Autonomous Tracking Using a Swarm of UAVs: A Constrained Multi-Agent Reinforcement Learning Approach

In this paper, we aim to design an autonomous tracking system for a swarm of unmanned aerial vehicles (UAVs) to localize a radio frequency (RF) mobile target. In the system, UAVs equipped with omnidirectional received signal strength (RSS) sensors can cooperatively search the target with a specified...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE Transactions on Vehicular Technology Ročník 69; číslo 11; s. 13702 - 13717
Hlavní autoři: Chen, Yu-Jia, Chang, Deng-Kai, Zhang, Cheng
Médium: Journal Article
Jazyk:angličtina
japonština
Vydáno: New York IEEE 01.11.2020
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9545, 1939-9359
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we aim to design an autonomous tracking system for a swarm of unmanned aerial vehicles (UAVs) to localize a radio frequency (RF) mobile target. In the system, UAVs equipped with omnidirectional received signal strength (RSS) sensors can cooperatively search the target with a specified tracking accuracy. To achieve fast localization and tracking in the highly dynamic channel environment (e.g., time-varying transmit power and intermittent signal), we formulate a flight decision problem as a constrained Markov decision process (CMDP) with the main objective of avoiding redundant UAV flight path. Then, we propose an enhanced multi-agent reinforcement learning to coordinate multiple UAVs performing real-time target tracking. The core of the proposed scheme is a feedback control system that takes into account the uncertainty of the channel estimate. We prove that the proposed algorithm can converge to the optimal decision. Our simulation results show that the proposed scheme outperforms standard Q-learning and multi-agent Q-learning algorithms in terms of searching time and successful localization probability.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2020.3023733