Autonomous Tracking Using a Swarm of UAVs: A Constrained Multi-Agent Reinforcement Learning Approach

In this paper, we aim to design an autonomous tracking system for a swarm of unmanned aerial vehicles (UAVs) to localize a radio frequency (RF) mobile target. In the system, UAVs equipped with omnidirectional received signal strength (RSS) sensors can cooperatively search the target with a specified...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Transactions on Vehicular Technology Jg. 69; H. 11; S. 13702 - 13717
Hauptverfasser: Chen, Yu-Jia, Chang, Deng-Kai, Zhang, Cheng
Format: Journal Article
Sprache:Englisch
Japanisch
Veröffentlicht: New York IEEE 01.11.2020
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9545, 1939-9359
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we aim to design an autonomous tracking system for a swarm of unmanned aerial vehicles (UAVs) to localize a radio frequency (RF) mobile target. In the system, UAVs equipped with omnidirectional received signal strength (RSS) sensors can cooperatively search the target with a specified tracking accuracy. To achieve fast localization and tracking in the highly dynamic channel environment (e.g., time-varying transmit power and intermittent signal), we formulate a flight decision problem as a constrained Markov decision process (CMDP) with the main objective of avoiding redundant UAV flight path. Then, we propose an enhanced multi-agent reinforcement learning to coordinate multiple UAVs performing real-time target tracking. The core of the proposed scheme is a feedback control system that takes into account the uncertainty of the channel estimate. We prove that the proposed algorithm can converge to the optimal decision. Our simulation results show that the proposed scheme outperforms standard Q-learning and multi-agent Q-learning algorithms in terms of searching time and successful localization probability.
AbstractList In this paper, we aim to design an autonomous tracking system for a swarm of unmanned aerial vehicles (UAVs) to localize a radio frequency (RF) mobile target. In the system, UAVs equipped with omnidirectional received signal strength (RSS) sensors can cooperatively search the target with a specified tracking accuracy. To achieve fast localization and tracking in the highly dynamic channel environment (e.g., time-varying transmit power and intermittent signal), we formulate a flight decision problem as a constrained Markov decision process (CMDP) with the main objective of avoiding redundant UAV flight path. Then, we propose an enhanced multi-agent reinforcement learning to coordinate multiple UAVs performing real-time target tracking. The core of the proposed scheme is a feedback control system that takes into account the uncertainty of the channel estimate. We prove that the proposed algorithm can converge to the optimal decision. Our simulation results show that the proposed scheme outperforms standard Q-learning and multi-agent Q-learning algorithms in terms of searching time and successful localization probability.
Author Chang, Deng-Kai
Zhang, Cheng
Chen, Yu-Jia
Author_xml – sequence: 1
  givenname: Yu-Jia
  orcidid: 0000-0001-7563-4073
  surname: Chen
  fullname: Chen, Yu-Jia
  email: yjchen@ce.ncu.edu.tw
  organization: Department of Communication Engineering, National Central University, Taoyuan, Taiwan
– sequence: 2
  givenname: Deng-Kai
  surname: Chang
  fullname: Chang, Deng-Kai
  email: wl01420395@gmail.com
  organization: Department of Communication Engineering, National Central University, Taoyuan, Taiwan
– sequence: 3
  givenname: Cheng
  orcidid: 0000-0003-2135-7546
  surname: Zhang
  fullname: Zhang, Cheng
  email: cheng.zhang@akane.waseda.jp
  organization: Department of Communication and Computer Engineering, Waseda University, Tokyo, Japan
BackLink https://cir.nii.ac.jp/crid/1873679867425751680$$DView record in CiNii
BookMark eNp9kM1LAzEUxIMo2FbvgpeAXrcmm2STeFuKX1ARtO11SbPZmtomNdlF_O_N0uLBgwReeDC_Gd4MwbHzzgBwgdEYYyRvZovZOEc5GhOUE07IERhgSWQmCZPHYIAQFplklJ2CYYzrtFIq8QDUZdd657e-i3AWlP6wbgXnsZ8Kvn2psIW-gfNyEW9hCSfexTYo60wNn7tNa7NyZVwLX411jQ_abPttalRwvUO52wWv9PsZOGnUJprzwz8C8_u72eQxm748PE3KaaaJKNpsmWPSUIoplsgUiApWayxoLYQ2jGhNpGAqp0UhSZ0e0g3Wii5NLhPPhSAjcLX3TbGfnYlttfZdcCmyShgSTHLEk6rYq3TwMQbTVNq2qrXe9adtKoyqvtEqNVr1jVaHRhOI_oC7YLcqfP-HXO8RZ22K6ScWnBRcioLTnHGGC4GS7HIvs8aYX1eJJeOSkR-p9owa
CODEN ITVTAB
CitedBy_id crossref_primary_10_1109_TVT_2023_3235498
crossref_primary_10_3390_drones8080350
crossref_primary_10_1016_j_chaos_2023_113777
crossref_primary_10_1109_JIOT_2022_3230916
crossref_primary_10_1049_cmu2_70078
crossref_primary_10_1109_TSIPN_2022_3150911
crossref_primary_10_1016_j_jfranklin_2023_08_013
crossref_primary_10_1109_TG_2024_3450475
crossref_primary_10_1177_01423312231158677
crossref_primary_10_3390_s23218766
crossref_primary_10_1016_j_mechatronics_2024_103206
crossref_primary_10_1177_09544100231153270
crossref_primary_10_1109_TVT_2022_3140771
crossref_primary_10_1016_j_adhoc_2025_103801
crossref_primary_10_3390_app14177844
crossref_primary_10_1109_TWC_2023_3341501
crossref_primary_10_1109_OJVT_2024_3402129
crossref_primary_10_1007_s00521_021_06569_4
crossref_primary_10_1016_j_asoc_2023_110999
crossref_primary_10_1145_3748818
crossref_primary_10_1109_TIV_2022_3232890
crossref_primary_10_1007_s40747_023_00985_w
crossref_primary_10_3390_drones9070484
crossref_primary_10_1186_s40708_025_00262_1
crossref_primary_10_1007_s12065_024_00972_1
crossref_primary_10_1109_TVT_2021_3091575
crossref_primary_10_1007_s10489_022_03821_9
crossref_primary_10_3390_app14199048
crossref_primary_10_1016_j_isatra_2022_01_006
crossref_primary_10_1109_TVT_2023_3298635
crossref_primary_10_1109_TAES_2025_3559518
crossref_primary_10_1016_j_adhoc_2025_103875
crossref_primary_10_1109_TVT_2022_3223121
crossref_primary_10_30748_zhups_2024_81_04
crossref_primary_10_1109_COMST_2023_3323344
crossref_primary_10_3390_math11163481
crossref_primary_10_1016_j_asoc_2023_110604
crossref_primary_10_3390_drones8100574
crossref_primary_10_1109_TEM_2022_3165375
crossref_primary_10_1109_TVT_2023_3234865
crossref_primary_10_1016_j_ipm_2022_103149
crossref_primary_10_1109_TWC_2022_3227933
crossref_primary_10_1109_TNNLS_2023_3325580
crossref_primary_10_1109_TVT_2022_3182908
crossref_primary_10_1109_TVT_2021_3094273
crossref_primary_10_1109_MNET_001_2100128
crossref_primary_10_1109_TVT_2023_3326407
crossref_primary_10_1109_TVT_2023_3345925
crossref_primary_10_1109_TGRS_2023_3239952
crossref_primary_10_1109_TVT_2022_3182351
crossref_primary_10_1109_TVT_2021_3129504
crossref_primary_10_1109_TVT_2021_3129267
crossref_primary_10_1016_j_ins_2023_119629
crossref_primary_10_1109_MCOM_001_2100394
crossref_primary_10_1109_TVT_2021_3137171
crossref_primary_10_1109_JIOT_2022_3162849
crossref_primary_10_1109_TSMC_2025_3539656
crossref_primary_10_3390_drones7070470
crossref_primary_10_1109_TAES_2023_3300813
crossref_primary_10_1109_TMC_2024_3396121
crossref_primary_10_1016_j_apenergy_2025_126404
crossref_primary_10_1109_ACCESS_2023_3284891
crossref_primary_10_1109_JIOT_2023_3341307
crossref_primary_10_1109_MAP_2022_3176590
crossref_primary_10_1109_COMST_2024_3427324
crossref_primary_10_1002_rnc_6571
crossref_primary_10_3390_drones7010020
crossref_primary_10_1109_TWC_2024_3524324
crossref_primary_10_1109_TITS_2024_3386105
crossref_primary_10_1109_TIV_2023_3307134
crossref_primary_10_1109_TIV_2024_3420939
crossref_primary_10_1109_ACCESS_2023_3292302
crossref_primary_10_1109_ACCESS_2022_3154388
crossref_primary_10_1109_ACCESS_2022_3210337
crossref_primary_10_1016_j_neucom_2025_129524
crossref_primary_10_1016_j_cogr_2023_07_004
crossref_primary_10_1016_j_isatra_2023_06_017
crossref_primary_10_1109_TVT_2022_3228198
crossref_primary_10_1109_TWC_2024_3525410
crossref_primary_10_1007_s10489_023_04866_0
crossref_primary_10_1109_JIOT_2021_3093116
crossref_primary_10_1088_1742_6596_2216_1_012062
crossref_primary_10_1109_JIOT_2022_3222665
crossref_primary_10_1109_ACCESS_2024_3433540
Cites_doi 10.1109/ICRA.2017.7989734
10.1109/MPRV.2017.11
10.1109/TMC.2020.2966989
10.1109/ICMA.2016.7558955
10.1109/ACCESS.2018.2810599
10.1109/RTCSA.2019.8864571
10.1109/TII.2017.2783439
10.1109/LWC.2019.2897774
10.1109/ICNC.2008.173
10.1109/VTCFall.2018.8690711
10.1016/j.ins.2017.08.039
10.1109/ICC.2019.8762028
10.1109/TII.2019.2893345
10.1109/MCOM.2017.1700320
10.1145/2934872.2934894
10.1109/ITSC.2016.7795748
10.1109/LCOMM.2018.2824800
10.1109/ICUAS.2017.7991409
10.1109/MILCOM47813.2019.9020894
10.1109/IRC.2019.00120
10.1109/TWC.2018.2876832
10.1109/ICCS.2018.8689217
10.1109/TIE.2018.2824766
10.1109/TGCN.2017.2767203
10.1109/ICARCV.2016.7838739
10.1145/3301273
10.1109/ISIC.2010.5612911
10.1109/TVT.2017.2752766
10.1109/ACCESS.2019.2939384
10.1109/TIE.2018.2823658
10.1002/9780470316887
10.1109/GLOBECOM38437.2019.9013432
10.1109/TVT.2019.2890999
10.1109/ACCESS.2019.2920913
10.1109/JIOT.2018.2875065
10.1109/TMECH.2019.2892292
10.1109/ISCC47284.2019.8969672
10.1109/TAES.2019.2930017
10.1109/TII.2018.2875041
10.1109/TII.2019.2913683
10.1109/TVT.2019.2920284
10.1109/TAC.2019.2912492
10.1109/ACCESS.2019.2925634
10.1109/LCOMM.2016.2603977
10.1109/TSMC.2018.2808471
10.23919/ICACT.2019.8702023
10.1109/TCYB.2015.2509646
10.1109/CCECE.2017.7946749
10.1109/VTCFall.2019.8891199
10.1016/j.automatica.2012.06.030
10.1109/ICUAS.2019.8798354
10.15607/RSS.2016.XII.001
10.1109/AERO.2019.8741970
10.1109/JSAC.2018.2804239
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
RYH
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2020.3023733
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CiNii Complete
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 13717
ExternalDocumentID 10_1109_TVT_2020_3023733
9195795
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 108-2218-E-008 -016 -MY2
  funderid: 10.13039/501100004663
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
RYH
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c386t-b213f4414190e60485dc184d88ce53cc3985a246693d3d30cf1ca4be29c387883
IEDL.DBID RIE
ISICitedReferencesCount 101
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000589638700101&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9545
IngestDate Mon Jun 30 10:18:30 EDT 2025
Tue Nov 18 22:12:34 EST 2025
Sat Nov 29 02:58:52 EST 2025
Mon Nov 10 09:07:14 EST 2025
Wed Aug 27 02:28:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
Japanese
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-b213f4414190e60485dc184d88ce53cc3985a246693d3d30cf1ca4be29c387883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7563-4073
0000-0003-2135-7546
PQID 2460859707
PQPubID 85454
PageCount 16
ParticipantIDs nii_cinii_1873679867425751680
crossref_citationtrail_10_1109_TVT_2020_3023733
crossref_primary_10_1109_TVT_2020_3023733
ieee_primary_9195795
proquest_journals_2460859707
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE Transactions on Vehicular Technology
PublicationTitleAbbrev TVT
PublicationYear 2020
Publisher IEEE
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers (IEEE)
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
bowling (ref57) 2003
ref12
ref59
ref15
ref58
ref14
ref53
puterman (ref50) 1994
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref51
(ref56) 2018
ref46
feng (ref45) 0; 6
ref48
ref42
ref41
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
wu (ref38) 2018; 15
ref5
ref40
williams (ref47) 2006
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
(ref44) 2018
petrovi (ref21) 0
ref24
ref23
ref26
ref25
ref20
ref22
ref28
ref27
ref29
ref60
ref61
References_xml – ident: ref13
  doi: 10.1109/ICRA.2017.7989734
– ident: ref17
  doi: 10.1109/MPRV.2017.11
– ident: ref42
  doi: 10.1109/TMC.2020.2966989
– ident: ref59
  doi: 10.1109/ICMA.2016.7558955
– ident: ref16
  doi: 10.1109/ACCESS.2018.2810599
– ident: ref22
  doi: 10.1109/RTCSA.2019.8864571
– ident: ref1
  doi: 10.1109/TII.2017.2783439
– ident: ref41
  doi: 10.1109/LWC.2019.2897774
– ident: ref54
  doi: 10.1109/ICNC.2008.173
– ident: ref35
  doi: 10.1109/VTCFall.2018.8690711
– ident: ref26
  doi: 10.1016/j.ins.2017.08.039
– ident: ref14
  doi: 10.1109/ICC.2019.8762028
– ident: ref33
  doi: 10.1109/TII.2019.2893345
– ident: ref6
  doi: 10.1109/MCOM.2017.1700320
– ident: ref60
  doi: 10.1145/2934872.2934894
– ident: ref58
  doi: 10.1109/ITSC.2016.7795748
– ident: ref12
  doi: 10.1109/LCOMM.2018.2824800
– ident: ref40
  doi: 10.1109/ICUAS.2017.7991409
– ident: ref24
  doi: 10.1109/MILCOM47813.2019.9020894
– ident: ref51
  doi: 10.1109/IRC.2019.00120
– ident: ref46
  doi: 10.1109/TWC.2018.2876832
– ident: ref49
  doi: 10.1109/ICCS.2018.8689217
– ident: ref10
  doi: 10.1109/TIE.2018.2824766
– ident: ref43
  doi: 10.1109/TGCN.2017.2767203
– year: 2006
  ident: ref47
  publication-title: Gaussian Processes for Machine Learning
– ident: ref23
  doi: 10.1109/ICARCV.2016.7838739
– year: 2018
  ident: ref44
  article-title: Technical Specification Group Radio Access Network; Study on Enhanced LTE Support for Aerial Vehicles
– ident: ref53
  doi: 10.1145/3301273
– ident: ref61
  doi: 10.1109/ISIC.2010.5612911
– ident: ref19
  doi: 10.1109/TVT.2017.2752766
– ident: ref52
  doi: 10.1109/ACCESS.2019.2939384
– ident: ref30
  doi: 10.1109/TIE.2018.2823658
– year: 1994
  ident: ref50
  publication-title: Markov Decision Processes Discrete Stochastic Dynamic Programming
  doi: 10.1002/9780470316887
– year: 2018
  ident: ref56
  article-title: Remote Identification of Unmanned Aerial System
– volume: 15
  start-page: 122
  year: 2018
  ident: ref38
  article-title: Illegal radio station localization with UAV-based Q-learning
  publication-title: China Commun
– ident: ref5
  doi: 10.1109/GLOBECOM38437.2019.9013432
– volume: 6
  year: 0
  ident: ref45
  article-title: Path loss models for air-to-ground radio channels in urban environments
  publication-title: Proc IEEE 63rd Veh Technol Conf
– ident: ref15
  doi: 10.1109/TVT.2019.2890999
– ident: ref25
  doi: 10.1109/ACCESS.2019.2920913
– ident: ref9
  doi: 10.1109/JIOT.2018.2875065
– ident: ref34
  doi: 10.1109/TMECH.2019.2892292
– ident: ref4
  doi: 10.1109/ISCC47284.2019.8969672
– ident: ref36
  doi: 10.1109/TAES.2019.2930017
– ident: ref3
  doi: 10.1109/TII.2018.2875041
– ident: ref8
  doi: 10.1109/TII.2019.2913683
– ident: ref39
  doi: 10.1109/TVT.2019.2920284
– ident: ref55
  doi: 10.1109/TAC.2019.2912492
– start-page: 1
  year: 0
  ident: ref21
  article-title: Stochastic optimization for trajectory planning with heteroscedastic Gaussian processes
  publication-title: Proc Eur Conf Mobile Robots
– ident: ref48
  doi: 10.1109/ACCESS.2019.2925634
– ident: ref31
  doi: 10.1109/LCOMM.2016.2603977
– ident: ref11
  doi: 10.1109/TSMC.2018.2808471
– ident: ref18
  doi: 10.23919/ICACT.2019.8702023
– ident: ref37
  doi: 10.1109/TCYB.2015.2509646
– ident: ref28
  doi: 10.1109/CCECE.2017.7946749
– year: 2003
  ident: ref57
  article-title: Multiagent learning in the presence of agents with limitations
– ident: ref2
  doi: 10.1109/VTCFall.2019.8891199
– ident: ref32
  doi: 10.1016/j.automatica.2012.06.030
– ident: ref7
  doi: 10.1109/ICUAS.2019.8798354
– ident: ref20
  doi: 10.15607/RSS.2016.XII.001
– ident: ref29
  doi: 10.1109/AERO.2019.8741970
– ident: ref27
  doi: 10.1109/JSAC.2018.2804239
SSID ssj0014491
ssib017384932
ssib053395470
ssib006542127
ssib004836825
ssib000722144
Score 2.5985785
Snippet In this paper, we aim to design an autonomous tracking system for a swarm of unmanned aerial vehicles (UAVs) to localize a radio frequency (RF) mobile target....
SourceID proquest
crossref
nii
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13702
SubjectTerms Algorithms
constrained Markov decision process
Feedback control
localization and tracking
Machine learning
Markov processes
Multi-agent reinforcement learning
Multiagent systems
Path planning
Radio frequency
Real-time systems
Robots
Sensors
Signal strength
Target tracking
Tracking systems
Unmanned aerial vehicles
unmanned aerial vehicles (UAVs)
Title Autonomous Tracking Using a Swarm of UAVs: A Constrained Multi-Agent Reinforcement Learning Approach
URI https://ieeexplore.ieee.org/document/9195795
https://cir.nii.ac.jp/crid/1873679867425751680
https://www.proquest.com/docview/2460859707
Volume 69
WOSCitedRecordID wos000589638700101&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB508aAH3-L6IgcvgnWbTdsk3oooHkRE18VbaSepLOiu7EP_vpNsdlEUQQqlh6Rt-jWZV-YbgGNTCsxkxaOs1JYMFMMjxbmOVKUTKWsUxlMKdW_k7a16etJ3C3A6z4Wx1vrNZ_bMXfpYvhngxLnKWpq7oFK6CItSymmu1jxikCShOh6nCUxqwSwkGetWp9shQ7BN9ikJKCnENxHka6qQYOn3ej-WYy9jrtb-93brsBp0SZZPwd-ABdvfhJUvDINbYPLJ2KUtkH3PSCyhc4wzv02Alezhoxy-skHNHvPu6JzlzFXv9DUjrGE-MzfKXeYVu7eeXxW9K5EFStZnlgc-8m14vLrsXFxHobBChEJl46hqc1GTHpSQNmAzmsOpQbL0jFJoU4EotErLdpJlWhg6Yqw5lkll25r6k80sdqDRH_TtLjBS2Eg_N86bmCaWo7a8rm1cYV0JNGnahNbsWxcYWMfdQF4Kb33EuiB0CodOEdBpwsm8x9uUceOPtlsOh3m7AEETDglOep47cyWFCzVl0i1PKc9U3ISDGdBFmLKjgsbryN5kLPd-v-s-LLtnTxMRD6AxHk7sISzh-7g3Gh75v_ETu0vYow
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH8aGxLjwIAxUdiGD1yQCI1jO7a5RdOmTZQKQVftFiXPDqoELeoH_Ps8u24FAk2aIkU52ImdX5z35fd7AK9dI7DULc_KxnoyUBzPDOc2M62VWncoXKQUGg_0cGhubuynHXi7zYXx3sfNZ_5duIyxfDfDVXCV9S0PQSV1D_aUlAVfZ2ttYwZSpvp4nJYwKQaboGRu-6PxiEzBgixUElFaiL-EUKyqQqJlOpn880OOUubi4G7jewyPkjbJqjX8T2DHT5_Cwz84Bg_BVatlSFwgC5-RYMLgGmdxowBr2Jdfzfw7m3Xsuhov3rOKhfqdsWqEdyzm5mZVyL1in31kWMXoTGSJlPUrqxIj-TO4vjgfnV1mqbRChsKUy6wtuOhIE5KkD_iSVrFySLaeMwa9EojCGtUUsiytcHTk2HFsZOsLS_3JahZHsDudTf1zYKSykYbugj9RSc_Ret51Pm-xawU6pXrQ37zrGhPveJjItzraH7mtCZ06oFMndHrwZtvjx5pz45a2hwGHbbsEQQ9OCE56Xjhzo0UINpU6_KAUL03eg-MN0HVatIua5hvo3nSuX_z_rq_gweXo46AeXA0_vIT9MI51WuIx7C7nK38C9_HncrKYn8Yv8zcrm9vq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autonomous+Tracking+Using+a+Swarm+of+UAVs%3A+A+Constrained+Multi-Agent+Reinforcement+Learning+Approach&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Yu-Jia%2C+Chen&rft.au=Deng-Kai%2C+Chang&rft.au=Zhang%2C+Cheng&rft.date=2020-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=69&rft.issue=11&rft.spage=13702&rft_id=info:doi/10.1109%2FTVT.2020.3023733&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon