start-page: 1870 year: 2001 ident: 10.1016/j.inffus.2019.12.012_bib0259 article-title: Rule extraction from neural networks via decision tree induction – volume: 4 start-page: eaao5580 issue: 1 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0400 article-title: The accuracy, fairness, and limits of predicting recidivism publication-title: Science advances doi: 10.1126/sciadv.aao5580 – volume: 183 start-page: 1466 issue: 3 year: 2007 ident: 10.1016/j.inffus.2019.12.012_bib0095 article-title: Comprehensible credit scoring models using rule extraction from support vector machines publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2006.04.051 – start-page: 387 year: 2013 ident: 10.1016/j.inffus.2019.12.012_bib0362 article-title: Evasion attacks against machine learning at test time – ident: 10.1016/j.inffus.2019.12.012_bib0226 doi: 10.1007/978-3-030-53352-6_24 – volume: 65 start-page: 211 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0060 article-title: Explaining nonlinear classification decisions with deep taylor decomposition publication-title: Pattern Recognition doi: 10.1016/j.patcog.2016.11.008 – ident: 10.1016/j.inffus.2019.12.012_bib0323 – start-page: 9505 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0294 article-title: Sanity checks for saliency maps – volume: 190 start-page: 379 issue: 3 year: 2013 ident: 10.1016/j.inffus.2019.12.012_bib0023 article-title: General theories of explanation: buyer beware publication-title: Synthese doi: 10.1007/s11229-011-0020-8 – ident: 10.1016/j.inffus.2019.12.012_bib0153 – ident: 10.1016/j.inffus.2019.12.012_bib0335 doi: 10.1007/978-1-4757-1904-8_7 – volume: 7 start-page: 76 issue: 2 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0355 article-title: Why a right to explanation of automated decision-making does not exist in the general data protection regulation publication-title: International Data Privacy Law doi: 10.1093/idpl/ipx005 – volume: 33 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.inffus.2019.12.012_bib0395 article-title: Data preprocessing techniques for classification without discrimination publication-title: Knowledge and Information Systems doi: 10.1007/s10115-011-0463-8 – ident: 10.1016/j.inffus.2019.12.012_bib0343 doi: 10.1007/s11263-016-0966-6 – ident: 10.1016/j.inffus.2019.12.012_bib0414 – volume: 10 start-page: 421 issue: 4 year: 2010 ident: 10.1016/j.inffus.2019.12.012_bib0202 article-title: A bayesian model for repeated measures zero-inflated count data with application to outpatient psychiatric service use publication-title: Statistical modelling doi: 10.1177/1471082X0901000404 – volume: 149 start-page: 640 issue: 7 year: 1999 ident: 10.1016/j.inffus.2019.12.012_bib0159 article-title: Smoking and the occurence of alzheimer’s disease: Cross-sectional and longitudinal data in a population-based study publication-title: American journal of epidemiology doi: 10.1093/oxfordjournals.aje.a009864 – volume: 66 start-page: 55 year: 2013 ident: 10.1016/j.inffus.2019.12.012_bib0404 article-title: Big data and its exclusions publication-title: Stan. L. Rev. Online – ident: 10.1016/j.inffus.2019.12.012_bib0128 – year: 2007 ident: 10.1016/j.inffus.2019.12.012_bib0206 – start-page: 4 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0233 article-title: Palm: Machine learning explanations for iterative debugging – start-page: 495 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0124 article-title: MIRIAM: a multimodal chat-based interface for autonomous systems – year: 2016 ident: 10.1016/j.inffus.2019.12.012_bib0269 article-title: Convergent learning: Do different neural networks learn the same representations? – start-page: 4967 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0075 article-title: A simple neural network module for relational reasoning – start-page: 39 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0040 article-title: Learning functional causal models with generative neural networks – volume: 160 start-page: 53 issue: C year: 2015 ident: 10.1016/j.inffus.2019.12.012_bib0361 article-title: Support vector machines under adversarial label contamination publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.08.081 – start-page: 5116 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0088 article-title: Logic meets probability: Towards explainable AI systems for uncertain worlds – year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0399 article-title: Fair-by-design explainable models for prediction of recidivism publication-title: arXiv preprint arXiv:1910.02043 – volume: 73 start-page: 538 issue: 5 year: 1998 ident: 10.1016/j.inffus.2019.12.012_bib0178 article-title: Using natural frequencies to improve diagnostic inferences publication-title: Academic medicine doi: 10.1097/00001888-199805000-00024 – start-page: 203 year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0309 article-title: Extending knowledge graphs with subjective influence networks for personalized fashion – ident: 10.1016/j.inffus.2019.12.012_bib0265 doi: 10.18653/v1/N16-1082 – ident: 10.1016/j.inffus.2019.12.012_bib0151 – ident: 10.1016/j.inffus.2019.12.012_bib0345 – volume: 8 start-page: 1 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0015 article-title: Explanation and justification in machine learning: A survey – start-page: 9097 year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0138 article-title: Interpretable and fine-grained visual explanations for convolutional neural networks – volume: 96 start-page: 3 issue: 1 year: 2002 ident: 10.1016/j.inffus.2019.12.012_bib0177 article-title: An introduction to logistic regression analysis and reporting publication-title: The journal of educational research doi: 10.1080/00220670209598786 – ident: 10.1016/j.inffus.2019.12.012_bib0279 doi: 10.1609/aaai.v31i1.10924 – ident: 10.1016/j.inffus.2019.12.012_bib0359 doi: 10.1109/CVPR.2018.00175 – volume: 2 start-page: 125 year: 2010 ident: 10.1016/j.inffus.2019.12.012_bib0050 article-title: Design and evaluation of explainable BDI agents – volume: 2 start-page: 7pp. year: 2005 ident: 10.1016/j.inffus.2019.12.012_bib0321 article-title: Automatically balancing accuracy and comprehensibility in predictive modeling – ident: 10.1016/j.inffus.2019.12.012_bib0071 – volume: 3 issue: 2 year: 2016 ident: 10.1016/j.inffus.2019.12.012_sbref0261 article-title: Critical data studies: An introduction publication-title: Big Data & Society doi: 10.1177/2053951716674238 – start-page: 61 year: 2005 ident: 10.1016/j.inffus.2019.12.012_bib0106 article-title: Rule extraction from trained support vector machines – start-page: 1 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0009 article-title: Explainable AI for designers: A human-centered perspective on mixed-initiative co-creation publication-title: 2018 IEEE Conference on Computational Intelligence and Games (CIG) – volume: 9 start-page: 44 issue: 1 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0070 article-title: Learning from explanations using sentiment and advice in RL publication-title: IEEE Transactions on Cognitive and Developmental Systems doi: 10.1109/TCDS.2016.2628365 – volume: 2010 year: 2010 ident: 10.1016/j.inffus.2019.12.012_bib0185 article-title: Assessment of landslide susceptibility by decision trees in the metropolitan area of istanbul, turkey publication-title: Mathematical Problems in Engineering doi: 10.1155/2010/901095 – ident: 10.1016/j.inffus.2019.12.012_bib0024 – ident: 10.1016/j.inffus.2019.12.012_bib0416 – volume: 3 start-page: 17 issue: 1 year: 2008 ident: 10.1016/j.inffus.2019.12.012_bib0174 article-title: Purposeful selection of variables in logistic regression publication-title: Source code for biology and medicine doi: 10.1186/1751-0473-3-17 – start-page: 303 year: 2000 ident: 10.1016/j.inffus.2019.12.012_bib0317 article-title: Case-based explanation for artificial neural nets – volume: 16 start-page: 18 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0089 article-title: Slave to the algorithm: Why a right to an explanation is probably not the remedy you are looking for publication-title: Duke L. & Tech. Rev. – year: 2012 ident: 10.1016/j.inffus.2019.12.012_bib0194 article-title: Estimating bank loans loss given default by generalized additive models publication-title: UCD Geary Institute Discussion Paper Series, WP2012/24 – start-page: 464 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0367 article-title: Learning interpretable anatomical features through deep generative models: Application to cardiac remodeling – volume: 73 start-page: 1 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0018 article-title: Methods for interpreting and understanding deep neural networks publication-title: Digital Signal Processing doi: 10.1016/j.dsp.2017.10.011 – start-page: 2625 year: 2015 ident: 10.1016/j.inffus.2019.12.012_bib0274 article-title: Long-term recurrent convolutional networks for visual recognition and description – ident: 10.1016/j.inffus.2019.12.012_bib0334 – volume: 398 year: 2013 ident: 10.1016/j.inffus.2019.12.012_bib0176 – volume: 8 start-page: 1156 issue: 5 year: 1997 ident: 10.1016/j.inffus.2019.12.012_bib0320 article-title: Are artificial neural networks black boxes? publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.623216 – volume: 12 start-page: 15 issue: 1 year: 2000 ident: 10.1016/j.inffus.2019.12.012_bib0254 article-title: FERNN: An algorithm for fast extraction of rules from neural networks publication-title: Applied Intelligence doi: 10.1023/A:1008307919726 – ident: 10.1016/j.inffus.2019.12.012_bib0058 – volume: 9 start-page: 58 issue: 1 year: 2006 ident: 10.1016/j.inffus.2019.12.012_bib0160 article-title: An empirical study of machine learning techniques for affect recognition in human–robot interaction publication-title: Pattern Analysis and Applications doi: 10.1007/s10044-006-0025-y – ident: 10.1016/j.inffus.2019.12.012_bib0025 – volume: 12 start-page: 513 issue: 3 year: 2013 ident: 10.1016/j.inffus.2019.12.012_bib0121 article-title: Statistical procedures for forecasting criminal behavior: A comparative assessment publication-title: Criminology & Public Policy doi: 10.1111/1745-9133.12047 – start-page: 8827 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0113 article-title: Interpretable convolutional neural networks – ident: 10.1016/j.inffus.2019.12.012_bib0129 – start-page: 457 year: 2016 ident: 10.1016/j.inffus.2019.12.012_bib0257 article-title: Deepred–rule extraction from deep neural networks – volume: 5 start-page: 73 issue: 2 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0403 article-title: Diversity in big data: A review publication-title: Big data doi: 10.1089/big.2016.0054 – volume: 51 start-page: 129 year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0410 article-title: A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion publication-title: Information Fusion doi: 10.1016/j.inffus.2018.12.001 – volume: 38 start-page: 54 issue: 11 year: 1995 ident: 10.1016/j.inffus.2019.12.012_bib0192 article-title: Applications of machine learning and rule induction publication-title: Communications of the ACM doi: 10.1145/219717.219768 – ident: 10.1016/j.inffus.2019.12.012_bib0276 doi: 10.1007/978-3-319-46493-0_1 – ident: 10.1016/j.inffus.2019.12.012_bib0280 doi: 10.18653/v1/W17-5221 – volume: 26 year: 2013 ident: 10.1016/j.inffus.2019.12.012_bib0162 – start-page: 6967 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0227 article-title: Real time image saliency for black box classifiers – volume: 16 start-page: 26 issue: 3 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0389 article-title: Ethics and privacy in ai and big data: Implementing responsible research and innovation publication-title: IEEE Security & Privacy doi: 10.1109/MSP.2018.2701164 – volume: 112 year: 2013 ident: 10.1016/j.inffus.2019.12.012_bib0163 – ident: 10.1016/j.inffus.2019.12.012_bib0322 – ident: 10.1016/j.inffus.2019.12.012_bib0047 – start-page: 10772 year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0155 article-title: Explainability methods for graph convolutional neural networks – year: 1996 ident: 10.1016/j.inffus.2019.12.012_bib0021 article-title: Extracting comprehensible models from trained neural networks – year: 2015 ident: 10.1016/j.inffus.2019.12.012_bib0031 article-title: iBCM: Interactive Bayesian case model empowering humans via intuitive interaction – ident: 10.1016/j.inffus.2019.12.012_bib0152 – start-page: 3387 year: 2016 ident: 10.1016/j.inffus.2019.12.012_bib0268 article-title: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks – start-page: 6261 year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0078 article-title: Interpreting CNNs via decision trees – volume: 12 start-page: 163 year: 2012 ident: 10.1016/j.inffus.2019.12.012_bib0026 article-title: Making machine learning models interpretable. – start-page: 204 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0065 article-title: Using perceptual and cognitive explanations for enhanced human-agent team performance – year: 1996 ident: 10.1016/j.inffus.2019.12.012_sbref0167 – start-page: 119 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0036 article-title: Explanations and expectations: Trust building in automated vehicles – ident: 10.1016/j.inffus.2019.12.012_bib0081 – start-page: 598 year: 2016 ident: 10.1016/j.inffus.2019.12.012_bib0173 article-title: Algorithmic transparency via quantitative input influence: Theory and experiments with learning systems – start-page: 19 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0062 article-title: Explanation methods in deep learning: Users, values, concerns and challenges – ident: 10.1016/j.inffus.2019.12.012_bib0287 – volume: 51 start-page: 129 year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0408 article-title: A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion publication-title: Information Fusion doi: 10.1016/j.inffus.2018.12.001 – ident: 10.1016/j.inffus.2019.12.012_bib0046 – start-page: 1596 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0297 article-title: Logic tensor networks for semantic image interpretation publication-title: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI – ident: 10.1016/j.inffus.2019.12.012_bib0264 – volume: 2016 start-page: 371 year: 2016 ident: 10.1016/j.inffus.2019.12.012_bib0056 article-title: Interpretable deep models for ICU outcome prediction – ident: 10.1016/j.inffus.2019.12.012_bib0350 – start-page: 19 year: 2016 ident: 10.1016/j.inffus.2019.12.012_bib0420 article-title: Faceless person recognition: Privacy implications in social media – volume: 29 start-page: 17 year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0352 article-title: Reconciling deep learning with symbolic artificial intelligence: representing objects and relations publication-title: Current Opinion in Behavioral Sciences doi: 10.1016/j.cobeha.2018.12.010 – volume: 115 start-page: 1943 issue: 8 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0166 article-title: Iterative random forests to discover predictive and stable high-order interactions publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1711236115 – start-page: 238 year: 2009 ident: 10.1016/j.inffus.2019.12.012_bib0149 article-title: Evolving decision trees using oracle guides – volume: 19 start-page: 729 issue: 6 year: 2007 ident: 10.1016/j.inffus.2019.12.012_bib0093 article-title: Rule extraction from support vector machines: A sequential covering approach publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2007.190610 – start-page: 410 year: 2011 ident: 10.1016/j.inffus.2019.12.012_bib0200 article-title: Short-term electricity load forecasting with generalized additive models – ident: 10.1016/j.inffus.2019.12.012_bib0229 – ident: 10.1016/j.inffus.2019.12.012_bib0349 – start-page: 575 year: 2004 ident: 10.1016/j.inffus.2019.12.012_bib0219 article-title: Discovering additive structure in black box functions – ident: 10.1016/j.inffus.2019.12.012_bib0303 – start-page: 2048 year: 2015 ident: 10.1016/j.inffus.2019.12.012_bib0091 article-title: Show, attend and tell: Neural image caption generation with visual attention – volume: 36 start-page: 36 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0086 article-title: Explainable AI: Beware of inmates running the asylum – start-page: 5 year: 2009 ident: 10.1016/j.inffus.2019.12.012_bib0405 article-title: Diversifying search results – volume: 56 start-page: 909 issue: 3 year: 2000 ident: 10.1016/j.inffus.2019.12.012_bib0115 article-title: Interpreting parameters in the logistic regression model with random effects publication-title: Biometrics doi: 10.1111/j.0006-341X.2000.00909.x – start-page: 465 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0240 article-title: Interpretable predictions of tree-based ensembles via actionable feature tweaking – start-page: 142 year: 2002 ident: 10.1016/j.inffus.2019.12.012_bib0246 article-title: Support vector machines with symbolic interpretation – volume: 11 start-page: 377 issue: 2 year: 2000 ident: 10.1016/j.inffus.2019.12.012_bib0256 article-title: Extracting rules from trained neural networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.839008 – ident: 10.1016/j.inffus.2019.12.012_bib0338 – volume: 11 start-page: 1 issue: Jan year: 2010 ident: 10.1016/j.inffus.2019.12.012_bib0225 article-title: An efficient explanation of individual classifications using game theory publication-title: Journal of Machine Learning Research – start-page: 553 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0422 article-title: A hybrid model for identity obfuscation by face replacement – ident: 10.1016/j.inffus.2019.12.012_bib0218 – year: 2015 ident: 10.1016/j.inffus.2019.12.012_bib0387 article-title: Transforming our World: the 2030 Agenda for Sustainable Development – volume: 5 start-page: 15 issue: 1 year: 1976 ident: 10.1016/j.inffus.2019.12.012_bib0180 article-title: Constructing optimal binary decision trees is Np-complete publication-title: Information processing letters doi: 10.1016/0020-0190(76)90095-8 – year: 2019 ident: 10.1016/j.inffus.2019.12.012_sbref0113 – year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0311 – volume: 4 start-page: 75 issue: 2 year: 2016 ident: 10.1016/j.inffus.2019.12.012_bib0020 article-title: A framework for considering comprehensibility in modeling publication-title: Big data doi: 10.1089/big.2016.0007 – volume: 1050 issue: 5 year: 2015 ident: 10.1016/j.inffus.2019.12.012_bib0041 article-title: Machine learning methods for estimating heterogeneous causal effects publication-title: stat – volume: 104 start-page: 671 year: 2016 ident: 10.1016/j.inffus.2019.12.012_bib0392 article-title: Big data’s disparate impact publication-title: Calif. L. Rev. – ident: 10.1016/j.inffus.2019.12.012_bib0035 – volume: 7 start-page: 36322 year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0364 article-title: Recent progress on generative adversarial networks (gans): A survey publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2905015 – ident: 10.1016/j.inffus.2019.12.012_bib0380 – volume: 9 start-page: 1057 issue: 6 year: 1998 ident: 10.1016/j.inffus.2019.12.012_bib0038 article-title: The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.728352 – ident: 10.1016/j.inffus.2019.12.012_bib0275 – volume: 51 start-page: 141 issue: 1 year: 2011 ident: 10.1016/j.inffus.2019.12.012_bib0092 article-title: An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models publication-title: Decision Support Systems doi: 10.1016/j.dss.2010.12.003 – ident: 10.1016/j.inffus.2019.12.012_bib0080 – volume: 69 year: 2014 ident: 10.1016/j.inffus.2019.12.012_bib0183 – volume: 8 start-page: 1041 issue: 4 year: 2014 ident: 10.1016/j.inffus.2019.12.012_bib0197 article-title: A modified geosite assessment model (M-GAM) and its application on the lazar canyon area (serbia) publication-title: International journal of environmental research – start-page: 297 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0114 article-title: Interpretable convolutional neural networks with dual local and global attention for review rating prediction – ident: 10.1016/j.inffus.2019.12.012_bib0168 doi: 10.1007/978-3-030-01219-9_47 – start-page: 818 year: 2014 ident: 10.1016/j.inffus.2019.12.012_bib0136 article-title: Visualizing and understanding convolutional networks – start-page: 220 year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0426 article-title: Model cards for model reporting – start-page: 4762 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0059 article-title: Explainable agency for intelligent autonomous systems – ident: 10.1016/j.inffus.2019.12.012_bib0033 – ident: 10.1016/j.inffus.2019.12.012_bib0325 doi: 10.1109/CVPRW.2014.131 – ident: 10.1016/j.inffus.2019.12.012_bib0332 doi: 10.18653/v1/D16-1092 – volume: 5 start-page: 120 issue: 2 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0391 article-title: Conscientious classification: A data scientist’s guide to discrimination-aware classification publication-title: Big data doi: 10.1089/big.2016.0048 – ident: 10.1016/j.inffus.2019.12.012_bib0360 – volume: 28 start-page: 897 issue: 7 year: 2001 ident: 10.1016/j.inffus.2019.12.012_bib0199 article-title: Application of generalized additive models to butterfly transect count data publication-title: Journal of Applied Statistics doi: 10.1080/02664760120074979 – ident: 10.1016/j.inffus.2019.12.012_bib0302 – start-page: 3156 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0277 article-title: Residual attention network for image classification – volume: 13 start-page: 71 issue: 1 year: 1993 ident: 10.1016/j.inffus.2019.12.012_bib0252 article-title: Extracting refined rules from knowledge-based neural networks publication-title: Machine Learning doi: 10.1023/A:1022683529158 – ident: 10.1016/j.inffus.2019.12.012_bib0104 – volume: 22 start-page: 1345 issue: 10 year: 2009 ident: 10.1016/j.inffus.2019.12.012_bib0425 article-title: A survey on transfer learning publication-title: IEEE Transactions on knowledge and data engineering doi: 10.1109/TKDE.2009.191 – volume: 365 start-page: 2103 issue: 1857 year: 2007 ident: 10.1016/j.inffus.2019.12.012_bib0205 article-title: Probabilistic climate change predictions applying bayesian model averaging publication-title: Philosophical transactions of the royal society of london a: mathematical, physical and engineering sciences – start-page: 235 year: 2016 ident: 10.1016/j.inffus.2019.12.012_bib0421 article-title: I-pic: A platform for privacy-compliant image capture – start-page: 623 year: 2013 ident: 10.1016/j.inffus.2019.12.012_bib0090 article-title: Accurate intelligible models with pairwise interactions – volume: 2 start-page: 187 issue: 1-4 year: 1998 ident: 10.1016/j.inffus.2019.12.012_bib0119 article-title: Knowledge discovery via multiple models publication-title: Intelligent Data Analysis doi: 10.1016/S1088-467X(98)00023-7 – volume: 22 start-page: 3762 issue: 12 year: 2010 ident: 10.1016/j.inffus.2019.12.012_bib0375 article-title: Finding nature’s missing ternary oxide compounds using machine learning and density functional theory publication-title: Chemistry of Materials doi: 10.1021/cm100795d – ident: 10.1016/j.inffus.2019.12.012_bib0231 – volume: 10 start-page: 1392 issue: 6 year: 1999 ident: 10.1016/j.inffus.2019.12.012_bib0258 article-title: ANN-DT: an algorithm for extraction of decision trees from artificial neural networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.809084 – volume: 6 start-page: 52138 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0014 article-title: Peeking inside the black-box: A survey on explainable artificial intelligence (XAI) publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870052 – volume: 46 start-page: 21 issue: 1-3 year: 2002 ident: 10.1016/j.inffus.2019.12.012_bib0247 article-title: Bayesian methods for support vector machines: Evidence and predictive class probabilities publication-title: Machine learning doi: 10.1023/A:1012489924661 – volume: 15 start-page: 261 issue: 3 year: 2003 ident: 10.1016/j.inffus.2019.12.012_bib0354 article-title: Good practice in the conduct and reporting of survey research publication-title: International Journal for Quality in Health Care doi: 10.1093/intqhc/mzg031 – ident: 10.1016/j.inffus.2019.12.012_bib0288 – volume: 24 start-page: 190 issue: 1 year: 2015 ident: 10.1016/j.inffus.2019.12.012_bib0116 article-title: Interpreting support vector machine models for multivariate group wise analysis in neuroimaging publication-title: Medical image analysis doi: 10.1016/j.media.2015.06.008 – volume: 55 start-page: 1031 issue: 6 year: 1998 ident: 10.1016/j.inffus.2019.12.012_bib0203 article-title: Bayesian stock assessment: a review and example application using the logistic model publication-title: ICES Journal of Marine Science doi: 10.1006/jmsc.1998.0425 – start-page: 132 year: 2014 ident: 10.1016/j.inffus.2019.12.012_bib0069 article-title: Unsupervised feature construction and knowledge extraction from genome-wide assays of breast cancer with denoising autoencoders – year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0099 article-title: “Fair” risk assessments: A precarious approach for criminal justice reform – start-page: 2946 year: 2016 ident: 10.1016/j.inffus.2019.12.012_bib0304 article-title: Composing graphical models with neural networks for structured representations and fast inference – year: 2008 ident: 10.1016/j.inffus.2019.12.012_bib0028 – year: 2008 ident: 10.1016/j.inffus.2019.12.012_bib0201 – start-page: 1245 year: 2013 ident: 10.1016/j.inffus.2019.12.012_bib0423 article-title: Big data integration – volume: 35 start-page: 27 year: 2012 ident: 10.1016/j.inffus.2019.12.012_bib0241 article-title: Interpretation of nonlinear relationships between process variables by use of random forests publication-title: Minerals Engineering doi: 10.1016/j.mineng.2012.05.008 – start-page: 150 year: 2012 ident: 10.1016/j.inffus.2019.12.012_bib0171 article-title: Intelligible models for classification and regression – start-page: 505 year: 1994 ident: 10.1016/j.inffus.2019.12.012_bib0253 article-title: Extracting rules from artificial neural networks with distributed representations – volume: 54 start-page: 95 issue: 1 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0220 article-title: Auditing black-box models for indirect influence publication-title: Knowledge and Information Systems doi: 10.1007/s10115-017-1116-3 – ident: 10.1016/j.inffus.2019.12.012_bib0314 – year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0037 article-title: Working with beliefs: AI transparency in the enterprise. – ident: 10.1016/j.inffus.2019.12.012_bib0299 – start-page: 1670 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0079 article-title: Beyond sparsity: Tree regularization of deep models for interpretability – ident: 10.1016/j.inffus.2019.12.012_bib0011 – volume: 38 start-page: 50 issue: 3 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0003 article-title: European union regulations on algorithmic decision-making and a “right to explanation” publication-title: AI Magazine doi: 10.1609/aimag.v38i3.2741 – year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0298 – volume: 44 start-page: 78 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0365 article-title: A practical tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models, software and guidelines publication-title: Information Fusion doi: 10.1016/j.inffus.2017.12.007 – volume: 13 start-page: 411 year: 2000 ident: 10.1016/j.inffus.2019.12.012_bib0336 article-title: Oja, e.: Independent component analysis: Algorithms and applications. neural networks 13(4-5), 411-430 publication-title: Neural networks doi: 10.1016/S0893-6080(00)00026-5 – volume: 52 start-page: 31 year: 2019 ident: 10.1016/j.inffus.2019.12.012_bib0409 article-title: Knowledge fusion patterns: A survey publication-title: Information Fusion doi: 10.1016/j.inffus.2018.11.007 – start-page: 4306 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0111 article-title: Improving interpretability of deep neural networks with semantic information – ident: 10.1016/j.inffus.2019.12.012_bib0353 doi: 10.1007/978-3-030-46147-8_31 – volume: 159 start-page: 3091 issue: 23 year: 2008 ident: 10.1016/j.inffus.2019.12.012_bib0108 article-title: Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2008.05.016 – start-page: 618 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0292 article-title: Grad-cam: Visual explanations from deep networks via gradient-based localization – start-page: 295 year: 2018 ident: 10.1016/j.inffus.2019.12.012_bib0087 article-title: Explainable AI: the new 42? – volume: 29 start-page: 2318 issue: 10 year: 2017 ident: 10.1016/j.inffus.2019.12.012_bib0374 article-title: Theory-guided data science: A new paradigm for scientific discovery from data publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2017.2720168 – ident: 10.1016/j.inffus.2019.12.012_bib0333 doi: 10.1109/CVPR.2018.00915 |
| SSID | ssj0017031 |
| Score | 2.725206 |
| Snippet | •We review concepts related to the explainability of AI methods (XAI).•We comprehensive analyze the XAI literature organized in two taxonomies.•We identify... In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of expectations over many application sectors across... |
| SourceID | hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 82 |
| SubjectTerms | Accountability Artificial Intelligence Comprehensibility Computer Science Data Fusion Deep Learning Explainable Artificial Intelligence Fairness Interpretability Machine Learning Privacy Responsible Artificial Intelligence Transparency |
| Title | Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI |
| URI | https://dx.doi.org/10.1016/j.inffus.2019.12.012 https://hal.science/hal-02381211 |
| Volume | 58 |
| WOSCitedRecordID | wos000516799200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6305 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017031 issn: 1566-2535 databaseCode: AIEXJ dateStart: 20000701 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bixMxFA511wd9EK-43giioLgjk7mPb-N2ZStrEV2lb8NMktEtZab0RvE_-p88J2duS5FVwZdSQmcScr6efDk55wtjz4RWWS50YMFSElpeoZSV5bGy4hz2QMKDFdpUuX49DcfjaDKJPw4GP5tamM0sLMtou43n_9XU0AbGxtLZvzB3-1JogO9gdPgEs8PnHxkes-qakqhkYVKBSFCjp70JtHKSjJ47MQYEjqhy0Rh0lW1NoTI5j2qO7HxdGtVVqoBr7l5BYQhMuH21aJJssbtRn-vWlU6UzLhe9g7832J-sKpgeLBRJ_qazPQ0Q_GEllmbI_xh9sP6VCk6zx9-W1O8e4wxp_N2QRnqGfo8SvrFdb7txxQdVaSsoFDRuR_kcOwuGYsibzvVN-SsA8CYT3InrzW1RaFjBa7t9z08icPXLpruOqoXe0G1pDvrCIU0prj5gQnCDMDYRI3rlO-LCt2fcSA4DiDDwLBQe3bfCf0YnOx-MjqevG-PtfCyACPgWw-8qeU0CYe7ff2OK1353kT9DQs6u8lu1NsXnhDsbrGBLm-z6x9a7d_lHbbsAZB3AOR9APIXAL-Xb3gDvUPeAe-QX4AdB1TwDnacYMd7sOPJ6C778u747OjEqq_2sKQbBStLelJ6YaG07wEh1zmw3iyDxSCSrvQiKey4CAVstfPCloGnA1tGnpfbIsoyqVC_4R7bK6tS32c80kHkKmX7eR56gQQno4K40NqJ7UIoVx0wt5nEVNa693j9yixtEhynKU19ilOfCieFqT9gVvvUnHRfLvl92NgnrbkrcdIUIHXJk09hDttOUO79JDlNsc3waUeIjXjwz69_yK51f6hHbG-1WOvH7KrcrM6Xiyc1QH8BufLNDQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainable+Artificial+Intelligence+%28XAI%29%3A+Concepts%2C+taxonomies%2C+opportunities+and+challenges+toward+responsible+AI&rft.jtitle=Information+fusion&rft.au=Barredo+Arrieta%2C+Alejandro&rft.au=D%C3%ADaz-Rodr%C3%ADguez%2C+Natalia&rft.au=Del+Ser%2C+Javier&rft.au=Bennetot%2C+Adrien&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=1566-2535&rft.eissn=1872-6305&rft.volume=58&rft.spage=82&rft.epage=115&rft_id=info:doi/10.1016%2Fj.inffus.2019.12.012&rft.externalDocID=S1566253519308103 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-2535&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-2535&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-2535&client=summon |