Autonomous Tracking Using a Swarm of UAVs: A Constrained Multi-Agent Reinforcement Learning Approach
In this paper, we aim to design an autonomous tracking system for a swarm of unmanned aerial vehicles (UAVs) to localize a radio frequency (RF) mobile target. In the system, UAVs equipped with omnidirectional received signal strength (RSS) sensors can cooperatively search the target with a specified...
Gespeichert in:
| Veröffentlicht in: | IEEE Transactions on Vehicular Technology Jg. 69; H. 11; S. 13702 - 13717 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch Japanisch |
| Veröffentlicht: |
New York
IEEE
01.11.2020
Institute of Electrical and Electronics Engineers (IEEE) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9545, 1939-9359 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we aim to design an autonomous tracking system for a swarm of unmanned aerial vehicles (UAVs) to localize a radio frequency (RF) mobile target. In the system, UAVs equipped with omnidirectional received signal strength (RSS) sensors can cooperatively search the target with a specified tracking accuracy. To achieve fast localization and tracking in the highly dynamic channel environment (e.g., time-varying transmit power and intermittent signal), we formulate a flight decision problem as a constrained Markov decision process (CMDP) with the main objective of avoiding redundant UAV flight path. Then, we propose an enhanced multi-agent reinforcement learning to coordinate multiple UAVs performing real-time target tracking. The core of the proposed scheme is a feedback control system that takes into account the uncertainty of the channel estimate. We prove that the proposed algorithm can converge to the optimal decision. Our simulation results show that the proposed scheme outperforms standard Q-learning and multi-agent Q-learning algorithms in terms of searching time and successful localization probability. |
|---|---|
| AbstractList | In this paper, we aim to design an autonomous tracking system for a swarm of unmanned aerial vehicles (UAVs) to localize a radio frequency (RF) mobile target. In the system, UAVs equipped with omnidirectional received signal strength (RSS) sensors can cooperatively search the target with a specified tracking accuracy. To achieve fast localization and tracking in the highly dynamic channel environment (e.g., time-varying transmit power and intermittent signal), we formulate a flight decision problem as a constrained Markov decision process (CMDP) with the main objective of avoiding redundant UAV flight path. Then, we propose an enhanced multi-agent reinforcement learning to coordinate multiple UAVs performing real-time target tracking. The core of the proposed scheme is a feedback control system that takes into account the uncertainty of the channel estimate. We prove that the proposed algorithm can converge to the optimal decision. Our simulation results show that the proposed scheme outperforms standard Q-learning and multi-agent Q-learning algorithms in terms of searching time and successful localization probability. |
| Author | Chang, Deng-Kai Zhang, Cheng Chen, Yu-Jia |
| Author_xml | – sequence: 1 givenname: Yu-Jia orcidid: 0000-0001-7563-4073 surname: Chen fullname: Chen, Yu-Jia email: yjchen@ce.ncu.edu.tw organization: Department of Communication Engineering, National Central University, Taoyuan, Taiwan – sequence: 2 givenname: Deng-Kai surname: Chang fullname: Chang, Deng-Kai email: wl01420395@gmail.com organization: Department of Communication Engineering, National Central University, Taoyuan, Taiwan – sequence: 3 givenname: Cheng orcidid: 0000-0003-2135-7546 surname: Zhang fullname: Zhang, Cheng email: cheng.zhang@akane.waseda.jp organization: Department of Communication and Computer Engineering, Waseda University, Tokyo, Japan |
| BackLink | https://cir.nii.ac.jp/crid/1873679867425751680$$DView record in CiNii |
| BookMark | eNp9kM1LAzEUxIMo2FbvgpeAXrcmm2STeFuKX1ARtO11SbPZmtomNdlF_O_N0uLBgwReeDC_Gd4MwbHzzgBwgdEYYyRvZovZOEc5GhOUE07IERhgSWQmCZPHYIAQFplklJ2CYYzrtFIq8QDUZdd657e-i3AWlP6wbgXnsZ8Kvn2psIW-gfNyEW9hCSfexTYo60wNn7tNa7NyZVwLX411jQ_abPttalRwvUO52wWv9PsZOGnUJprzwz8C8_u72eQxm748PE3KaaaJKNpsmWPSUIoplsgUiApWayxoLYQ2jGhNpGAqp0UhSZ0e0g3Wii5NLhPPhSAjcLX3TbGfnYlttfZdcCmyShgSTHLEk6rYq3TwMQbTVNq2qrXe9adtKoyqvtEqNVr1jVaHRhOI_oC7YLcqfP-HXO8RZ22K6ScWnBRcioLTnHGGC4GS7HIvs8aYX1eJJeOSkR-p9owa |
| CODEN | ITVTAB |
| CitedBy_id | crossref_primary_10_1109_TVT_2023_3235498 crossref_primary_10_3390_drones8080350 crossref_primary_10_1016_j_chaos_2023_113777 crossref_primary_10_1109_JIOT_2022_3230916 crossref_primary_10_1049_cmu2_70078 crossref_primary_10_1109_TSIPN_2022_3150911 crossref_primary_10_1016_j_jfranklin_2023_08_013 crossref_primary_10_1109_TG_2024_3450475 crossref_primary_10_1177_01423312231158677 crossref_primary_10_3390_s23218766 crossref_primary_10_1016_j_mechatronics_2024_103206 crossref_primary_10_1177_09544100231153270 crossref_primary_10_1109_TVT_2022_3140771 crossref_primary_10_1016_j_adhoc_2025_103801 crossref_primary_10_3390_app14177844 crossref_primary_10_1109_TWC_2023_3341501 crossref_primary_10_1109_OJVT_2024_3402129 crossref_primary_10_1007_s00521_021_06569_4 crossref_primary_10_1016_j_asoc_2023_110999 crossref_primary_10_1145_3748818 crossref_primary_10_1109_TIV_2022_3232890 crossref_primary_10_1007_s40747_023_00985_w crossref_primary_10_3390_drones9070484 crossref_primary_10_1186_s40708_025_00262_1 crossref_primary_10_1007_s12065_024_00972_1 crossref_primary_10_1109_TVT_2021_3091575 crossref_primary_10_1007_s10489_022_03821_9 crossref_primary_10_3390_app14199048 crossref_primary_10_1016_j_isatra_2022_01_006 crossref_primary_10_1109_TVT_2023_3298635 crossref_primary_10_1109_TAES_2025_3559518 crossref_primary_10_1016_j_adhoc_2025_103875 crossref_primary_10_1109_TVT_2022_3223121 crossref_primary_10_30748_zhups_2024_81_04 crossref_primary_10_1109_COMST_2023_3323344 crossref_primary_10_3390_math11163481 crossref_primary_10_1016_j_asoc_2023_110604 crossref_primary_10_3390_drones8100574 crossref_primary_10_1109_TEM_2022_3165375 crossref_primary_10_1109_TVT_2023_3234865 crossref_primary_10_1016_j_ipm_2022_103149 crossref_primary_10_1109_TWC_2022_3227933 crossref_primary_10_1109_TNNLS_2023_3325580 crossref_primary_10_1109_TVT_2022_3182908 crossref_primary_10_1109_TVT_2021_3094273 crossref_primary_10_1109_MNET_001_2100128 crossref_primary_10_1109_TVT_2023_3326407 crossref_primary_10_1109_TVT_2023_3345925 crossref_primary_10_1109_TGRS_2023_3239952 crossref_primary_10_1109_TVT_2022_3182351 crossref_primary_10_1109_TVT_2021_3129504 crossref_primary_10_1109_TVT_2021_3129267 crossref_primary_10_1016_j_ins_2023_119629 crossref_primary_10_1109_MCOM_001_2100394 crossref_primary_10_1109_TVT_2021_3137171 crossref_primary_10_1109_JIOT_2022_3162849 crossref_primary_10_1109_TSMC_2025_3539656 crossref_primary_10_3390_drones7070470 crossref_primary_10_1109_TAES_2023_3300813 crossref_primary_10_1109_TMC_2024_3396121 crossref_primary_10_1016_j_apenergy_2025_126404 crossref_primary_10_1109_ACCESS_2023_3284891 crossref_primary_10_1109_JIOT_2023_3341307 crossref_primary_10_1109_MAP_2022_3176590 crossref_primary_10_1109_COMST_2024_3427324 crossref_primary_10_1002_rnc_6571 crossref_primary_10_3390_drones7010020 crossref_primary_10_1109_TWC_2024_3524324 crossref_primary_10_1109_TITS_2024_3386105 crossref_primary_10_1109_TIV_2023_3307134 crossref_primary_10_1109_TIV_2024_3420939 crossref_primary_10_1109_ACCESS_2023_3292302 crossref_primary_10_1109_ACCESS_2022_3154388 crossref_primary_10_1109_ACCESS_2022_3210337 crossref_primary_10_1016_j_neucom_2025_129524 crossref_primary_10_1016_j_cogr_2023_07_004 crossref_primary_10_1016_j_isatra_2023_06_017 crossref_primary_10_1109_TVT_2022_3228198 crossref_primary_10_1109_TWC_2024_3525410 crossref_primary_10_1007_s10489_023_04866_0 crossref_primary_10_1109_JIOT_2021_3093116 crossref_primary_10_1088_1742_6596_2216_1_012062 crossref_primary_10_1109_JIOT_2022_3222665 crossref_primary_10_1109_ACCESS_2024_3433540 |
| Cites_doi | 10.1109/ICRA.2017.7989734 10.1109/MPRV.2017.11 10.1109/TMC.2020.2966989 10.1109/ICMA.2016.7558955 10.1109/ACCESS.2018.2810599 10.1109/RTCSA.2019.8864571 10.1109/TII.2017.2783439 10.1109/LWC.2019.2897774 10.1109/ICNC.2008.173 10.1109/VTCFall.2018.8690711 10.1016/j.ins.2017.08.039 10.1109/ICC.2019.8762028 10.1109/TII.2019.2893345 10.1109/MCOM.2017.1700320 10.1145/2934872.2934894 10.1109/ITSC.2016.7795748 10.1109/LCOMM.2018.2824800 10.1109/ICUAS.2017.7991409 10.1109/MILCOM47813.2019.9020894 10.1109/IRC.2019.00120 10.1109/TWC.2018.2876832 10.1109/ICCS.2018.8689217 10.1109/TIE.2018.2824766 10.1109/TGCN.2017.2767203 10.1109/ICARCV.2016.7838739 10.1145/3301273 10.1109/ISIC.2010.5612911 10.1109/TVT.2017.2752766 10.1109/ACCESS.2019.2939384 10.1109/TIE.2018.2823658 10.1002/9780470316887 10.1109/GLOBECOM38437.2019.9013432 10.1109/TVT.2019.2890999 10.1109/ACCESS.2019.2920913 10.1109/JIOT.2018.2875065 10.1109/TMECH.2019.2892292 10.1109/ISCC47284.2019.8969672 10.1109/TAES.2019.2930017 10.1109/TII.2018.2875041 10.1109/TII.2019.2913683 10.1109/TVT.2019.2920284 10.1109/TAC.2019.2912492 10.1109/ACCESS.2019.2925634 10.1109/LCOMM.2016.2603977 10.1109/TSMC.2018.2808471 10.23919/ICACT.2019.8702023 10.1109/TCYB.2015.2509646 10.1109/CCECE.2017.7946749 10.1109/VTCFall.2019.8891199 10.1016/j.automatica.2012.06.030 10.1109/ICUAS.2019.8798354 10.15607/RSS.2016.XII.001 10.1109/AERO.2019.8741970 10.1109/JSAC.2018.2804239 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE RYH AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| DOI | 10.1109/TVT.2020.3023733 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CiNii Complete CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-9359 |
| EndPage | 13717 |
| ExternalDocumentID | 10_1109_TVT_2020_3023733 9195795 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 108-2218-E-008 -016 -MY2 funderid: 10.13039/501100004663 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 RYH AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c386t-b213f4414190e60485dc184d88ce53cc3985a246693d3d30cf1ca4be29c387883 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 101 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000589638700101&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9545 |
| IngestDate | Mon Jun 30 10:18:30 EDT 2025 Tue Nov 18 22:12:34 EST 2025 Sat Nov 29 02:58:52 EST 2025 Mon Nov 10 09:07:14 EST 2025 Wed Aug 27 02:28:59 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English Japanese |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c386t-b213f4414190e60485dc184d88ce53cc3985a246693d3d30cf1ca4be29c387883 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7563-4073 0000-0003-2135-7546 |
| PQID | 2460859707 |
| PQPubID | 85454 |
| PageCount | 16 |
| ParticipantIDs | nii_cinii_1873679867425751680 crossref_citationtrail_10_1109_TVT_2020_3023733 crossref_primary_10_1109_TVT_2020_3023733 ieee_primary_9195795 proquest_journals_2460859707 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-01 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE Transactions on Vehicular Technology |
| PublicationTitleAbbrev | TVT |
| PublicationYear | 2020 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers (IEEE) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers (IEEE) – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 bowling (ref57) 2003 ref12 ref59 ref15 ref58 ref14 ref53 puterman (ref50) 1994 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref51 (ref56) 2018 ref46 feng (ref45) 0; 6 ref48 ref42 ref41 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 wu (ref38) 2018; 15 ref5 ref40 williams (ref47) 2006 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 (ref44) 2018 petrovi (ref21) 0 ref24 ref23 ref26 ref25 ref20 ref22 ref28 ref27 ref29 ref60 ref61 |
| References_xml | – ident: ref13 doi: 10.1109/ICRA.2017.7989734 – ident: ref17 doi: 10.1109/MPRV.2017.11 – ident: ref42 doi: 10.1109/TMC.2020.2966989 – ident: ref59 doi: 10.1109/ICMA.2016.7558955 – ident: ref16 doi: 10.1109/ACCESS.2018.2810599 – ident: ref22 doi: 10.1109/RTCSA.2019.8864571 – ident: ref1 doi: 10.1109/TII.2017.2783439 – ident: ref41 doi: 10.1109/LWC.2019.2897774 – ident: ref54 doi: 10.1109/ICNC.2008.173 – ident: ref35 doi: 10.1109/VTCFall.2018.8690711 – ident: ref26 doi: 10.1016/j.ins.2017.08.039 – ident: ref14 doi: 10.1109/ICC.2019.8762028 – ident: ref33 doi: 10.1109/TII.2019.2893345 – ident: ref6 doi: 10.1109/MCOM.2017.1700320 – ident: ref60 doi: 10.1145/2934872.2934894 – ident: ref58 doi: 10.1109/ITSC.2016.7795748 – ident: ref12 doi: 10.1109/LCOMM.2018.2824800 – ident: ref40 doi: 10.1109/ICUAS.2017.7991409 – ident: ref24 doi: 10.1109/MILCOM47813.2019.9020894 – ident: ref51 doi: 10.1109/IRC.2019.00120 – ident: ref46 doi: 10.1109/TWC.2018.2876832 – ident: ref49 doi: 10.1109/ICCS.2018.8689217 – ident: ref10 doi: 10.1109/TIE.2018.2824766 – ident: ref43 doi: 10.1109/TGCN.2017.2767203 – year: 2006 ident: ref47 publication-title: Gaussian Processes for Machine Learning – ident: ref23 doi: 10.1109/ICARCV.2016.7838739 – year: 2018 ident: ref44 article-title: Technical Specification Group Radio Access Network; Study on Enhanced LTE Support for Aerial Vehicles – ident: ref53 doi: 10.1145/3301273 – ident: ref61 doi: 10.1109/ISIC.2010.5612911 – ident: ref19 doi: 10.1109/TVT.2017.2752766 – ident: ref52 doi: 10.1109/ACCESS.2019.2939384 – ident: ref30 doi: 10.1109/TIE.2018.2823658 – year: 1994 ident: ref50 publication-title: Markov Decision Processes Discrete Stochastic Dynamic Programming doi: 10.1002/9780470316887 – year: 2018 ident: ref56 article-title: Remote Identification of Unmanned Aerial System – volume: 15 start-page: 122 year: 2018 ident: ref38 article-title: Illegal radio station localization with UAV-based Q-learning publication-title: China Commun – ident: ref5 doi: 10.1109/GLOBECOM38437.2019.9013432 – volume: 6 year: 0 ident: ref45 article-title: Path loss models for air-to-ground radio channels in urban environments publication-title: Proc IEEE 63rd Veh Technol Conf – ident: ref15 doi: 10.1109/TVT.2019.2890999 – ident: ref25 doi: 10.1109/ACCESS.2019.2920913 – ident: ref9 doi: 10.1109/JIOT.2018.2875065 – ident: ref34 doi: 10.1109/TMECH.2019.2892292 – ident: ref4 doi: 10.1109/ISCC47284.2019.8969672 – ident: ref36 doi: 10.1109/TAES.2019.2930017 – ident: ref3 doi: 10.1109/TII.2018.2875041 – ident: ref8 doi: 10.1109/TII.2019.2913683 – ident: ref39 doi: 10.1109/TVT.2019.2920284 – ident: ref55 doi: 10.1109/TAC.2019.2912492 – start-page: 1 year: 0 ident: ref21 article-title: Stochastic optimization for trajectory planning with heteroscedastic Gaussian processes publication-title: Proc Eur Conf Mobile Robots – ident: ref48 doi: 10.1109/ACCESS.2019.2925634 – ident: ref31 doi: 10.1109/LCOMM.2016.2603977 – ident: ref11 doi: 10.1109/TSMC.2018.2808471 – ident: ref18 doi: 10.23919/ICACT.2019.8702023 – ident: ref37 doi: 10.1109/TCYB.2015.2509646 – ident: ref28 doi: 10.1109/CCECE.2017.7946749 – year: 2003 ident: ref57 article-title: Multiagent learning in the presence of agents with limitations – ident: ref2 doi: 10.1109/VTCFall.2019.8891199 – ident: ref32 doi: 10.1016/j.automatica.2012.06.030 – ident: ref7 doi: 10.1109/ICUAS.2019.8798354 – ident: ref20 doi: 10.15607/RSS.2016.XII.001 – ident: ref29 doi: 10.1109/AERO.2019.8741970 – ident: ref27 doi: 10.1109/JSAC.2018.2804239 |
| SSID | ssj0014491 ssib017384932 ssib053395470 ssib006542127 ssib004836825 ssib000722144 |
| Score | 2.5985785 |
| Snippet | In this paper, we aim to design an autonomous tracking system for a swarm of unmanned aerial vehicles (UAVs) to localize a radio frequency (RF) mobile target.... |
| SourceID | proquest crossref nii ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 13702 |
| SubjectTerms | Algorithms constrained Markov decision process Feedback control localization and tracking Machine learning Markov processes Multi-agent reinforcement learning Multiagent systems Path planning Radio frequency Real-time systems Robots Sensors Signal strength Target tracking Tracking systems Unmanned aerial vehicles unmanned aerial vehicles (UAVs) |
| Title | Autonomous Tracking Using a Swarm of UAVs: A Constrained Multi-Agent Reinforcement Learning Approach |
| URI | https://ieeexplore.ieee.org/document/9195795 https://cir.nii.ac.jp/crid/1873679867425751680 https://www.proquest.com/docview/2460859707 |
| Volume | 69 |
| WOSCitedRecordID | wos000589638700101&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-9359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014491 issn: 0018-9545 databaseCode: RIE dateStart: 19670101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB508aAH3-L6IgcvgnWbTdsk3oooHkRE18VbaSepLOiu7EP_vpNsdlEUQQqlh6Rt-jWZV-YbgGNTCsxkxaOs1JYMFMMjxbmOVKUTKWsUxlMKdW_k7a16etJ3C3A6z4Wx1vrNZ_bMXfpYvhngxLnKWpq7oFK6CItSymmu1jxikCShOh6nCUxqwSwkGetWp9shQ7BN9ikJKCnENxHka6qQYOn3ej-WYy9jrtb-93brsBp0SZZPwd-ABdvfhJUvDINbYPLJ2KUtkH3PSCyhc4wzv02Alezhoxy-skHNHvPu6JzlzFXv9DUjrGE-MzfKXeYVu7eeXxW9K5EFStZnlgc-8m14vLrsXFxHobBChEJl46hqc1GTHpSQNmAzmsOpQbL0jFJoU4EotErLdpJlWhg6Yqw5lkll25r6k80sdqDRH_TtLjBS2Eg_N86bmCaWo7a8rm1cYV0JNGnahNbsWxcYWMfdQF4Kb33EuiB0CodOEdBpwsm8x9uUceOPtlsOh3m7AEETDglOep47cyWFCzVl0i1PKc9U3ISDGdBFmLKjgsbryN5kLPd-v-s-LLtnTxMRD6AxHk7sISzh-7g3Gh75v_ETu0vYow |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH8aGxLjwIAxUdiGD1yQCI1jO7a5RdOmTZQKQVftFiXPDqoELeoH_Ps8u24FAk2aIkU52ImdX5z35fd7AK9dI7DULc_KxnoyUBzPDOc2M62VWncoXKQUGg_0cGhubuynHXi7zYXx3sfNZ_5duIyxfDfDVXCV9S0PQSV1D_aUlAVfZ2ttYwZSpvp4nJYwKQaboGRu-6PxiEzBgixUElFaiL-EUKyqQqJlOpn880OOUubi4G7jewyPkjbJqjX8T2DHT5_Cwz84Bg_BVatlSFwgC5-RYMLgGmdxowBr2Jdfzfw7m3Xsuhov3rOKhfqdsWqEdyzm5mZVyL1in31kWMXoTGSJlPUrqxIj-TO4vjgfnV1mqbRChsKUy6wtuOhIE5KkD_iSVrFySLaeMwa9EojCGtUUsiytcHTk2HFsZOsLS_3JahZHsDudTf1zYKSykYbugj9RSc_Ret51Pm-xawU6pXrQ37zrGhPveJjItzraH7mtCZ06oFMndHrwZtvjx5pz45a2hwGHbbsEQQ9OCE56Xjhzo0UINpU6_KAUL03eg-MN0HVatIua5hvo3nSuX_z_rq_gweXo46AeXA0_vIT9MI51WuIx7C7nK38C9_HncrKYn8Yv8zcrm9vq |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autonomous+Tracking+Using+a+Swarm+of+UAVs%3A+A+Constrained+Multi-Agent+Reinforcement+Learning+Approach&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Yu-Jia%2C+Chen&rft.au=Deng-Kai%2C+Chang&rft.au=Zhang%2C+Cheng&rft.date=2020-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=69&rft.issue=11&rft.spage=13702&rft_id=info:doi/10.1109%2FTVT.2020.3023733&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |