Wind farm layout optimization on complex terrains – Integrating a CFD wake model with mixed-integer programming

•An algorithm that optimizes layouts of wind farms on complex terrains is proposed.•The proposed algorithm integrates CFD with mixed-integer programming.•The algorithm minimizes the number of CFD simulations required for optimization.•A trade-off study between computational cost and solution quality...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy Vol. 178; pp. 404 - 414
Main Authors: Kuo, Jim Y.J., Romero, David A., Beck, J. Christopher, Amon, Cristina H.
Format: Journal Article
Language:English
Published: Elsevier Ltd 15.09.2016
Subjects:
ISSN:0306-2619, 1872-9118
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •An algorithm that optimizes layouts of wind farms on complex terrains is proposed.•The proposed algorithm integrates CFD with mixed-integer programming.•The algorithm minimizes the number of CFD simulations required for optimization.•A trade-off study between computational cost and solution quality is performed. In recent years, wind farm optimization has received much attention in the literature. The aim of wind farm design is to maximize energy production while minimizing costs. The wind farm layout optimization (WFLO) problem on uniform terrains has been tackled by a number of approaches; however, optimizing wind farm layouts on complex terrains is challenging due to the lack of accurate, computationally tractable wake models to evaluate wind farm layouts. This paper proposes an algorithm that couples computational fluid dynamics (CFD) with mixed-integer programming (MIP) to optimize layouts on complex terrains. CFD simulations are used to iteratively improve the accuracy of wake deficit predictions while MIP is used for the optimization process. The ability of MIP solvers to find optimal solutions is critical for capturing the effects of improved wake deficit predictions on the quality of wind farm layout solutions. The proposed algorithm was applied on a wind farm domain in Carleton-sur-Mer, Quebec, Canada. Results show that the proposed algorithm is capable of producing excellent layouts in complex terrains.
AbstractList In recent years, wind farm optimization has received much attention in the literature. The aim of wind farm design is to maximize energy production while minimizing costs. The wind farm layout optimization (WFLO) problem on uniform terrains has been tackled by a number of approaches; however, optimizing wind farm layouts on complex terrains is challenging due to the lack of accurate, computationally tractable wake models to evaluate wind farm layouts. This paper proposes an algorithm that couples computational fluid dynamics (CFD) with mixed-integer programming (MIP) to optimize layouts on complex terrains. CFD simulations are used to iteratively improve the accuracy of wake deficit predictions while MIP is used for the optimization process. The ability of MIP solvers to find optimal solutions is critical for capturing the effects of improved wake deficit predictions on the quality of wind farm layout solutions. The proposed algorithm was applied on a wind farm domain in Carleton-sur-Mer, Quebec, Canada. Results show that the proposed algorithm is capable of producing excellent layouts in complex terrains.
•An algorithm that optimizes layouts of wind farms on complex terrains is proposed.•The proposed algorithm integrates CFD with mixed-integer programming.•The algorithm minimizes the number of CFD simulations required for optimization.•A trade-off study between computational cost and solution quality is performed. In recent years, wind farm optimization has received much attention in the literature. The aim of wind farm design is to maximize energy production while minimizing costs. The wind farm layout optimization (WFLO) problem on uniform terrains has been tackled by a number of approaches; however, optimizing wind farm layouts on complex terrains is challenging due to the lack of accurate, computationally tractable wake models to evaluate wind farm layouts. This paper proposes an algorithm that couples computational fluid dynamics (CFD) with mixed-integer programming (MIP) to optimize layouts on complex terrains. CFD simulations are used to iteratively improve the accuracy of wake deficit predictions while MIP is used for the optimization process. The ability of MIP solvers to find optimal solutions is critical for capturing the effects of improved wake deficit predictions on the quality of wind farm layout solutions. The proposed algorithm was applied on a wind farm domain in Carleton-sur-Mer, Quebec, Canada. Results show that the proposed algorithm is capable of producing excellent layouts in complex terrains.
Author Romero, David A.
Beck, J. Christopher
Amon, Cristina H.
Kuo, Jim Y.J.
Author_xml – sequence: 1
  givenname: Jim Y.J.
  surname: Kuo
  fullname: Kuo, Jim Y.J.
  email: jyjkuo@mie.utoronto.ca
– sequence: 2
  givenname: David A.
  surname: Romero
  fullname: Romero, David A.
– sequence: 3
  givenname: J. Christopher
  surname: Beck
  fullname: Beck, J. Christopher
– sequence: 4
  givenname: Cristina H.
  surname: Amon
  fullname: Amon, Cristina H.
BookMark eNqFkMFqGzEQhkVJoU7aVyg65rKuRoqVXeghxU2aQKCXlh6FVpp15KykjSQncU99h75hnyRynV56CfwwDHz_DHyH5CDEgIS8BzYHBvLDeq4nDJhW2zmv-5zVtItXZAbtKW86gPaAzJhgsuESujfkMOc1Y4wDZzNy98MFSwedPB31Nm4KjVNx3v3UxcVAa0z004iPtGBK2oVM__z6Ta9CwVWqTFhRTZcXn-mDvkXqo8WRPrhyQ717RNu4HYeJTilW3PvKvyWvBz1mfPc8j8j3i_Nvy8vm-uuXq-Wn68aIVpZGw0IaMYCRPcrO4KLrmQXBgPcSeo096oGdWG2tsIPhQnMBdjhBbEXPOtDiiBzv79bfdxvMRXmXDY6jDhg3WXEA2XYcpKio3KMmxZwTDmpKzuu0VcDUzrFaq3-O1c6xYjXtohY__lc0rvw1V6qr8eX62b6O1cO9w6SycRgMWpfQFGWje-nEE8R0ozI
CitedBy_id crossref_primary_10_1016_j_energy_2025_135989
crossref_primary_10_3390_jmse9121376
crossref_primary_10_1016_j_renene_2020_07_140
crossref_primary_10_1109_TII_2022_3217282
crossref_primary_10_1177_01445987211056989
crossref_primary_10_1016_j_energy_2019_07_019
crossref_primary_10_1016_j_renene_2018_12_038
crossref_primary_10_1016_j_energy_2020_119214
crossref_primary_10_3390_pr10122731
crossref_primary_10_1016_j_matpr_2022_04_317
crossref_primary_10_3390_en13030556
crossref_primary_10_1016_j_energy_2020_117913
crossref_primary_10_1016_j_jweia_2017_12_016
crossref_primary_10_3390_en12010016
crossref_primary_10_1016_j_apenergy_2023_122185
crossref_primary_10_1016_j_apenergy_2023_122346
crossref_primary_10_1016_j_rser_2020_110075
crossref_primary_10_1016_j_apenergy_2017_07_090
crossref_primary_10_1016_j_energy_2019_116056
crossref_primary_10_1016_j_oceaneng_2024_118508
crossref_primary_10_1016_j_apenergy_2019_113719
crossref_primary_10_1007_s40565_019_0550_5
crossref_primary_10_1016_j_apenergy_2018_10_110
crossref_primary_10_1016_j_rser_2024_114279
crossref_primary_10_1016_j_jweia_2021_104683
crossref_primary_10_3390_app8122660
crossref_primary_10_1016_j_apenergy_2020_116149
crossref_primary_10_1016_j_renene_2023_02_058
crossref_primary_10_1016_j_energy_2017_05_076
crossref_primary_10_1051_e3sconf_202560100098
crossref_primary_10_1109_ACCESS_2022_3193143
crossref_primary_10_1016_j_apenergy_2024_125044
crossref_primary_10_3390_app8101982
crossref_primary_10_1016_j_egyai_2025_100553
crossref_primary_10_1016_j_rser_2020_110047
crossref_primary_10_1016_j_apenergy_2019_01_225
crossref_primary_10_1016_j_apenergy_2016_08_094
crossref_primary_10_1016_j_apenergy_2021_118182
crossref_primary_10_1016_j_renene_2017_11_018
crossref_primary_10_1016_j_apenergy_2020_115090
crossref_primary_10_1016_j_energy_2021_120035
crossref_primary_10_1002_ep_13193
crossref_primary_10_1016_j_energy_2021_121642
crossref_primary_10_1016_j_jclepro_2024_143906
crossref_primary_10_3390_en13040865
crossref_primary_10_3390_en14217326
crossref_primary_10_1016_j_apenergy_2017_04_013
crossref_primary_10_1016_j_apenergy_2022_119705
crossref_primary_10_3390_en13236411
crossref_primary_10_1016_j_renene_2018_03_053
crossref_primary_10_1007_s40430_020_02506_z
crossref_primary_10_1016_j_renene_2025_123775
crossref_primary_10_3390_app9091911
crossref_primary_10_1016_j_apenergy_2017_03_089
crossref_primary_10_1016_j_renene_2018_10_084
crossref_primary_10_1016_j_oceaneng_2022_112807
crossref_primary_10_1016_j_apenergy_2019_114272
crossref_primary_10_1016_j_enconman_2021_115047
crossref_primary_10_1016_j_energy_2022_123970
crossref_primary_10_1016_j_energy_2020_119244
crossref_primary_10_3390_su142417051
crossref_primary_10_3390_jmse10040544
crossref_primary_10_3390_computation6010024
crossref_primary_10_1016_j_energy_2024_132443
crossref_primary_10_1016_j_apenergy_2019_113816
crossref_primary_10_1016_j_ijepes_2024_109832
crossref_primary_10_1016_j_apenergy_2018_07_076
crossref_primary_10_1016_j_jweia_2021_104548
crossref_primary_10_1016_j_rser_2021_110991
crossref_primary_10_1016_j_energy_2022_125051
crossref_primary_10_1088_1742_6596_1452_1_012066
crossref_primary_10_1016_j_apenergy_2024_125105
crossref_primary_10_1016_j_renene_2020_01_014
crossref_primary_10_1080_01430750_2018_1542622
crossref_primary_10_3390_app8112053
crossref_primary_10_1016_j_oceaneng_2021_108920
crossref_primary_10_1109_TSTE_2020_3025609
crossref_primary_10_1016_j_apenergy_2019_114426
crossref_primary_10_1016_j_energy_2023_129745
crossref_primary_10_1016_j_apenergy_2021_117590
crossref_primary_10_1016_j_apenergy_2022_119599
crossref_primary_10_1016_j_resconrec_2021_106059
crossref_primary_10_1016_j_apenergy_2019_114189
Cites_doi 10.1016/j.apenergy.2012.12.013
10.1016/j.apenergy.2012.04.039
10.2514/6.2012-900
10.1016/j.piutam.2014.01.026
10.1115/1.4006999
10.1016/j.renene.2011.10.016
10.1002/we.481
10.1016/j.renene.2013.10.023
10.1016/j.apenergy.2014.02.070
10.1016/j.apenergy.2015.01.082
10.1016/0167-6105(94)90080-9
10.1109/PTC.2011.6019366
10.1016/j.energy.2014.01.082
10.1016/j.renene.2012.07.021
10.1016/j.apenergy.2014.12.043
10.1002/we.1607
10.1016/j.jweia.2007.03.007
10.3390/en5125340
10.1016/j.renene.2011.06.033
10.1002/we.314
10.1007/s10546-010-9569-x
10.1016/j.apenergy.2015.03.139
10.1016/j.renene.2011.04.018
10.1002/we.348
10.1016/j.jweia.2012.09.002
10.1016/j.energy.2014.12.012
10.1016/j.enconman.2015.09.011
10.1016/j.energy.2015.10.009
10.1016/j.renene.2009.08.019
10.1016/j.renene.2015.01.005
10.1016/j.renene.2004.05.007
10.1115/1.4006997
10.1007/s13675-014-0024-5
10.1016/j.renene.2012.09.008
10.1002/we.419
10.1016/j.enconman.2013.02.007
10.1016/j.atmosenv.2006.08.019
10.1016/j.jweia.2013.08.009
10.1016/j.renene.2012.12.007
10.1016/j.enconman.2013.10.003
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2016.06.085
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 414
ExternalDocumentID 10_1016_j_apenergy_2016_06_085
S0306261916308595
GeographicLocations Quebec
GeographicLocations_xml – name: Quebec
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c386t-a156c3f1c6be69ce59b0d13012b61baebeaf04dadd3dfc23a231df4ee83b091a3
ISICitedReferencesCount 95
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000382340700033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sat Sep 27 19:38:11 EDT 2025
Sat Nov 29 07:24:17 EST 2025
Tue Nov 18 22:44:00 EST 2025
Fri Feb 23 02:32:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Complex terrains
Layout optimization
Wind farm
Micro-siting
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c386t-a156c3f1c6be69ce59b0d13012b61baebeaf04dadd3dfc23a231df4ee83b091a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2116892163
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_2116892163
crossref_primary_10_1016_j_apenergy_2016_06_085
crossref_citationtrail_10_1016_j_apenergy_2016_06_085
elsevier_sciencedirect_doi_10_1016_j_apenergy_2016_06_085
PublicationCentury 2000
PublicationDate 2016-09-15
PublicationDateYYYYMMDD 2016-09-15
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wagner, Day, Neumann (b0210) 2013; 51
Song, Chen, He, Zhang (b0045) 2012; 41
Park, Law (b0030) 2015; 151
Troldborg, Sørensen, Mikkelsen (b0250) 2007; vol. 75
Wu, Porté-Agel (b0225) 2011; 138
Du Pont, Cagan (b0140) 2012; 134
Song, Chen, Zhang, Wang (b0060) 2015; 80
Serrano Gonzalez J, Burgos Payan M, Riquelme Santos J. Wind farm optimal design including risk. In: Modern electric power systems (MEPS), 2010 proceedings of the international symposium. IEEE; 2010. p. 1–6.
Zhang (b0010) 2013
Rašuo, Bengin (b0200) 2010; 38
Chen, Li, Jin, Song (b0175) 2013; 70
Saavedra-Moreno, Salcedo-Sanz, Paniagua-Tineo, Prieto, Portilla-Figueras (b0185) 2011; 36
Barthelmie, Hansen, Frandsen, Rathmann, Schepers, Schlez, Phillips, Rados, Zervos, Politis, Chaviaropoulos (b0005) 2009; 12
Chen, MacDonald (b0160) 2012; 134
Kuo, Romero, Amon (b0110) 2015; 93
Mittal (b0130) 2010
Chen, Li, He, Wang, Jin (b0180) 2015; 105
Song, Chen, He, Zhang (b0055) 2014; 67
Chen, MacDonald (b0165) 2014; 77
Porté-Agel, Lu, Wu (b0260) 2014; 10
.
Kwong, Zhang, Romero, Moran, Morgenroth, Amon (b0155) 2012
Prospathopoulos J, Politis E, Chaviaropoulos P. Modelling wind turbine wakes in complex terrain. In: Proceedings EWEC 2008, Brussels, Belgium; 2008.
Song, Chen, He, Zhang (b0050) 2013; 50
Turner, Romero, Zhang, Amon, Chan (b0015) 2014; 63
Gao, Yang, Lu (b0035) 2014; 130
Kuo, Romero, Amon (b0105) 2014
Environment Canada. Canadian Wind Energy Atlas; 2011.
Grady, Hussaini, Abdullah (b0025) 2005; 30
Chowdhury, Zhang, Messac, Castillo (b0190) 2011
Donovan (b0125) 2006
Réthoré, Laan, Troldborg, Zahle, Sørensen (b0270) 2014; 17
Fagerfjäll (b0120) 2010
Politis, Prospathopoulos, Cabezon, Hansen, Chaviaropoulos, Barthelmie (b0235) 2012; 15
Schrijver (b0115) 1998
Feng, Shen (b0040) 2014; vol. 524
Davis L. Genetic algorithms and simulated annealing; 1987.
Schmidt, Stoevesandt (b0090) 2015
Barthelmie, Pryor (b0095) 2013; 104
Kasmi, Masson (b0065) 2008; 96
Kusiak, Song (b0135) 2010; 35
Chehouri, Younes, Ilinca, Perron (b0195) 2015; 142
Wu, Porté-Agel (b0075) 2012; 5
Pérez, Mínguez, Guanche (b0205) 2013; 53
Cleve, Greiner, Enevoldsen, Birkemose, Jensen (b0215) 2009; 12
Castellani, Vignaroli (b0245) 2013; 101
El Kasmi, Masson (b0275) 2008; 96
Mosetti, Poloni, Diviacco (b0020) 1994; 51
Prospathopoulos, Politis, Rados, Chaviaropoulos (b0070) 2011; 14
GE Energy. 1.5MW wind turbine. Tech. rep., General Electric; 2009.
Makridis, Chick (b0080) 2013; 123
Chowdhury, Zhang, Messac, Castillo (b0145) 2012; 38
Schmidt, Stoevesandt (b0085) 2014; vol. 524
Réthoré, Sørensen, Zahle (b0265) 2010
Mikkelsen (b0240) 2003
Feng, Shen (b0170) 2015; 78
Zhong, Du, Tang, Wang (b0230) 2015; 144
Blocken, Stathopoulos, Carmeliet (b0290) 2007; 41
Zhang, Romero, Beck, Amon (b0100) 2014; 2
Mo, Choudhry, Arjomandi, Lee (b0220) 2013; 112
Martınez LA, Leonardi S, Churchfield MJ, Moriarty PJ. A comparison of actuator disk and actuator line wind turbine models and best practices for their use. AIAA Paper (2012-0900); 2012.
Feng (10.1016/j.apenergy.2016.06.085_b0040) 2014; vol. 524
Park (10.1016/j.apenergy.2016.06.085_b0030) 2015; 151
Zhang (10.1016/j.apenergy.2016.06.085_b0100) 2014; 2
Turner (10.1016/j.apenergy.2016.06.085_b0015) 2014; 63
Castellani (10.1016/j.apenergy.2016.06.085_b0245) 2013; 101
El Kasmi (10.1016/j.apenergy.2016.06.085_b0275) 2008; 96
Pérez (10.1016/j.apenergy.2016.06.085_b0205) 2013; 53
Chen (10.1016/j.apenergy.2016.06.085_b0160) 2012; 134
Cleve (10.1016/j.apenergy.2016.06.085_b0215) 2009; 12
Kuo (10.1016/j.apenergy.2016.06.085_b0110) 2015; 93
Kasmi (10.1016/j.apenergy.2016.06.085_b0065) 2008; 96
Chen (10.1016/j.apenergy.2016.06.085_b0165) 2014; 77
Barthelmie (10.1016/j.apenergy.2016.06.085_b0095) 2013; 104
Schrijver (10.1016/j.apenergy.2016.06.085_b0115) 1998
Saavedra-Moreno (10.1016/j.apenergy.2016.06.085_b0185) 2011; 36
Wu (10.1016/j.apenergy.2016.06.085_b0225) 2011; 138
Chowdhury (10.1016/j.apenergy.2016.06.085_b0190) 2011
Song (10.1016/j.apenergy.2016.06.085_b0060) 2015; 80
Song (10.1016/j.apenergy.2016.06.085_b0045) 2012; 41
Feng (10.1016/j.apenergy.2016.06.085_b0170) 2015; 78
Chehouri (10.1016/j.apenergy.2016.06.085_b0195) 2015; 142
Song (10.1016/j.apenergy.2016.06.085_b0050) 2013; 50
Kusiak (10.1016/j.apenergy.2016.06.085_b0135) 2010; 35
10.1016/j.apenergy.2016.06.085_b0300
Wu (10.1016/j.apenergy.2016.06.085_b0075) 2012; 5
Mo (10.1016/j.apenergy.2016.06.085_b0220) 2013; 112
Song (10.1016/j.apenergy.2016.06.085_b0055) 2014; 67
Fagerfjäll (10.1016/j.apenergy.2016.06.085_b0120) 2010
Chen (10.1016/j.apenergy.2016.06.085_b0175) 2013; 70
Barthelmie (10.1016/j.apenergy.2016.06.085_b0005) 2009; 12
Réthoré (10.1016/j.apenergy.2016.06.085_b0270) 2014; 17
Porté-Agel (10.1016/j.apenergy.2016.06.085_b0260) 2014; 10
Schmidt (10.1016/j.apenergy.2016.06.085_b0090) 2015
Schmidt (10.1016/j.apenergy.2016.06.085_b0085) 2014; vol. 524
10.1016/j.apenergy.2016.06.085_b0295
Zhong (10.1016/j.apenergy.2016.06.085_b0230) 2015; 144
Prospathopoulos (10.1016/j.apenergy.2016.06.085_b0070) 2011; 14
Réthoré (10.1016/j.apenergy.2016.06.085_b0265) 2010
10.1016/j.apenergy.2016.06.085_b0255
Mosetti (10.1016/j.apenergy.2016.06.085_b0020) 1994; 51
Mikkelsen (10.1016/j.apenergy.2016.06.085_b0240) 2003
Chowdhury (10.1016/j.apenergy.2016.06.085_b0145) 2012; 38
Donovan (10.1016/j.apenergy.2016.06.085_b0125) 2006
10.1016/j.apenergy.2016.06.085_b0280
10.1016/j.apenergy.2016.06.085_b0285
Kuo (10.1016/j.apenergy.2016.06.085_b0105) 2014
Rašuo (10.1016/j.apenergy.2016.06.085_b0200) 2010; 38
Grady (10.1016/j.apenergy.2016.06.085_b0025) 2005; 30
Gao (10.1016/j.apenergy.2016.06.085_b0035) 2014; 130
Wagner (10.1016/j.apenergy.2016.06.085_b0210) 2013; 51
Blocken (10.1016/j.apenergy.2016.06.085_b0290) 2007; 41
Zhang (10.1016/j.apenergy.2016.06.085_b0010) 2013
Chen (10.1016/j.apenergy.2016.06.085_b0180) 2015; 105
Du Pont (10.1016/j.apenergy.2016.06.085_b0140) 2012; 134
Troldborg (10.1016/j.apenergy.2016.06.085_b0250) 2007; vol. 75
Kwong (10.1016/j.apenergy.2016.06.085_b0155) 2012
Politis (10.1016/j.apenergy.2016.06.085_b0235) 2012; 15
Makridis (10.1016/j.apenergy.2016.06.085_b0080) 2013; 123
10.1016/j.apenergy.2016.06.085_b0150
Mittal (10.1016/j.apenergy.2016.06.085_b0130) 2010
References_xml – year: 2015
  ident: b0090
  article-title: Wind farm layout optimization in complex terrain with CFD wakes
  publication-title: EWEA conference proceedings, Paris, France
– volume: 12
  start-page: 125
  year: 2009
  end-page: 135
  ident: b0215
  article-title: Model-based analysis of wake-flow data in the nysted offshore wind farm
  publication-title: Wind Energy
– volume: 35
  start-page: 685
  year: 2010
  end-page: 694
  ident: b0135
  article-title: Design of wind farm layout for maximum wind energy capture
  publication-title: Renew Energy
– volume: 96
  start-page: 103
  year: 2008
  end-page: 122
  ident: b0275
  article-title: An extended k–
  publication-title: J Wind Eng Indust Aerodynam
– volume: 93
  start-page: 2157
  year: 2015
  end-page: 2165
  ident: b0110
  article-title: A mechanistic semi-empirical wake interaction model for wind farm layout optimization
  publication-title: Energy
– volume: 112
  start-page: 11
  year: 2013
  end-page: 24
  ident: b0220
  article-title: Large eddy simulation of the wind turbine wake characteristics in the numerical wind tunnel model
  publication-title: J Wind Eng Indust Aerodynam
– volume: 5
  start-page: 5340
  year: 2012
  end-page: 5362
  ident: b0075
  article-title: Atmospheric turbulence effects on wind-turbine wakes: an les study
  publication-title: Energies
– volume: 80
  start-page: 567
  year: 2015
  end-page: 574
  ident: b0060
  article-title: The lazy greedy algorithm for power optimization of wind turbine positioning on complex terrain
  publication-title: Energy
– volume: 38
  start-page: 107
  year: 2010
  end-page: 114
  ident: b0200
  article-title: Optimization of wind farm layout
  publication-title: FME Trans
– volume: 134
  start-page: 084506
  year: 2012
  ident: b0160
  article-title: Considering landowner participation in wind farm layout optimization
  publication-title: J Mech Des
– volume: vol. 524
  start-page: 012136
  year: 2014
  ident: b0085
  article-title: Modelling complex terrain effects for wind farm layout optimization
  publication-title: Journal of Physics: Conference Series
– volume: 123
  start-page: 12
  year: 2013
  end-page: 29
  ident: b0080
  article-title: Validation of a cfd model of wind turbine wakes with terrain effects
  publication-title: J Wind Eng Indust Aerodynam
– volume: 104
  start-page: 834
  year: 2013
  end-page: 844
  ident: b0095
  article-title: An overview of data for wake model evaluation in the virtual wakes laboratory
  publication-title: Appl Energy
– volume: 17
  start-page: 919
  year: 2014
  end-page: 937
  ident: b0270
  article-title: Verification and validation of an actuator disc model
  publication-title: Wind Energy
– volume: 130
  start-page: 519
  year: 2014
  end-page: 531
  ident: b0035
  article-title: Study on offshore wind power potential and wind farm optimization in Hong Kong
  publication-title: Appl Energy
– year: 2010
  ident: b0130
  article-title: Optimization of the layout of large wind farms using a genetic algorithm. Ph.D. thesis
– year: 2014
  ident: b0105
  article-title: A novel wake interaction model for wind farm layout optimization
  publication-title: ASME 2014 international mechanical engineering congress and exposition
– volume: 105
  start-page: 1318
  year: 2015
  end-page: 1327
  ident: b0180
  article-title: Multi-objective genetic algorithm based innovative wind farm layout optimization method
  publication-title: Energy Convers Manage
– volume: 63
  start-page: 674
  year: 2014
  end-page: 680
  ident: b0015
  article-title: A new mathematical programming approach to optimize wind farm layouts
  publication-title: Renew Energy
– volume: 30
  start-page: 259
  year: 2005
  end-page: 270
  ident: b0025
  article-title: Placement of wind turbines using genetic algorithms
  publication-title: Renew Energy
– year: 2010
  ident: b0265
  article-title: Validation of an actuator disc model
  publication-title: 2010 European wind energy conference and exhibition
– reference: Environment Canada. Canadian Wind Energy Atlas; 2011. <
– volume: vol. 524
  start-page: 012146
  year: 2014
  ident: b0040
  article-title: Wind farm layout optimization in complex terrain: a preliminary study on a Gaussian hill
  publication-title: Journal of Physics: Conference Series
– volume: 15
  start-page: 161
  year: 2012
  end-page: 182
  ident: b0235
  article-title: Modeling wake effects in large wind farms in complex terrain: the problem, the methods and the issues
  publication-title: Wind Energy
– volume: 51
  start-page: 105
  year: 1994
  end-page: 116
  ident: b0020
  article-title: Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm
  publication-title: J Wind Eng Indust Aerodynam
– volume: 50
  start-page: 551
  year: 2013
  end-page: 557
  ident: b0050
  article-title: Bionic optimization for micro-siting of wind farm on complex terrain
  publication-title: Renew Energy
– year: 2006
  ident: b0125
  article-title: An improved mixed integer programming model for wind farm layout optimisation
  publication-title: Proceedings of the 41th annual conference of the operations research society. Wellington, New Zealand
– volume: 38
  start-page: 16
  year: 2012
  end-page: 30
  ident: b0145
  article-title: Unrestricted wind farm layout optimization (uwflo): investigating key factors influencing the maximum power generation
  publication-title: Renew Energy
– volume: 67
  start-page: 454
  year: 2014
  end-page: 459
  ident: b0055
  article-title: Optimization of wind farm micro-siting for complex terrain using greedy algorithm
  publication-title: Energy
– reference: Martınez LA, Leonardi S, Churchfield MJ, Moriarty PJ. A comparison of actuator disk and actuator line wind turbine models and best practices for their use. AIAA Paper (2012-0900); 2012.
– volume: 70
  start-page: 56
  year: 2013
  end-page: 65
  ident: b0175
  article-title: Wind farm layout optimization using genetic algorithm with different hub height wind turbines
  publication-title: Energy Convers Manage
– volume: 144
  start-page: 224
  year: 2015
  end-page: 233
  ident: b0230
  article-title: Lagrangian dynamic large-eddy simulation of wind turbine near wakes combined with an actuator line method
  publication-title: Appl Energy
– reference: GE Energy. 1.5MW wind turbine. Tech. rep., General Electric; 2009.
– volume: 41
  start-page: 238
  year: 2007
  end-page: 252
  ident: b0290
  article-title: Cfd simulation of the atmospheric boundary layer: wall function problems
  publication-title: Atmosph Environ
– volume: 51
  start-page: 64
  year: 2013
  end-page: 70
  ident: b0210
  article-title: A fast and effective local search algorithm for optimizing the placement of wind turbines
  publication-title: Renew Energy
– volume: 10
  start-page: 307
  year: 2014
  end-page: 318
  ident: b0260
  article-title: Interaction between large wind farms and the atmospheric boundary layer
  publication-title: Proc IUTAM
– volume: 77
  start-page: 484
  year: 2014
  end-page: 494
  ident: b0165
  article-title: A system-level cost-of-energy wind farm layout optimization with landowner modeling
  publication-title: Energy Convers Manage
– volume: 138
  start-page: 345
  year: 2011
  end-page: 366
  ident: b0225
  article-title: Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations
  publication-title: Bound-layer Meteorol
– volume: 101
  start-page: 432
  year: 2013
  end-page: 440
  ident: b0245
  article-title: An application of the actuator disc model for wind turbine wakes calculations
  publication-title: Appl Energy
– volume: 41
  start-page: 185
  year: 2012
  end-page: 190
  ident: b0045
  article-title: Wake flow model of wind turbine using particle simulation
  publication-title: Renew Energy
– volume: 2
  start-page: 195
  year: 2014
  end-page: 219
  ident: b0100
  article-title: Solving wind farm layout optimization with mixed integer programs and constraint programs
  publication-title: EURO J Comput Optim
– reference: Prospathopoulos J, Politis E, Chaviaropoulos P. Modelling wind turbine wakes in complex terrain. In: Proceedings EWEC 2008, Brussels, Belgium; 2008.
– volume: 151
  start-page: 320
  year: 2015
  end-page: 334
  ident: b0030
  article-title: Layout optimization for maximizing wind farm power production using sequential convex programming
  publication-title: Appl Energy
– reference: Davis L. Genetic algorithms and simulated annealing; 1987.
– volume: 53
  start-page: 389
  year: 2013
  end-page: 399
  ident: b0205
  article-title: Offshore wind farm layout optimization using mathematical programming techniques
  publication-title: Renew Energy
– volume: 36
  start-page: 2838
  year: 2011
  end-page: 2844
  ident: b0185
  article-title: Seeding evolutionary algorithms with heuristics for optimal wind turbines positioning in wind farms
  publication-title: Renew Energy
– volume: vol. 75
  start-page: 012063
  year: 2007
  ident: b0250
  article-title: Actuator line simulation of wake of wind turbine operating in turbulent inflow
  publication-title: Journal of Physics: Conference Series
– year: 2010
  ident: b0120
  article-title: Optimizing wind farm layout–more bang for the buck using mixed integer linear programming. Master’s thesis
– year: 1998
  ident: b0115
  article-title: Theory of linear and integer programming
– volume: 12
  start-page: 431
  year: 2009
  end-page: 444
  ident: b0005
  article-title: Modelling and measuring flow and wind turbine wakes in large wind farms offshore
  publication-title: Wind Energy
– year: 2013
  ident: b0010
  article-title: Topics in wind farm layout optimization: analytical wake models, noise propagation, and energy production. Master’s thesis
– year: 2003
  ident: b0240
  article-title: Actuator disc methods applied to wind turbines. Ph.D. thesis
– reference: >.
– year: 2011
  ident: b0190
  article-title: Characterizing the influence of land configuration on the optimal wind farm performance
  publication-title: ASME 2011 international design engineering technical conferences & computers and information in engineering conference (IDETC/CIE 2011), No. DETC2011-48731
– volume: 142
  start-page: 361
  year: 2015
  end-page: 388
  ident: b0195
  article-title: Review of performance optimization techniques applied to wind turbines
  publication-title: Appl Energy
– reference: Serrano Gonzalez J, Burgos Payan M, Riquelme Santos J. Wind farm optimal design including risk. In: Modern electric power systems (MEPS), 2010 proceedings of the international symposium. IEEE; 2010. p. 1–6.
– volume: 134
  start-page: 081002
  year: 2012
  ident: b0140
  article-title: An extended pattern search approach to wind farm layout optimization
  publication-title: J Mech Des
– volume: 78
  start-page: 182
  year: 2015
  end-page: 192
  ident: b0170
  article-title: Solving the wind farm layout optimization problem using random search algorithm
  publication-title: Renew Energy
– volume: 14
  start-page: 285
  year: 2011
  end-page: 300
  ident: b0070
  article-title: Evaluation of the effects of turbulence model enhancements on wind turbine wake predictions
  publication-title: Wind Energy
– volume: 96
  start-page: 103
  year: 2008
  end-page: 122
  ident: b0065
  article-title: An extended model for turbulent flow through horizontal-axis wind turbines
  publication-title: J Wind Eng Indust Aerodynam
– start-page: 1
  year: 2012
  end-page: 10
  ident: b0155
  article-title: Wind farm layout optimization considering energy generation and noise propagation
  publication-title: Proceedings of the ASME 2012 international des engineering technology conference & computing and information in engineering conference. Chicago, IL, USA
– year: 2015
  ident: 10.1016/j.apenergy.2016.06.085_b0090
  article-title: Wind farm layout optimization in complex terrain with CFD wakes
– year: 2011
  ident: 10.1016/j.apenergy.2016.06.085_b0190
  article-title: Characterizing the influence of land configuration on the optimal wind farm performance
– volume: 104
  start-page: 834
  year: 2013
  ident: 10.1016/j.apenergy.2016.06.085_b0095
  article-title: An overview of data for wake model evaluation in the virtual wakes laboratory
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.12.013
– volume: 101
  start-page: 432
  year: 2013
  ident: 10.1016/j.apenergy.2016.06.085_b0245
  article-title: An application of the actuator disc model for wind turbine wakes calculations
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.04.039
– ident: 10.1016/j.apenergy.2016.06.085_b0285
– ident: 10.1016/j.apenergy.2016.06.085_b0255
  doi: 10.2514/6.2012-900
– volume: 10
  start-page: 307
  year: 2014
  ident: 10.1016/j.apenergy.2016.06.085_b0260
  article-title: Interaction between large wind farms and the atmospheric boundary layer
  publication-title: Proc IUTAM
  doi: 10.1016/j.piutam.2014.01.026
– ident: 10.1016/j.apenergy.2016.06.085_b0300
– volume: 134
  start-page: 084506
  year: 2012
  ident: 10.1016/j.apenergy.2016.06.085_b0160
  article-title: Considering landowner participation in wind farm layout optimization
  publication-title: J Mech Des
  doi: 10.1115/1.4006999
– volume: 41
  start-page: 185
  year: 2012
  ident: 10.1016/j.apenergy.2016.06.085_b0045
  article-title: Wake flow model of wind turbine using particle simulation
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2011.10.016
– volume: 15
  start-page: 161
  issue: 1
  year: 2012
  ident: 10.1016/j.apenergy.2016.06.085_b0235
  article-title: Modeling wake effects in large wind farms in complex terrain: the problem, the methods and the issues
  publication-title: Wind Energy
  doi: 10.1002/we.481
– volume: 63
  start-page: 674
  year: 2014
  ident: 10.1016/j.apenergy.2016.06.085_b0015
  article-title: A new mathematical programming approach to optimize wind farm layouts
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2013.10.023
– year: 2010
  ident: 10.1016/j.apenergy.2016.06.085_b0265
  article-title: Validation of an actuator disc model
– year: 2006
  ident: 10.1016/j.apenergy.2016.06.085_b0125
  article-title: An improved mixed integer programming model for wind farm layout optimisation
– volume: 38
  start-page: 107
  issue: 3
  year: 2010
  ident: 10.1016/j.apenergy.2016.06.085_b0200
  article-title: Optimization of wind farm layout
  publication-title: FME Trans
– year: 2003
  ident: 10.1016/j.apenergy.2016.06.085_b0240
– volume: 130
  start-page: 519
  year: 2014
  ident: 10.1016/j.apenergy.2016.06.085_b0035
  article-title: Study on offshore wind power potential and wind farm optimization in Hong Kong
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.02.070
– year: 2014
  ident: 10.1016/j.apenergy.2016.06.085_b0105
  article-title: A novel wake interaction model for wind farm layout optimization
– volume: 144
  start-page: 224
  year: 2015
  ident: 10.1016/j.apenergy.2016.06.085_b0230
  article-title: Lagrangian dynamic large-eddy simulation of wind turbine near wakes combined with an actuator line method
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.01.082
– ident: 10.1016/j.apenergy.2016.06.085_b0280
– volume: vol. 524
  start-page: 012146
  year: 2014
  ident: 10.1016/j.apenergy.2016.06.085_b0040
  article-title: Wind farm layout optimization in complex terrain: a preliminary study on a Gaussian hill
– volume: 51
  start-page: 105
  issue: 1
  year: 1994
  ident: 10.1016/j.apenergy.2016.06.085_b0020
  article-title: Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm
  publication-title: J Wind Eng Indust Aerodynam
  doi: 10.1016/0167-6105(94)90080-9
– ident: 10.1016/j.apenergy.2016.06.085_b0150
  doi: 10.1109/PTC.2011.6019366
– volume: 67
  start-page: 454
  year: 2014
  ident: 10.1016/j.apenergy.2016.06.085_b0055
  article-title: Optimization of wind farm micro-siting for complex terrain using greedy algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2014.01.082
– volume: 50
  start-page: 551
  year: 2013
  ident: 10.1016/j.apenergy.2016.06.085_b0050
  article-title: Bionic optimization for micro-siting of wind farm on complex terrain
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2012.07.021
– volume: 142
  start-page: 361
  year: 2015
  ident: 10.1016/j.apenergy.2016.06.085_b0195
  article-title: Review of performance optimization techniques applied to wind turbines
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.12.043
– volume: 17
  start-page: 919
  issue: 6
  year: 2014
  ident: 10.1016/j.apenergy.2016.06.085_b0270
  article-title: Verification and validation of an actuator disc model
  publication-title: Wind Energy
  doi: 10.1002/we.1607
– year: 2013
  ident: 10.1016/j.apenergy.2016.06.085_b0010
– volume: 96
  start-page: 103
  issue: 1
  year: 2008
  ident: 10.1016/j.apenergy.2016.06.085_b0275
  article-title: An extended k–ε model for turbulent flow through horizontal-axis wind turbines
  publication-title: J Wind Eng Indust Aerodynam
  doi: 10.1016/j.jweia.2007.03.007
– volume: 5
  start-page: 5340
  issue: 12
  year: 2012
  ident: 10.1016/j.apenergy.2016.06.085_b0075
  article-title: Atmospheric turbulence effects on wind-turbine wakes: an les study
  publication-title: Energies
  doi: 10.3390/en5125340
– volume: vol. 524
  start-page: 012136
  year: 2014
  ident: 10.1016/j.apenergy.2016.06.085_b0085
  article-title: Modelling complex terrain effects for wind farm layout optimization
– ident: 10.1016/j.apenergy.2016.06.085_b0295
– volume: 38
  start-page: 16
  issue: 1
  year: 2012
  ident: 10.1016/j.apenergy.2016.06.085_b0145
  article-title: Unrestricted wind farm layout optimization (uwflo): investigating key factors influencing the maximum power generation
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2011.06.033
– start-page: 1
  year: 2012
  ident: 10.1016/j.apenergy.2016.06.085_b0155
  article-title: Wind farm layout optimization considering energy generation and noise propagation
– volume: 12
  start-page: 125
  issue: 2
  year: 2009
  ident: 10.1016/j.apenergy.2016.06.085_b0215
  article-title: Model-based analysis of wake-flow data in the nysted offshore wind farm
  publication-title: Wind Energy
  doi: 10.1002/we.314
– volume: 138
  start-page: 345
  issue: 3
  year: 2011
  ident: 10.1016/j.apenergy.2016.06.085_b0225
  article-title: Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations
  publication-title: Bound-layer Meteorol
  doi: 10.1007/s10546-010-9569-x
– year: 2010
  ident: 10.1016/j.apenergy.2016.06.085_b0130
– year: 1998
  ident: 10.1016/j.apenergy.2016.06.085_b0115
– volume: 151
  start-page: 320
  year: 2015
  ident: 10.1016/j.apenergy.2016.06.085_b0030
  article-title: Layout optimization for maximizing wind farm power production using sequential convex programming
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.03.139
– volume: 36
  start-page: 2838
  issue: 11
  year: 2011
  ident: 10.1016/j.apenergy.2016.06.085_b0185
  article-title: Seeding evolutionary algorithms with heuristics for optimal wind turbines positioning in wind farms
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2011.04.018
– volume: 12
  start-page: 431
  issue: 5
  year: 2009
  ident: 10.1016/j.apenergy.2016.06.085_b0005
  article-title: Modelling and measuring flow and wind turbine wakes in large wind farms offshore
  publication-title: Wind Energy
  doi: 10.1002/we.348
– volume: 96
  start-page: 103
  issue: 1
  year: 2008
  ident: 10.1016/j.apenergy.2016.06.085_b0065
  article-title: An extended model for turbulent flow through horizontal-axis wind turbines
  publication-title: J Wind Eng Indust Aerodynam
  doi: 10.1016/j.jweia.2007.03.007
– year: 2010
  ident: 10.1016/j.apenergy.2016.06.085_b0120
– volume: 112
  start-page: 11
  year: 2013
  ident: 10.1016/j.apenergy.2016.06.085_b0220
  article-title: Large eddy simulation of the wind turbine wake characteristics in the numerical wind tunnel model
  publication-title: J Wind Eng Indust Aerodynam
  doi: 10.1016/j.jweia.2012.09.002
– volume: 80
  start-page: 567
  year: 2015
  ident: 10.1016/j.apenergy.2016.06.085_b0060
  article-title: The lazy greedy algorithm for power optimization of wind turbine positioning on complex terrain
  publication-title: Energy
  doi: 10.1016/j.energy.2014.12.012
– volume: 105
  start-page: 1318
  year: 2015
  ident: 10.1016/j.apenergy.2016.06.085_b0180
  article-title: Multi-objective genetic algorithm based innovative wind farm layout optimization method
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2015.09.011
– volume: 93
  start-page: 2157
  year: 2015
  ident: 10.1016/j.apenergy.2016.06.085_b0110
  article-title: A mechanistic semi-empirical wake interaction model for wind farm layout optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2015.10.009
– volume: 35
  start-page: 685
  issue: 3
  year: 2010
  ident: 10.1016/j.apenergy.2016.06.085_b0135
  article-title: Design of wind farm layout for maximum wind energy capture
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2009.08.019
– volume: 78
  start-page: 182
  year: 2015
  ident: 10.1016/j.apenergy.2016.06.085_b0170
  article-title: Solving the wind farm layout optimization problem using random search algorithm
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.01.005
– volume: 30
  start-page: 259
  issue: 2
  year: 2005
  ident: 10.1016/j.apenergy.2016.06.085_b0025
  article-title: Placement of wind turbines using genetic algorithms
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2004.05.007
– volume: 134
  start-page: 081002
  year: 2012
  ident: 10.1016/j.apenergy.2016.06.085_b0140
  article-title: An extended pattern search approach to wind farm layout optimization
  publication-title: J Mech Des
  doi: 10.1115/1.4006997
– volume: vol. 75
  start-page: 012063
  year: 2007
  ident: 10.1016/j.apenergy.2016.06.085_b0250
  article-title: Actuator line simulation of wake of wind turbine operating in turbulent inflow
– volume: 2
  start-page: 195
  issue: 3
  year: 2014
  ident: 10.1016/j.apenergy.2016.06.085_b0100
  article-title: Solving wind farm layout optimization with mixed integer programs and constraint programs
  publication-title: EURO J Comput Optim
  doi: 10.1007/s13675-014-0024-5
– volume: 51
  start-page: 64
  year: 2013
  ident: 10.1016/j.apenergy.2016.06.085_b0210
  article-title: A fast and effective local search algorithm for optimizing the placement of wind turbines
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2012.09.008
– volume: 14
  start-page: 285
  issue: 2
  year: 2011
  ident: 10.1016/j.apenergy.2016.06.085_b0070
  article-title: Evaluation of the effects of turbulence model enhancements on wind turbine wake predictions
  publication-title: Wind Energy
  doi: 10.1002/we.419
– volume: 70
  start-page: 56
  year: 2013
  ident: 10.1016/j.apenergy.2016.06.085_b0175
  article-title: Wind farm layout optimization using genetic algorithm with different hub height wind turbines
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2013.02.007
– volume: 41
  start-page: 238
  issue: 2
  year: 2007
  ident: 10.1016/j.apenergy.2016.06.085_b0290
  article-title: Cfd simulation of the atmospheric boundary layer: wall function problems
  publication-title: Atmosph Environ
  doi: 10.1016/j.atmosenv.2006.08.019
– volume: 123
  start-page: 12
  year: 2013
  ident: 10.1016/j.apenergy.2016.06.085_b0080
  article-title: Validation of a cfd model of wind turbine wakes with terrain effects
  publication-title: J Wind Eng Indust Aerodynam
  doi: 10.1016/j.jweia.2013.08.009
– volume: 53
  start-page: 389
  year: 2013
  ident: 10.1016/j.apenergy.2016.06.085_b0205
  article-title: Offshore wind farm layout optimization using mathematical programming techniques
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2012.12.007
– volume: 77
  start-page: 484
  year: 2014
  ident: 10.1016/j.apenergy.2016.06.085_b0165
  article-title: A system-level cost-of-energy wind farm layout optimization with landowner modeling
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2013.10.003
SSID ssj0002120
Score 2.4914522
Snippet •An algorithm that optimizes layouts of wind farms on complex terrains is proposed.•The proposed algorithm integrates CFD with mixed-integer programming.•The...
In recent years, wind farm optimization has received much attention in the literature. The aim of wind farm design is to maximize energy production while...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 404
SubjectTerms algorithms
Complex terrains
energy
fluid mechanics
landscapes
Layout optimization
Micro-siting
prediction
Quebec
Wind farm
wind farms
Title Wind farm layout optimization on complex terrains – Integrating a CFD wake model with mixed-integer programming
URI https://dx.doi.org/10.1016/j.apenergy.2016.06.085
https://www.proquest.com/docview/2116892163
Volume 178
WOSCitedRecordID wos000382340700033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMcEBQqykuLhLhYDrbXduxjVRJBVAUOqQin1dpeSymxkyZpCTf-Azd-Hr-EmX0kDg-1HJAiK7K9Tuz5PDO7M98MIS-kDFIZY1p54JVuGJSeK8BKu6kABAiPZaWfq2YT3eEwGY_T963Wd8uFuZx26zpZr9P5fxU17ANhI3X2H8S9uSjsgO8gdNiC2GF7LcF_gFm2U4pF5UzFF8w6noFWqAzdEmMDKotcrh14otgfYunYhAem1gexeIRiLjrH_dfOZ_FJ6nY5esm2mqxl4aoiE3Jhs7sqa_9sOVvj2kpFLNxGi3SUZ1I5HzuDzjbUU0lNtlH59Y3FValV9aBZAWED0MqkCyglVQtDsjDrF36MyRaawWl5W17s4jxuRyd3E2feCb3QDf2woV9D3avYmGpz7DcroBckzjpiru8TM_hiVaZVtwfaLbs9fMf7pycnfNQbj17Oz13sSIaRe9Oe5QbZC7pRmrTJ3tHb3niwsfOBKfpp_3-Df_7nn_6b6_OLE6A8m9FdcsdMSeiRhtI90pL1PrndKFS5Tw56Wz4knGoMwvI-OUe0UUQb1WijTbRR-Bi0UYs2-uPrN9rAGRUUcEYRZ1ThjCLO6A7OaANnD8hpvzc6fuOaLh5uzpJ45Qo_inMGr3ycyThF1l_mFeA5-UEW-5kAJSJKLyzAzrKizAMmYMZRlKGUCcvAmRXsgLTrWS0fEhp2mZ_LNCqxa0Dps0ywAlxokUi0U1F2SCL7gHluStxjp5Upt7mMZ9wKhqNgOCZ1JtEhebUZN9dFXq4ckVr5ceOqaheUAwavHPvcCpyDLscAnajl7GLJA9-PkzSAKdKja5zzmNzavk9PSHu1uJBPyc38cjVZLp4ZtP4EBpnFXw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+farm+layout+optimization+on+complex+terrains+%E2%80%93+Integrating+a+CFD+wake+model+with+mixed-integer+programming&rft.jtitle=Applied+energy&rft.au=Kuo%2C+Jim+Y.J.&rft.au=Romero%2C+David+A&rft.au=Beck%2C+J+Christopher&rft.au=Amon%2C+Cristina+H&rft.date=2016-09-15&rft.issn=0306-2619&rft.volume=178+p.404-414&rft.spage=404&rft.epage=414&rft_id=info:doi/10.1016%2Fj.apenergy.2016.06.085&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon