A stress recovery procedure for solving geometrically non-linear problems in the mechanics of a deformable solid by the finite element method

A stress recovery procedure is presented for non-linear and linearized problems, based on the determination of the forces at the mesh points using a stiffness matrix obtained by the finite element method for the Lagrange variational equation written in the initial configuration using an asymmetric P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics and mechanics Jg. 74; H. 6; S. 710 - 720
Hauptverfasser: Rogovoi, A.A., Stolbova, O.S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier Ltd 2010
Elsevier
Schlagworte:
ISSN:0021-8928, 0021-8928
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A stress recovery procedure is presented for non-linear and linearized problems, based on the determination of the forces at the mesh points using a stiffness matrix obtained by the finite element method for the Lagrange variational equation written in the initial configuration using an asymmetric Piola–Kirchhoff stress tensor. Vectors of the forces reduced to the mesh points are constructed using the displacements at the mesh points found by solving this equation and for the known stiffness matrices of the elements. On the other hand, these forces at the mesh points are defined in terms of unknown forces distributed over the surface of an element and given shape functions. As a result, a system of Fredholm integral equations of the first kind is obtained, the solution of which gives these distributed forces. The values of the Piola–Kirchhoff stress tensor of the first kind at the mesh points are determined using the values found for the distributed forces on the surfaces of the finite element mesh (including at the mesh points) using the Cauchy relations for the initial configuration. The linearized representation of this tensor enables all the derivatives of the increment in the strain vector with respect to the coordinates to be found without invoking the operation of differentiation. The particular features of the use of the stress recovery procedure are demonstrated for a plane problem in the non-linear theory of elasticity.
AbstractList A stress recovery procedure is presented for non-linear and linearized problems, based on the determination of the forces at the mesh points using a stiffness matrix obtained by the finite element method for the Lagrange variational equation written in the initial configuration using an asymmetric Piola–Kirchhoff stress tensor. Vectors of the forces reduced to the mesh points are constructed using the displacements at the mesh points found by solving this equation and for the known stiffness matrices of the elements. On the other hand, these forces at the mesh points are defined in terms of unknown forces distributed over the surface of an element and given shape functions. As a result, a system of Fredholm integral equations of the first kind is obtained, the solution of which gives these distributed forces. The values of the Piola–Kirchhoff stress tensor of the first kind at the mesh points are determined using the values found for the distributed forces on the surfaces of the finite element mesh (including at the mesh points) using the Cauchy relations for the initial configuration. The linearized representation of this tensor enables all the derivatives of the increment in the strain vector with respect to the coordinates to be found without invoking the operation of differentiation. The particular features of the use of the stress recovery procedure are demonstrated for a plane problem in the non-linear theory of elasticity.
Author Rogovoi, A.A.
Stolbova, O.S.
Author_xml – sequence: 1
  givenname: A.A.
  surname: Rogovoi
  fullname: Rogovoi, A.A.
  email: rogovoi@icmm.ru
– sequence: 2
  givenname: O.S.
  surname: Stolbova
  fullname: Stolbova, O.S.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24036681$$DView record in Pascal Francis
BookMark eNqNkc1qHDEQhIfgQPyTdxCBkNNspNGMRptTjPMLBl_ss9BoWt5eNNJG0i7sQ-SdI2VNMDkZGqTDV0V110Vz5oOHpnnH6IpRJj5uV1u92y06bxYwm1VHGVvROuxVc05px1q57uTZs_-b5iKlLaVspEKeN7-vScoRUiIRTDhAPJJdDAbmfQRiQyQpuAP6R_IIYYEc0WjnjqTEaB160LHik4MlEfQkb4DUINqjSSRYoskMxWXRBalWOJPp-Bez6DEDgSIFn4sqb8J81by22iV4-_ReNg_fvt7f_Ghv777_vLm-bQ2XIrdaTIZ3PRf9aMSk-QxC80EOZpjE1BsGfVm37zswtpv69TBa1vFxzfQ8S2sHzi-bDyffEv7XHlJWCyYDzmkPYZ-UlFQMfOSVfP9E6lRWt1F7g0ntIi46HlXXUy6EZIX7dOJMDClFsP8QRlWtSm3V86pUrUrROlX8-T-xwawzBp-jRvcyiy8nCyhnOyBElQyCL0ViKTarOeBLbP4AIha-cQ
CitedBy_id crossref_primary_10_3103_S1052618822030074
crossref_primary_10_1134_S0025654424606943
Cites_doi 10.1016/S0045-7949(96)00405-1
ContentType Journal Article
Copyright 2011 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TB
8FD
FR3
KR7
DOI 10.1016/j.jappmathmech.2011.01.011
DatabaseName CrossRef
Pascal-Francis
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 0021-8928
EndPage 720
ExternalDocumentID 24036681
10_1016_j_jappmathmech_2011_01_011
S0021892811000128
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABMAC
ABXDB
ABYKQ
ACAZW
ACBNA
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMJ
HZ~
IHE
J1W
JJJVA
KOM
LY7
M25
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SME
SPC
SST
SSW
SSZ
T5K
TN5
VOH
WH7
WUQ
XOL
XPP
YQT
ZMT
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
IQODW
SSH
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c386t-a6bc3243647c6ba3de6a3585c5b6b4c1e4002442ecf2b4957f123791add8ff533
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000290349000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-8928
IngestDate Sat Sep 27 21:35:53 EDT 2025
Mon Jul 21 09:15:10 EDT 2025
Sat Nov 29 07:30:54 EST 2025
Tue Nov 18 20:59:58 EST 2025
Fri Feb 23 02:24:59 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Finite element method
Stiffness matrix
Asymmetry
Non linear elasticity
Variational calculus
Displacement(deformation)
Integral equation
Differentiation
Non linear effect
Modeling
Lagrange equation
Fredholm equation
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c386t-a6bc3243647c6ba3de6a3585c5b6b4c1e4002442ecf2b4957f123791add8ff533
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 880653733
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_880653733
pascalfrancis_primary_24036681
crossref_primary_10_1016_j_jappmathmech_2011_01_011
crossref_citationtrail_10_1016_j_jappmathmech_2011_01_011
elsevier_sciencedirect_doi_10_1016_j_jappmathmech_2011_01_011
PublicationCentury 2000
PublicationDate 2010
2010-00-00
20100101
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – year: 2010
  text: 2010
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Journal of applied mathematics and mechanics
PublicationYear 2010
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Rogovoy (bib0005) 1997; 63.
Novokshanov, Rogovoi (bib0040) 2005; 4
Oden (bib0015) 1972
Lurie (bib0020) 2005
Lurie (bib0025) 1991
Rogovoi (bib0045) 2005; 46
Novokshanov, Rogovoi (bib0035) 2002; 4
Rogovoi, Stolbova (bib0010) 2010; 74
Truesdell (bib0030) 1972
Rogovoy (10.1016/j.jappmathmech.2011.01.011_bib0005) 1997; 63.
Truesdell (10.1016/j.jappmathmech.2011.01.011_bib0030) 1972
Lurie (10.1016/j.jappmathmech.2011.01.011_bib0025) 1991
Rogovoi (10.1016/j.jappmathmech.2011.01.011_bib0010) 2010; 74
Novokshanov (10.1016/j.jappmathmech.2011.01.011_bib0040) 2005; 4
Oden (10.1016/j.jappmathmech.2011.01.011_bib0015) 1972
Lurie (10.1016/j.jappmathmech.2011.01.011_bib0020) 2005
Novokshanov (10.1016/j.jappmathmech.2011.01.011_bib0035) 2002; 4
Rogovoi (10.1016/j.jappmathmech.2011.01.011_bib0045) 2005; 46
References_xml – volume: 4
  start-page: 122
  year: 2005
  end-page: 140
  ident: bib0040
  article-title: Evolutionary constitution relations for finite viscoelastic deformations
  publication-title: Izv Rass Akad Nauk MTT
– volume: 46
  start-page: 138
  year: 2005
  end-page: 149
  ident: bib0045
  article-title: Constitutive relations for finite elasto-inelastic deformations
  publication-title: Zh Prikl Mekh Tekhn Fiz
– volume: 4
  start-page: 77
  year: 2002
  end-page: 95
  ident: bib0035
  article-title: The construction of evolutionary constitutive relations for finite deformations
  publication-title: Izv Ross Akad Nauk MTT
– year: 1972
  ident: bib0015
  article-title: Finite. Elements of Nonlinear Continua
– year: 2005
  ident: bib0020
  article-title: Theory of Elasticity
– year: 1972
  ident: bib0030
  article-title: A First Course in Rational Continuum mechanics
– volume: 74
  start-page: 478
  year: 2010
  end-page: 488
  ident: bib0010
  article-title: Stress recovery procedure for solving boundary value problems in the mechanics of a deformable solid by the finite element method
  publication-title: Prikl Mat Mekh
– volume: 63.
  start-page: 1121
  year: 1997
  end-page: 1137
  ident: bib0005
  article-title: The stress recovery procedure for the finite element method
  publication-title: Comp. Struct.
– year: 1991
  ident: bib0025
  article-title: Non-Linear Theory of Elasticity
– volume: 4
  start-page: 122
  year: 2005
  ident: 10.1016/j.jappmathmech.2011.01.011_bib0040
  article-title: Evolutionary constitution relations for finite viscoelastic deformations
  publication-title: Izv Rass Akad Nauk MTT
– volume: 74
  start-page: 478
  issue: 3
  year: 2010
  ident: 10.1016/j.jappmathmech.2011.01.011_bib0010
  article-title: Stress recovery procedure for solving boundary value problems in the mechanics of a deformable solid by the finite element method
  publication-title: Prikl Mat Mekh
– volume: 46
  start-page: 138
  issue: 5
  year: 2005
  ident: 10.1016/j.jappmathmech.2011.01.011_bib0045
  article-title: Constitutive relations for finite elasto-inelastic deformations
  publication-title: Zh Prikl Mekh Tekhn Fiz
– year: 1972
  ident: 10.1016/j.jappmathmech.2011.01.011_bib0030
– volume: 63.
  start-page: 1121
  issue: 6
  year: 1997
  ident: 10.1016/j.jappmathmech.2011.01.011_bib0005
  article-title: The stress recovery procedure for the finite element method
  publication-title: Comp. Struct.
  doi: 10.1016/S0045-7949(96)00405-1
– year: 2005
  ident: 10.1016/j.jappmathmech.2011.01.011_bib0020
– year: 1991
  ident: 10.1016/j.jappmathmech.2011.01.011_bib0025
– year: 1972
  ident: 10.1016/j.jappmathmech.2011.01.011_bib0015
– volume: 4
  start-page: 77
  year: 2002
  ident: 10.1016/j.jappmathmech.2011.01.011_bib0035
  article-title: The construction of evolutionary constitutive relations for finite deformations
  publication-title: Izv Ross Akad Nauk MTT
SSID ssj0017068
Score 1.7788515
Snippet A stress recovery procedure is presented for non-linear and linearized problems, based on the determination of the forces at the mesh points using a stiffness...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 710
SubjectTerms Exact sciences and technology
Finite element method
Fundamental areas of phenomenology (including applications)
Mathematical analysis
Nonlinearity
Physics
Recovery
Shape functions
Solid mechanics
Static elasticity (thermoelasticity...)
Stress tensors
Stresses
Structural and continuum mechanics
Vectors (mathematics)
Title A stress recovery procedure for solving geometrically non-linear problems in the mechanics of a deformable solid by the finite element method
URI https://dx.doi.org/10.1016/j.jappmathmech.2011.01.011
https://www.proquest.com/docview/880653733
Volume 74
WOSCitedRecordID wos000290349000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 0021-8928
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0017068
  issn: 0021-8928
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ja9tAFB6M00OhdC9Jl_AOvRkZa_GMdOhBlJS2h7TQFHwTI3km2NiSiR0T_4j-l_7EvjeL7DSYuoWCEEbMJr3P876ZeQtjbwcJsu5IyUBFcRkkutKB5JkOxlzKSA4pIIs0ySbE-Xk6GmVfO52f3hdmPRN1nd7cZIv_Kmp8hsIm19m_EHfbKD7A3yh0vKPY8X6Q4HPv_0FrXRz9pmeU1JhOCsimEHs3mwiXqplTOi0U0mzTq5s6IMZJka9tjpmlN4GcK_IOpmjOxpdyrAzPJY8rbGpiCSwW0xOirz1l7dFdauo93Fc67jtvg8baUNFtV9tzoMtm3RiLg7yf99v9oFUzK5u1Ib5f-t_6u3sXzn7VexGEQZo5x3A3E9t8PQ5xu9OqcFWthhbGfe7u5G_3Iab9Kb4EjZ_G7IK00hVuVZ4_5v9NE7b2id70bVrstlVQW8WALlxvH0VimKVddpR_Oht9bk-uxIBb7e_ezwe6NTaF-0a2jxQ9WMglokDbHCt36ILhQBeP2UMnQMgt6J6wjqqfskduIQNOTSyfsR85WAyCxyC0GAREDzgMwi0MwhaD4DEIkxoQItACAxoNErYYBINBKDemmMUgOAyCxeBz9v3D2cX7j4HL-xFUccpXOFmUFfJ8ymxQ8VLGY8VljMvaaljyMqlClRCzTCJV6ajEqUZopF8iC1FVp1rj-uUF6-KI1TEDlZaxjENZZgOd8GwsdZjIoQgFD3Uo-fCEZf7DF5ULik-5WWbFnyFwwuK27sKGhjmo1jsv38KRXEteC4TxQfVPb4Gi7ZoCa3KeYgHwKClQVdD5n6xVc70sUjKiiEUcv_ynkb9i963pDO0_vmbd1dW1esPuVevVZHl16v4HvwDCUPCc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stress+recovery+procedure+for+solving+geometrically+non-linear+problems+in+the+mechanics+of+a+deformable+solid+by+the+finite+element+method&rft.jtitle=Journal+of+applied+mathematics+and+mechanics&rft.au=Rogovoi%2C+A.A.&rft.au=Stolbova%2C+O.S.&rft.date=2010&rft.issn=0021-8928&rft.volume=74&rft.issue=6&rft.spage=710&rft.epage=720&rft_id=info:doi/10.1016%2Fj.jappmathmech.2011.01.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jappmathmech_2011_01_011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8928&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8928&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8928&client=summon