Wind farm layout optimization on complex terrains – Integrating a CFD wake model with mixed-integer programming
•An algorithm that optimizes layouts of wind farms on complex terrains is proposed.•The proposed algorithm integrates CFD with mixed-integer programming.•The algorithm minimizes the number of CFD simulations required for optimization.•A trade-off study between computational cost and solution quality...
Saved in:
| Published in: | Applied energy Vol. 178; pp. 404 - 414 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
15.09.2016
|
| Subjects: | |
| ISSN: | 0306-2619, 1872-9118 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •An algorithm that optimizes layouts of wind farms on complex terrains is proposed.•The proposed algorithm integrates CFD with mixed-integer programming.•The algorithm minimizes the number of CFD simulations required for optimization.•A trade-off study between computational cost and solution quality is performed.
In recent years, wind farm optimization has received much attention in the literature. The aim of wind farm design is to maximize energy production while minimizing costs. The wind farm layout optimization (WFLO) problem on uniform terrains has been tackled by a number of approaches; however, optimizing wind farm layouts on complex terrains is challenging due to the lack of accurate, computationally tractable wake models to evaluate wind farm layouts. This paper proposes an algorithm that couples computational fluid dynamics (CFD) with mixed-integer programming (MIP) to optimize layouts on complex terrains. CFD simulations are used to iteratively improve the accuracy of wake deficit predictions while MIP is used for the optimization process. The ability of MIP solvers to find optimal solutions is critical for capturing the effects of improved wake deficit predictions on the quality of wind farm layout solutions. The proposed algorithm was applied on a wind farm domain in Carleton-sur-Mer, Quebec, Canada. Results show that the proposed algorithm is capable of producing excellent layouts in complex terrains. |
|---|---|
| AbstractList | In recent years, wind farm optimization has received much attention in the literature. The aim of wind farm design is to maximize energy production while minimizing costs. The wind farm layout optimization (WFLO) problem on uniform terrains has been tackled by a number of approaches; however, optimizing wind farm layouts on complex terrains is challenging due to the lack of accurate, computationally tractable wake models to evaluate wind farm layouts. This paper proposes an algorithm that couples computational fluid dynamics (CFD) with mixed-integer programming (MIP) to optimize layouts on complex terrains. CFD simulations are used to iteratively improve the accuracy of wake deficit predictions while MIP is used for the optimization process. The ability of MIP solvers to find optimal solutions is critical for capturing the effects of improved wake deficit predictions on the quality of wind farm layout solutions. The proposed algorithm was applied on a wind farm domain in Carleton-sur-Mer, Quebec, Canada. Results show that the proposed algorithm is capable of producing excellent layouts in complex terrains. •An algorithm that optimizes layouts of wind farms on complex terrains is proposed.•The proposed algorithm integrates CFD with mixed-integer programming.•The algorithm minimizes the number of CFD simulations required for optimization.•A trade-off study between computational cost and solution quality is performed. In recent years, wind farm optimization has received much attention in the literature. The aim of wind farm design is to maximize energy production while minimizing costs. The wind farm layout optimization (WFLO) problem on uniform terrains has been tackled by a number of approaches; however, optimizing wind farm layouts on complex terrains is challenging due to the lack of accurate, computationally tractable wake models to evaluate wind farm layouts. This paper proposes an algorithm that couples computational fluid dynamics (CFD) with mixed-integer programming (MIP) to optimize layouts on complex terrains. CFD simulations are used to iteratively improve the accuracy of wake deficit predictions while MIP is used for the optimization process. The ability of MIP solvers to find optimal solutions is critical for capturing the effects of improved wake deficit predictions on the quality of wind farm layout solutions. The proposed algorithm was applied on a wind farm domain in Carleton-sur-Mer, Quebec, Canada. Results show that the proposed algorithm is capable of producing excellent layouts in complex terrains. |
| Author | Romero, David A. Beck, J. Christopher Amon, Cristina H. Kuo, Jim Y.J. |
| Author_xml | – sequence: 1 givenname: Jim Y.J. surname: Kuo fullname: Kuo, Jim Y.J. email: jyjkuo@mie.utoronto.ca – sequence: 2 givenname: David A. surname: Romero fullname: Romero, David A. – sequence: 3 givenname: J. Christopher surname: Beck fullname: Beck, J. Christopher – sequence: 4 givenname: Cristina H. surname: Amon fullname: Amon, Cristina H. |
| BookMark | eNqFkMFqGzEQhkVJoU7aVyg65rKuRoqVXeghxU2aQKCXlh6FVpp15KykjSQncU99h75hnyRynV56CfwwDHz_DHyH5CDEgIS8BzYHBvLDeq4nDJhW2zmv-5zVtItXZAbtKW86gPaAzJhgsuESujfkMOc1Y4wDZzNy98MFSwedPB31Nm4KjVNx3v3UxcVAa0z004iPtGBK2oVM__z6Ta9CwVWqTFhRTZcXn-mDvkXqo8WRPrhyQ717RNu4HYeJTilW3PvKvyWvBz1mfPc8j8j3i_Nvy8vm-uuXq-Wn68aIVpZGw0IaMYCRPcrO4KLrmQXBgPcSeo096oGdWG2tsIPhQnMBdjhBbEXPOtDiiBzv79bfdxvMRXmXDY6jDhg3WXEA2XYcpKio3KMmxZwTDmpKzuu0VcDUzrFaq3-O1c6xYjXtohY__lc0rvw1V6qr8eX62b6O1cO9w6SycRgMWpfQFGWje-nEE8R0ozI |
| CitedBy_id | crossref_primary_10_1016_j_energy_2025_135989 crossref_primary_10_3390_jmse9121376 crossref_primary_10_1016_j_renene_2020_07_140 crossref_primary_10_1109_TII_2022_3217282 crossref_primary_10_1177_01445987211056989 crossref_primary_10_1016_j_energy_2019_07_019 crossref_primary_10_1016_j_renene_2018_12_038 crossref_primary_10_1016_j_energy_2020_119214 crossref_primary_10_3390_pr10122731 crossref_primary_10_1016_j_matpr_2022_04_317 crossref_primary_10_3390_en13030556 crossref_primary_10_1016_j_energy_2020_117913 crossref_primary_10_1016_j_jweia_2017_12_016 crossref_primary_10_3390_en12010016 crossref_primary_10_1016_j_apenergy_2023_122185 crossref_primary_10_1016_j_apenergy_2023_122346 crossref_primary_10_1016_j_rser_2020_110075 crossref_primary_10_1016_j_apenergy_2017_07_090 crossref_primary_10_1016_j_energy_2019_116056 crossref_primary_10_1016_j_oceaneng_2024_118508 crossref_primary_10_1016_j_apenergy_2019_113719 crossref_primary_10_1007_s40565_019_0550_5 crossref_primary_10_1016_j_apenergy_2018_10_110 crossref_primary_10_1016_j_rser_2024_114279 crossref_primary_10_1016_j_jweia_2021_104683 crossref_primary_10_3390_app8122660 crossref_primary_10_1016_j_apenergy_2020_116149 crossref_primary_10_1016_j_renene_2023_02_058 crossref_primary_10_1016_j_energy_2017_05_076 crossref_primary_10_1051_e3sconf_202560100098 crossref_primary_10_1109_ACCESS_2022_3193143 crossref_primary_10_1016_j_apenergy_2024_125044 crossref_primary_10_3390_app8101982 crossref_primary_10_1016_j_egyai_2025_100553 crossref_primary_10_1016_j_rser_2020_110047 crossref_primary_10_1016_j_apenergy_2019_01_225 crossref_primary_10_1016_j_apenergy_2016_08_094 crossref_primary_10_1016_j_apenergy_2021_118182 crossref_primary_10_1016_j_renene_2017_11_018 crossref_primary_10_1016_j_apenergy_2020_115090 crossref_primary_10_1016_j_energy_2021_120035 crossref_primary_10_1002_ep_13193 crossref_primary_10_1016_j_energy_2021_121642 crossref_primary_10_1016_j_jclepro_2024_143906 crossref_primary_10_3390_en13040865 crossref_primary_10_3390_en14217326 crossref_primary_10_1016_j_apenergy_2017_04_013 crossref_primary_10_1016_j_apenergy_2022_119705 crossref_primary_10_3390_en13236411 crossref_primary_10_1016_j_renene_2018_03_053 crossref_primary_10_1007_s40430_020_02506_z crossref_primary_10_1016_j_renene_2025_123775 crossref_primary_10_3390_app9091911 crossref_primary_10_1016_j_apenergy_2017_03_089 crossref_primary_10_1016_j_renene_2018_10_084 crossref_primary_10_1016_j_oceaneng_2022_112807 crossref_primary_10_1016_j_apenergy_2019_114272 crossref_primary_10_1016_j_enconman_2021_115047 crossref_primary_10_1016_j_energy_2022_123970 crossref_primary_10_1016_j_energy_2020_119244 crossref_primary_10_3390_su142417051 crossref_primary_10_3390_jmse10040544 crossref_primary_10_3390_computation6010024 crossref_primary_10_1016_j_energy_2024_132443 crossref_primary_10_1016_j_apenergy_2019_113816 crossref_primary_10_1016_j_ijepes_2024_109832 crossref_primary_10_1016_j_apenergy_2018_07_076 crossref_primary_10_1016_j_jweia_2021_104548 crossref_primary_10_1016_j_rser_2021_110991 crossref_primary_10_1016_j_energy_2022_125051 crossref_primary_10_1088_1742_6596_1452_1_012066 crossref_primary_10_1016_j_apenergy_2024_125105 crossref_primary_10_1016_j_renene_2020_01_014 crossref_primary_10_1080_01430750_2018_1542622 crossref_primary_10_3390_app8112053 crossref_primary_10_1016_j_oceaneng_2021_108920 crossref_primary_10_1109_TSTE_2020_3025609 crossref_primary_10_1016_j_apenergy_2019_114426 crossref_primary_10_1016_j_energy_2023_129745 crossref_primary_10_1016_j_apenergy_2021_117590 crossref_primary_10_1016_j_apenergy_2022_119599 crossref_primary_10_1016_j_resconrec_2021_106059 crossref_primary_10_1016_j_apenergy_2019_114189 |
| Cites_doi | 10.1016/j.apenergy.2012.12.013 10.1016/j.apenergy.2012.04.039 10.2514/6.2012-900 10.1016/j.piutam.2014.01.026 10.1115/1.4006999 10.1016/j.renene.2011.10.016 10.1002/we.481 10.1016/j.renene.2013.10.023 10.1016/j.apenergy.2014.02.070 10.1016/j.apenergy.2015.01.082 10.1016/0167-6105(94)90080-9 10.1109/PTC.2011.6019366 10.1016/j.energy.2014.01.082 10.1016/j.renene.2012.07.021 10.1016/j.apenergy.2014.12.043 10.1002/we.1607 10.1016/j.jweia.2007.03.007 10.3390/en5125340 10.1016/j.renene.2011.06.033 10.1002/we.314 10.1007/s10546-010-9569-x 10.1016/j.apenergy.2015.03.139 10.1016/j.renene.2011.04.018 10.1002/we.348 10.1016/j.jweia.2012.09.002 10.1016/j.energy.2014.12.012 10.1016/j.enconman.2015.09.011 10.1016/j.energy.2015.10.009 10.1016/j.renene.2009.08.019 10.1016/j.renene.2015.01.005 10.1016/j.renene.2004.05.007 10.1115/1.4006997 10.1007/s13675-014-0024-5 10.1016/j.renene.2012.09.008 10.1002/we.419 10.1016/j.enconman.2013.02.007 10.1016/j.atmosenv.2006.08.019 10.1016/j.jweia.2013.08.009 10.1016/j.renene.2012.12.007 10.1016/j.enconman.2013.10.003 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd |
| Copyright_xml | – notice: 2016 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2016.06.085 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| EndPage | 414 |
| ExternalDocumentID | 10_1016_j_apenergy_2016_06_085 S0306261916308595 |
| GeographicLocations | Quebec |
| GeographicLocations_xml | – name: Quebec |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c386t-a156c3f1c6be69ce59b0d13012b61baebeaf04dadd3dfc23a231df4ee83b091a3 |
| ISICitedReferencesCount | 95 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000382340700033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Sat Sep 27 19:38:11 EDT 2025 Sat Nov 29 07:24:17 EST 2025 Tue Nov 18 22:44:00 EST 2025 Fri Feb 23 02:32:52 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Complex terrains Layout optimization Wind farm Micro-siting |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c386t-a156c3f1c6be69ce59b0d13012b61baebeaf04dadd3dfc23a231df4ee83b091a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2116892163 |
| PQPubID | 24069 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2116892163 crossref_primary_10_1016_j_apenergy_2016_06_085 crossref_citationtrail_10_1016_j_apenergy_2016_06_085 elsevier_sciencedirect_doi_10_1016_j_apenergy_2016_06_085 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-09-15 |
| PublicationDateYYYYMMDD | 2016-09-15 |
| PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied energy |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wagner, Day, Neumann (b0210) 2013; 51 Song, Chen, He, Zhang (b0045) 2012; 41 Park, Law (b0030) 2015; 151 Troldborg, Sørensen, Mikkelsen (b0250) 2007; vol. 75 Wu, Porté-Agel (b0225) 2011; 138 Du Pont, Cagan (b0140) 2012; 134 Song, Chen, Zhang, Wang (b0060) 2015; 80 Serrano Gonzalez J, Burgos Payan M, Riquelme Santos J. Wind farm optimal design including risk. In: Modern electric power systems (MEPS), 2010 proceedings of the international symposium. IEEE; 2010. p. 1–6. Zhang (b0010) 2013 Rašuo, Bengin (b0200) 2010; 38 Chen, Li, Jin, Song (b0175) 2013; 70 Saavedra-Moreno, Salcedo-Sanz, Paniagua-Tineo, Prieto, Portilla-Figueras (b0185) 2011; 36 Barthelmie, Hansen, Frandsen, Rathmann, Schepers, Schlez, Phillips, Rados, Zervos, Politis, Chaviaropoulos (b0005) 2009; 12 Chen, MacDonald (b0160) 2012; 134 Kuo, Romero, Amon (b0110) 2015; 93 Mittal (b0130) 2010 Chen, Li, He, Wang, Jin (b0180) 2015; 105 Song, Chen, He, Zhang (b0055) 2014; 67 Chen, MacDonald (b0165) 2014; 77 Porté-Agel, Lu, Wu (b0260) 2014; 10 . Kwong, Zhang, Romero, Moran, Morgenroth, Amon (b0155) 2012 Prospathopoulos J, Politis E, Chaviaropoulos P. Modelling wind turbine wakes in complex terrain. In: Proceedings EWEC 2008, Brussels, Belgium; 2008. Song, Chen, He, Zhang (b0050) 2013; 50 Turner, Romero, Zhang, Amon, Chan (b0015) 2014; 63 Gao, Yang, Lu (b0035) 2014; 130 Kuo, Romero, Amon (b0105) 2014 Environment Canada. Canadian Wind Energy Atlas; 2011. Grady, Hussaini, Abdullah (b0025) 2005; 30 Chowdhury, Zhang, Messac, Castillo (b0190) 2011 Donovan (b0125) 2006 Réthoré, Laan, Troldborg, Zahle, Sørensen (b0270) 2014; 17 Fagerfjäll (b0120) 2010 Politis, Prospathopoulos, Cabezon, Hansen, Chaviaropoulos, Barthelmie (b0235) 2012; 15 Schrijver (b0115) 1998 Feng, Shen (b0040) 2014; vol. 524 Davis L. Genetic algorithms and simulated annealing; 1987. Schmidt, Stoevesandt (b0090) 2015 Barthelmie, Pryor (b0095) 2013; 104 Kasmi, Masson (b0065) 2008; 96 Kusiak, Song (b0135) 2010; 35 Chehouri, Younes, Ilinca, Perron (b0195) 2015; 142 Wu, Porté-Agel (b0075) 2012; 5 Pérez, Mínguez, Guanche (b0205) 2013; 53 Cleve, Greiner, Enevoldsen, Birkemose, Jensen (b0215) 2009; 12 Castellani, Vignaroli (b0245) 2013; 101 El Kasmi, Masson (b0275) 2008; 96 Mosetti, Poloni, Diviacco (b0020) 1994; 51 Prospathopoulos, Politis, Rados, Chaviaropoulos (b0070) 2011; 14 GE Energy. 1.5MW wind turbine. Tech. rep., General Electric; 2009. Makridis, Chick (b0080) 2013; 123 Chowdhury, Zhang, Messac, Castillo (b0145) 2012; 38 Schmidt, Stoevesandt (b0085) 2014; vol. 524 Réthoré, Sørensen, Zahle (b0265) 2010 Mikkelsen (b0240) 2003 Feng, Shen (b0170) 2015; 78 Zhong, Du, Tang, Wang (b0230) 2015; 144 Blocken, Stathopoulos, Carmeliet (b0290) 2007; 41 Zhang, Romero, Beck, Amon (b0100) 2014; 2 Mo, Choudhry, Arjomandi, Lee (b0220) 2013; 112 Martınez LA, Leonardi S, Churchfield MJ, Moriarty PJ. A comparison of actuator disk and actuator line wind turbine models and best practices for their use. AIAA Paper (2012-0900); 2012. Feng (10.1016/j.apenergy.2016.06.085_b0040) 2014; vol. 524 Park (10.1016/j.apenergy.2016.06.085_b0030) 2015; 151 Zhang (10.1016/j.apenergy.2016.06.085_b0100) 2014; 2 Turner (10.1016/j.apenergy.2016.06.085_b0015) 2014; 63 Castellani (10.1016/j.apenergy.2016.06.085_b0245) 2013; 101 El Kasmi (10.1016/j.apenergy.2016.06.085_b0275) 2008; 96 Pérez (10.1016/j.apenergy.2016.06.085_b0205) 2013; 53 Chen (10.1016/j.apenergy.2016.06.085_b0160) 2012; 134 Cleve (10.1016/j.apenergy.2016.06.085_b0215) 2009; 12 Kuo (10.1016/j.apenergy.2016.06.085_b0110) 2015; 93 Kasmi (10.1016/j.apenergy.2016.06.085_b0065) 2008; 96 Chen (10.1016/j.apenergy.2016.06.085_b0165) 2014; 77 Barthelmie (10.1016/j.apenergy.2016.06.085_b0095) 2013; 104 Schrijver (10.1016/j.apenergy.2016.06.085_b0115) 1998 Saavedra-Moreno (10.1016/j.apenergy.2016.06.085_b0185) 2011; 36 Wu (10.1016/j.apenergy.2016.06.085_b0225) 2011; 138 Chowdhury (10.1016/j.apenergy.2016.06.085_b0190) 2011 Song (10.1016/j.apenergy.2016.06.085_b0060) 2015; 80 Song (10.1016/j.apenergy.2016.06.085_b0045) 2012; 41 Feng (10.1016/j.apenergy.2016.06.085_b0170) 2015; 78 Chehouri (10.1016/j.apenergy.2016.06.085_b0195) 2015; 142 Song (10.1016/j.apenergy.2016.06.085_b0050) 2013; 50 Kusiak (10.1016/j.apenergy.2016.06.085_b0135) 2010; 35 10.1016/j.apenergy.2016.06.085_b0300 Wu (10.1016/j.apenergy.2016.06.085_b0075) 2012; 5 Mo (10.1016/j.apenergy.2016.06.085_b0220) 2013; 112 Song (10.1016/j.apenergy.2016.06.085_b0055) 2014; 67 Fagerfjäll (10.1016/j.apenergy.2016.06.085_b0120) 2010 Chen (10.1016/j.apenergy.2016.06.085_b0175) 2013; 70 Barthelmie (10.1016/j.apenergy.2016.06.085_b0005) 2009; 12 Réthoré (10.1016/j.apenergy.2016.06.085_b0270) 2014; 17 Porté-Agel (10.1016/j.apenergy.2016.06.085_b0260) 2014; 10 Schmidt (10.1016/j.apenergy.2016.06.085_b0090) 2015 Schmidt (10.1016/j.apenergy.2016.06.085_b0085) 2014; vol. 524 10.1016/j.apenergy.2016.06.085_b0295 Zhong (10.1016/j.apenergy.2016.06.085_b0230) 2015; 144 Prospathopoulos (10.1016/j.apenergy.2016.06.085_b0070) 2011; 14 Réthoré (10.1016/j.apenergy.2016.06.085_b0265) 2010 10.1016/j.apenergy.2016.06.085_b0255 Mosetti (10.1016/j.apenergy.2016.06.085_b0020) 1994; 51 Mikkelsen (10.1016/j.apenergy.2016.06.085_b0240) 2003 Chowdhury (10.1016/j.apenergy.2016.06.085_b0145) 2012; 38 Donovan (10.1016/j.apenergy.2016.06.085_b0125) 2006 10.1016/j.apenergy.2016.06.085_b0280 10.1016/j.apenergy.2016.06.085_b0285 Kuo (10.1016/j.apenergy.2016.06.085_b0105) 2014 Rašuo (10.1016/j.apenergy.2016.06.085_b0200) 2010; 38 Grady (10.1016/j.apenergy.2016.06.085_b0025) 2005; 30 Gao (10.1016/j.apenergy.2016.06.085_b0035) 2014; 130 Wagner (10.1016/j.apenergy.2016.06.085_b0210) 2013; 51 Blocken (10.1016/j.apenergy.2016.06.085_b0290) 2007; 41 Zhang (10.1016/j.apenergy.2016.06.085_b0010) 2013 Chen (10.1016/j.apenergy.2016.06.085_b0180) 2015; 105 Du Pont (10.1016/j.apenergy.2016.06.085_b0140) 2012; 134 Troldborg (10.1016/j.apenergy.2016.06.085_b0250) 2007; vol. 75 Kwong (10.1016/j.apenergy.2016.06.085_b0155) 2012 Politis (10.1016/j.apenergy.2016.06.085_b0235) 2012; 15 Makridis (10.1016/j.apenergy.2016.06.085_b0080) 2013; 123 10.1016/j.apenergy.2016.06.085_b0150 Mittal (10.1016/j.apenergy.2016.06.085_b0130) 2010 |
| References_xml | – year: 2015 ident: b0090 article-title: Wind farm layout optimization in complex terrain with CFD wakes publication-title: EWEA conference proceedings, Paris, France – volume: 12 start-page: 125 year: 2009 end-page: 135 ident: b0215 article-title: Model-based analysis of wake-flow data in the nysted offshore wind farm publication-title: Wind Energy – volume: 35 start-page: 685 year: 2010 end-page: 694 ident: b0135 article-title: Design of wind farm layout for maximum wind energy capture publication-title: Renew Energy – volume: 96 start-page: 103 year: 2008 end-page: 122 ident: b0275 article-title: An extended k– publication-title: J Wind Eng Indust Aerodynam – volume: 93 start-page: 2157 year: 2015 end-page: 2165 ident: b0110 article-title: A mechanistic semi-empirical wake interaction model for wind farm layout optimization publication-title: Energy – volume: 112 start-page: 11 year: 2013 end-page: 24 ident: b0220 article-title: Large eddy simulation of the wind turbine wake characteristics in the numerical wind tunnel model publication-title: J Wind Eng Indust Aerodynam – volume: 5 start-page: 5340 year: 2012 end-page: 5362 ident: b0075 article-title: Atmospheric turbulence effects on wind-turbine wakes: an les study publication-title: Energies – volume: 80 start-page: 567 year: 2015 end-page: 574 ident: b0060 article-title: The lazy greedy algorithm for power optimization of wind turbine positioning on complex terrain publication-title: Energy – volume: 38 start-page: 107 year: 2010 end-page: 114 ident: b0200 article-title: Optimization of wind farm layout publication-title: FME Trans – volume: 134 start-page: 084506 year: 2012 ident: b0160 article-title: Considering landowner participation in wind farm layout optimization publication-title: J Mech Des – volume: vol. 524 start-page: 012136 year: 2014 ident: b0085 article-title: Modelling complex terrain effects for wind farm layout optimization publication-title: Journal of Physics: Conference Series – volume: 123 start-page: 12 year: 2013 end-page: 29 ident: b0080 article-title: Validation of a cfd model of wind turbine wakes with terrain effects publication-title: J Wind Eng Indust Aerodynam – volume: 104 start-page: 834 year: 2013 end-page: 844 ident: b0095 article-title: An overview of data for wake model evaluation in the virtual wakes laboratory publication-title: Appl Energy – volume: 17 start-page: 919 year: 2014 end-page: 937 ident: b0270 article-title: Verification and validation of an actuator disc model publication-title: Wind Energy – volume: 130 start-page: 519 year: 2014 end-page: 531 ident: b0035 article-title: Study on offshore wind power potential and wind farm optimization in Hong Kong publication-title: Appl Energy – year: 2010 ident: b0130 article-title: Optimization of the layout of large wind farms using a genetic algorithm. Ph.D. thesis – year: 2014 ident: b0105 article-title: A novel wake interaction model for wind farm layout optimization publication-title: ASME 2014 international mechanical engineering congress and exposition – volume: 105 start-page: 1318 year: 2015 end-page: 1327 ident: b0180 article-title: Multi-objective genetic algorithm based innovative wind farm layout optimization method publication-title: Energy Convers Manage – volume: 63 start-page: 674 year: 2014 end-page: 680 ident: b0015 article-title: A new mathematical programming approach to optimize wind farm layouts publication-title: Renew Energy – volume: 30 start-page: 259 year: 2005 end-page: 270 ident: b0025 article-title: Placement of wind turbines using genetic algorithms publication-title: Renew Energy – year: 2010 ident: b0265 article-title: Validation of an actuator disc model publication-title: 2010 European wind energy conference and exhibition – reference: Environment Canada. Canadian Wind Energy Atlas; 2011. < – volume: vol. 524 start-page: 012146 year: 2014 ident: b0040 article-title: Wind farm layout optimization in complex terrain: a preliminary study on a Gaussian hill publication-title: Journal of Physics: Conference Series – volume: 15 start-page: 161 year: 2012 end-page: 182 ident: b0235 article-title: Modeling wake effects in large wind farms in complex terrain: the problem, the methods and the issues publication-title: Wind Energy – volume: 51 start-page: 105 year: 1994 end-page: 116 ident: b0020 article-title: Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm publication-title: J Wind Eng Indust Aerodynam – volume: 50 start-page: 551 year: 2013 end-page: 557 ident: b0050 article-title: Bionic optimization for micro-siting of wind farm on complex terrain publication-title: Renew Energy – year: 2006 ident: b0125 article-title: An improved mixed integer programming model for wind farm layout optimisation publication-title: Proceedings of the 41th annual conference of the operations research society. Wellington, New Zealand – volume: 38 start-page: 16 year: 2012 end-page: 30 ident: b0145 article-title: Unrestricted wind farm layout optimization (uwflo): investigating key factors influencing the maximum power generation publication-title: Renew Energy – volume: 67 start-page: 454 year: 2014 end-page: 459 ident: b0055 article-title: Optimization of wind farm micro-siting for complex terrain using greedy algorithm publication-title: Energy – reference: Martınez LA, Leonardi S, Churchfield MJ, Moriarty PJ. A comparison of actuator disk and actuator line wind turbine models and best practices for their use. AIAA Paper (2012-0900); 2012. – volume: 70 start-page: 56 year: 2013 end-page: 65 ident: b0175 article-title: Wind farm layout optimization using genetic algorithm with different hub height wind turbines publication-title: Energy Convers Manage – volume: 144 start-page: 224 year: 2015 end-page: 233 ident: b0230 article-title: Lagrangian dynamic large-eddy simulation of wind turbine near wakes combined with an actuator line method publication-title: Appl Energy – reference: GE Energy. 1.5MW wind turbine. Tech. rep., General Electric; 2009. – volume: 41 start-page: 238 year: 2007 end-page: 252 ident: b0290 article-title: Cfd simulation of the atmospheric boundary layer: wall function problems publication-title: Atmosph Environ – volume: 51 start-page: 64 year: 2013 end-page: 70 ident: b0210 article-title: A fast and effective local search algorithm for optimizing the placement of wind turbines publication-title: Renew Energy – volume: 10 start-page: 307 year: 2014 end-page: 318 ident: b0260 article-title: Interaction between large wind farms and the atmospheric boundary layer publication-title: Proc IUTAM – volume: 77 start-page: 484 year: 2014 end-page: 494 ident: b0165 article-title: A system-level cost-of-energy wind farm layout optimization with landowner modeling publication-title: Energy Convers Manage – volume: 138 start-page: 345 year: 2011 end-page: 366 ident: b0225 article-title: Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations publication-title: Bound-layer Meteorol – volume: 101 start-page: 432 year: 2013 end-page: 440 ident: b0245 article-title: An application of the actuator disc model for wind turbine wakes calculations publication-title: Appl Energy – volume: 41 start-page: 185 year: 2012 end-page: 190 ident: b0045 article-title: Wake flow model of wind turbine using particle simulation publication-title: Renew Energy – volume: 2 start-page: 195 year: 2014 end-page: 219 ident: b0100 article-title: Solving wind farm layout optimization with mixed integer programs and constraint programs publication-title: EURO J Comput Optim – reference: Prospathopoulos J, Politis E, Chaviaropoulos P. Modelling wind turbine wakes in complex terrain. In: Proceedings EWEC 2008, Brussels, Belgium; 2008. – volume: 151 start-page: 320 year: 2015 end-page: 334 ident: b0030 article-title: Layout optimization for maximizing wind farm power production using sequential convex programming publication-title: Appl Energy – reference: Davis L. Genetic algorithms and simulated annealing; 1987. – volume: 53 start-page: 389 year: 2013 end-page: 399 ident: b0205 article-title: Offshore wind farm layout optimization using mathematical programming techniques publication-title: Renew Energy – volume: 36 start-page: 2838 year: 2011 end-page: 2844 ident: b0185 article-title: Seeding evolutionary algorithms with heuristics for optimal wind turbines positioning in wind farms publication-title: Renew Energy – volume: vol. 75 start-page: 012063 year: 2007 ident: b0250 article-title: Actuator line simulation of wake of wind turbine operating in turbulent inflow publication-title: Journal of Physics: Conference Series – year: 2010 ident: b0120 article-title: Optimizing wind farm layout–more bang for the buck using mixed integer linear programming. Master’s thesis – year: 1998 ident: b0115 article-title: Theory of linear and integer programming – volume: 12 start-page: 431 year: 2009 end-page: 444 ident: b0005 article-title: Modelling and measuring flow and wind turbine wakes in large wind farms offshore publication-title: Wind Energy – year: 2013 ident: b0010 article-title: Topics in wind farm layout optimization: analytical wake models, noise propagation, and energy production. Master’s thesis – year: 2003 ident: b0240 article-title: Actuator disc methods applied to wind turbines. Ph.D. thesis – reference: >. – year: 2011 ident: b0190 article-title: Characterizing the influence of land configuration on the optimal wind farm performance publication-title: ASME 2011 international design engineering technical conferences & computers and information in engineering conference (IDETC/CIE 2011), No. DETC2011-48731 – volume: 142 start-page: 361 year: 2015 end-page: 388 ident: b0195 article-title: Review of performance optimization techniques applied to wind turbines publication-title: Appl Energy – reference: Serrano Gonzalez J, Burgos Payan M, Riquelme Santos J. Wind farm optimal design including risk. In: Modern electric power systems (MEPS), 2010 proceedings of the international symposium. IEEE; 2010. p. 1–6. – volume: 134 start-page: 081002 year: 2012 ident: b0140 article-title: An extended pattern search approach to wind farm layout optimization publication-title: J Mech Des – volume: 78 start-page: 182 year: 2015 end-page: 192 ident: b0170 article-title: Solving the wind farm layout optimization problem using random search algorithm publication-title: Renew Energy – volume: 14 start-page: 285 year: 2011 end-page: 300 ident: b0070 article-title: Evaluation of the effects of turbulence model enhancements on wind turbine wake predictions publication-title: Wind Energy – volume: 96 start-page: 103 year: 2008 end-page: 122 ident: b0065 article-title: An extended model for turbulent flow through horizontal-axis wind turbines publication-title: J Wind Eng Indust Aerodynam – start-page: 1 year: 2012 end-page: 10 ident: b0155 article-title: Wind farm layout optimization considering energy generation and noise propagation publication-title: Proceedings of the ASME 2012 international des engineering technology conference & computing and information in engineering conference. Chicago, IL, USA – year: 2015 ident: 10.1016/j.apenergy.2016.06.085_b0090 article-title: Wind farm layout optimization in complex terrain with CFD wakes – year: 2011 ident: 10.1016/j.apenergy.2016.06.085_b0190 article-title: Characterizing the influence of land configuration on the optimal wind farm performance – volume: 104 start-page: 834 year: 2013 ident: 10.1016/j.apenergy.2016.06.085_b0095 article-title: An overview of data for wake model evaluation in the virtual wakes laboratory publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.12.013 – volume: 101 start-page: 432 year: 2013 ident: 10.1016/j.apenergy.2016.06.085_b0245 article-title: An application of the actuator disc model for wind turbine wakes calculations publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.04.039 – ident: 10.1016/j.apenergy.2016.06.085_b0285 – ident: 10.1016/j.apenergy.2016.06.085_b0255 doi: 10.2514/6.2012-900 – volume: 10 start-page: 307 year: 2014 ident: 10.1016/j.apenergy.2016.06.085_b0260 article-title: Interaction between large wind farms and the atmospheric boundary layer publication-title: Proc IUTAM doi: 10.1016/j.piutam.2014.01.026 – ident: 10.1016/j.apenergy.2016.06.085_b0300 – volume: 134 start-page: 084506 year: 2012 ident: 10.1016/j.apenergy.2016.06.085_b0160 article-title: Considering landowner participation in wind farm layout optimization publication-title: J Mech Des doi: 10.1115/1.4006999 – volume: 41 start-page: 185 year: 2012 ident: 10.1016/j.apenergy.2016.06.085_b0045 article-title: Wake flow model of wind turbine using particle simulation publication-title: Renew Energy doi: 10.1016/j.renene.2011.10.016 – volume: 15 start-page: 161 issue: 1 year: 2012 ident: 10.1016/j.apenergy.2016.06.085_b0235 article-title: Modeling wake effects in large wind farms in complex terrain: the problem, the methods and the issues publication-title: Wind Energy doi: 10.1002/we.481 – volume: 63 start-page: 674 year: 2014 ident: 10.1016/j.apenergy.2016.06.085_b0015 article-title: A new mathematical programming approach to optimize wind farm layouts publication-title: Renew Energy doi: 10.1016/j.renene.2013.10.023 – year: 2010 ident: 10.1016/j.apenergy.2016.06.085_b0265 article-title: Validation of an actuator disc model – year: 2006 ident: 10.1016/j.apenergy.2016.06.085_b0125 article-title: An improved mixed integer programming model for wind farm layout optimisation – volume: 38 start-page: 107 issue: 3 year: 2010 ident: 10.1016/j.apenergy.2016.06.085_b0200 article-title: Optimization of wind farm layout publication-title: FME Trans – year: 2003 ident: 10.1016/j.apenergy.2016.06.085_b0240 – volume: 130 start-page: 519 year: 2014 ident: 10.1016/j.apenergy.2016.06.085_b0035 article-title: Study on offshore wind power potential and wind farm optimization in Hong Kong publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.02.070 – year: 2014 ident: 10.1016/j.apenergy.2016.06.085_b0105 article-title: A novel wake interaction model for wind farm layout optimization – volume: 144 start-page: 224 year: 2015 ident: 10.1016/j.apenergy.2016.06.085_b0230 article-title: Lagrangian dynamic large-eddy simulation of wind turbine near wakes combined with an actuator line method publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.01.082 – ident: 10.1016/j.apenergy.2016.06.085_b0280 – volume: vol. 524 start-page: 012146 year: 2014 ident: 10.1016/j.apenergy.2016.06.085_b0040 article-title: Wind farm layout optimization in complex terrain: a preliminary study on a Gaussian hill – volume: 51 start-page: 105 issue: 1 year: 1994 ident: 10.1016/j.apenergy.2016.06.085_b0020 article-title: Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm publication-title: J Wind Eng Indust Aerodynam doi: 10.1016/0167-6105(94)90080-9 – ident: 10.1016/j.apenergy.2016.06.085_b0150 doi: 10.1109/PTC.2011.6019366 – volume: 67 start-page: 454 year: 2014 ident: 10.1016/j.apenergy.2016.06.085_b0055 article-title: Optimization of wind farm micro-siting for complex terrain using greedy algorithm publication-title: Energy doi: 10.1016/j.energy.2014.01.082 – volume: 50 start-page: 551 year: 2013 ident: 10.1016/j.apenergy.2016.06.085_b0050 article-title: Bionic optimization for micro-siting of wind farm on complex terrain publication-title: Renew Energy doi: 10.1016/j.renene.2012.07.021 – volume: 142 start-page: 361 year: 2015 ident: 10.1016/j.apenergy.2016.06.085_b0195 article-title: Review of performance optimization techniques applied to wind turbines publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.12.043 – volume: 17 start-page: 919 issue: 6 year: 2014 ident: 10.1016/j.apenergy.2016.06.085_b0270 article-title: Verification and validation of an actuator disc model publication-title: Wind Energy doi: 10.1002/we.1607 – year: 2013 ident: 10.1016/j.apenergy.2016.06.085_b0010 – volume: 96 start-page: 103 issue: 1 year: 2008 ident: 10.1016/j.apenergy.2016.06.085_b0275 article-title: An extended k–ε model for turbulent flow through horizontal-axis wind turbines publication-title: J Wind Eng Indust Aerodynam doi: 10.1016/j.jweia.2007.03.007 – volume: 5 start-page: 5340 issue: 12 year: 2012 ident: 10.1016/j.apenergy.2016.06.085_b0075 article-title: Atmospheric turbulence effects on wind-turbine wakes: an les study publication-title: Energies doi: 10.3390/en5125340 – volume: vol. 524 start-page: 012136 year: 2014 ident: 10.1016/j.apenergy.2016.06.085_b0085 article-title: Modelling complex terrain effects for wind farm layout optimization – ident: 10.1016/j.apenergy.2016.06.085_b0295 – volume: 38 start-page: 16 issue: 1 year: 2012 ident: 10.1016/j.apenergy.2016.06.085_b0145 article-title: Unrestricted wind farm layout optimization (uwflo): investigating key factors influencing the maximum power generation publication-title: Renew Energy doi: 10.1016/j.renene.2011.06.033 – start-page: 1 year: 2012 ident: 10.1016/j.apenergy.2016.06.085_b0155 article-title: Wind farm layout optimization considering energy generation and noise propagation – volume: 12 start-page: 125 issue: 2 year: 2009 ident: 10.1016/j.apenergy.2016.06.085_b0215 article-title: Model-based analysis of wake-flow data in the nysted offshore wind farm publication-title: Wind Energy doi: 10.1002/we.314 – volume: 138 start-page: 345 issue: 3 year: 2011 ident: 10.1016/j.apenergy.2016.06.085_b0225 article-title: Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations publication-title: Bound-layer Meteorol doi: 10.1007/s10546-010-9569-x – year: 2010 ident: 10.1016/j.apenergy.2016.06.085_b0130 – year: 1998 ident: 10.1016/j.apenergy.2016.06.085_b0115 – volume: 151 start-page: 320 year: 2015 ident: 10.1016/j.apenergy.2016.06.085_b0030 article-title: Layout optimization for maximizing wind farm power production using sequential convex programming publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.03.139 – volume: 36 start-page: 2838 issue: 11 year: 2011 ident: 10.1016/j.apenergy.2016.06.085_b0185 article-title: Seeding evolutionary algorithms with heuristics for optimal wind turbines positioning in wind farms publication-title: Renew Energy doi: 10.1016/j.renene.2011.04.018 – volume: 12 start-page: 431 issue: 5 year: 2009 ident: 10.1016/j.apenergy.2016.06.085_b0005 article-title: Modelling and measuring flow and wind turbine wakes in large wind farms offshore publication-title: Wind Energy doi: 10.1002/we.348 – volume: 96 start-page: 103 issue: 1 year: 2008 ident: 10.1016/j.apenergy.2016.06.085_b0065 article-title: An extended model for turbulent flow through horizontal-axis wind turbines publication-title: J Wind Eng Indust Aerodynam doi: 10.1016/j.jweia.2007.03.007 – year: 2010 ident: 10.1016/j.apenergy.2016.06.085_b0120 – volume: 112 start-page: 11 year: 2013 ident: 10.1016/j.apenergy.2016.06.085_b0220 article-title: Large eddy simulation of the wind turbine wake characteristics in the numerical wind tunnel model publication-title: J Wind Eng Indust Aerodynam doi: 10.1016/j.jweia.2012.09.002 – volume: 80 start-page: 567 year: 2015 ident: 10.1016/j.apenergy.2016.06.085_b0060 article-title: The lazy greedy algorithm for power optimization of wind turbine positioning on complex terrain publication-title: Energy doi: 10.1016/j.energy.2014.12.012 – volume: 105 start-page: 1318 year: 2015 ident: 10.1016/j.apenergy.2016.06.085_b0180 article-title: Multi-objective genetic algorithm based innovative wind farm layout optimization method publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2015.09.011 – volume: 93 start-page: 2157 year: 2015 ident: 10.1016/j.apenergy.2016.06.085_b0110 article-title: A mechanistic semi-empirical wake interaction model for wind farm layout optimization publication-title: Energy doi: 10.1016/j.energy.2015.10.009 – volume: 35 start-page: 685 issue: 3 year: 2010 ident: 10.1016/j.apenergy.2016.06.085_b0135 article-title: Design of wind farm layout for maximum wind energy capture publication-title: Renew Energy doi: 10.1016/j.renene.2009.08.019 – volume: 78 start-page: 182 year: 2015 ident: 10.1016/j.apenergy.2016.06.085_b0170 article-title: Solving the wind farm layout optimization problem using random search algorithm publication-title: Renew Energy doi: 10.1016/j.renene.2015.01.005 – volume: 30 start-page: 259 issue: 2 year: 2005 ident: 10.1016/j.apenergy.2016.06.085_b0025 article-title: Placement of wind turbines using genetic algorithms publication-title: Renew Energy doi: 10.1016/j.renene.2004.05.007 – volume: 134 start-page: 081002 year: 2012 ident: 10.1016/j.apenergy.2016.06.085_b0140 article-title: An extended pattern search approach to wind farm layout optimization publication-title: J Mech Des doi: 10.1115/1.4006997 – volume: vol. 75 start-page: 012063 year: 2007 ident: 10.1016/j.apenergy.2016.06.085_b0250 article-title: Actuator line simulation of wake of wind turbine operating in turbulent inflow – volume: 2 start-page: 195 issue: 3 year: 2014 ident: 10.1016/j.apenergy.2016.06.085_b0100 article-title: Solving wind farm layout optimization with mixed integer programs and constraint programs publication-title: EURO J Comput Optim doi: 10.1007/s13675-014-0024-5 – volume: 51 start-page: 64 year: 2013 ident: 10.1016/j.apenergy.2016.06.085_b0210 article-title: A fast and effective local search algorithm for optimizing the placement of wind turbines publication-title: Renew Energy doi: 10.1016/j.renene.2012.09.008 – volume: 14 start-page: 285 issue: 2 year: 2011 ident: 10.1016/j.apenergy.2016.06.085_b0070 article-title: Evaluation of the effects of turbulence model enhancements on wind turbine wake predictions publication-title: Wind Energy doi: 10.1002/we.419 – volume: 70 start-page: 56 year: 2013 ident: 10.1016/j.apenergy.2016.06.085_b0175 article-title: Wind farm layout optimization using genetic algorithm with different hub height wind turbines publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2013.02.007 – volume: 41 start-page: 238 issue: 2 year: 2007 ident: 10.1016/j.apenergy.2016.06.085_b0290 article-title: Cfd simulation of the atmospheric boundary layer: wall function problems publication-title: Atmosph Environ doi: 10.1016/j.atmosenv.2006.08.019 – volume: 123 start-page: 12 year: 2013 ident: 10.1016/j.apenergy.2016.06.085_b0080 article-title: Validation of a cfd model of wind turbine wakes with terrain effects publication-title: J Wind Eng Indust Aerodynam doi: 10.1016/j.jweia.2013.08.009 – volume: 53 start-page: 389 year: 2013 ident: 10.1016/j.apenergy.2016.06.085_b0205 article-title: Offshore wind farm layout optimization using mathematical programming techniques publication-title: Renew Energy doi: 10.1016/j.renene.2012.12.007 – volume: 77 start-page: 484 year: 2014 ident: 10.1016/j.apenergy.2016.06.085_b0165 article-title: A system-level cost-of-energy wind farm layout optimization with landowner modeling publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2013.10.003 |
| SSID | ssj0002120 |
| Score | 2.4914522 |
| Snippet | •An algorithm that optimizes layouts of wind farms on complex terrains is proposed.•The proposed algorithm integrates CFD with mixed-integer programming.•The... In recent years, wind farm optimization has received much attention in the literature. The aim of wind farm design is to maximize energy production while... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 404 |
| SubjectTerms | algorithms Complex terrains energy fluid mechanics landscapes Layout optimization Micro-siting prediction Quebec Wind farm wind farms |
| Title | Wind farm layout optimization on complex terrains – Integrating a CFD wake model with mixed-integer programming |
| URI | https://dx.doi.org/10.1016/j.apenergy.2016.06.085 https://www.proquest.com/docview/2116892163 |
| Volume | 178 |
| WOSCitedRecordID | wos000382340700033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMcEBQqykuLhLhYDrbXduxjVRJBVAUOqQin1dpeSymxkyZpCTf-Azd-Hr-EmX0kDg-1HJAiK7K9Tuz5PDO7M98MIS-kDFIZY1p54JVuGJSeK8BKu6kABAiPZaWfq2YT3eEwGY_T963Wd8uFuZx26zpZr9P5fxU17ANhI3X2H8S9uSjsgO8gdNiC2GF7LcF_gFm2U4pF5UzFF8w6noFWqAzdEmMDKotcrh14otgfYunYhAem1gexeIRiLjrH_dfOZ_FJ6nY5esm2mqxl4aoiE3Jhs7sqa_9sOVvj2kpFLNxGi3SUZ1I5HzuDzjbUU0lNtlH59Y3FValV9aBZAWED0MqkCyglVQtDsjDrF36MyRaawWl5W17s4jxuRyd3E2feCb3QDf2woV9D3avYmGpz7DcroBckzjpiru8TM_hiVaZVtwfaLbs9fMf7pycnfNQbj17Oz13sSIaRe9Oe5QbZC7pRmrTJ3tHb3niwsfOBKfpp_3-Df_7nn_6b6_OLE6A8m9FdcsdMSeiRhtI90pL1PrndKFS5Tw56Wz4knGoMwvI-OUe0UUQb1WijTbRR-Bi0UYs2-uPrN9rAGRUUcEYRZ1ThjCLO6A7OaANnD8hpvzc6fuOaLh5uzpJ45Qo_inMGr3ycyThF1l_mFeA5-UEW-5kAJSJKLyzAzrKizAMmYMZRlKGUCcvAmRXsgLTrWS0fEhp2mZ_LNCqxa0Dps0ywAlxokUi0U1F2SCL7gHluStxjp5Upt7mMZ9wKhqNgOCZ1JtEhebUZN9dFXq4ckVr5ceOqaheUAwavHPvcCpyDLscAnajl7GLJA9-PkzSAKdKja5zzmNzavk9PSHu1uJBPyc38cjVZLp4ZtP4EBpnFXw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+farm+layout+optimization+on+complex+terrains+%E2%80%93+Integrating+a+CFD+wake+model+with+mixed-integer+programming&rft.jtitle=Applied+energy&rft.au=Kuo%2C+Jim+Y.J.&rft.au=Romero%2C+David+A&rft.au=Beck%2C+J+Christopher&rft.au=Amon%2C+Cristina+H&rft.date=2016-09-15&rft.issn=0306-2619&rft.volume=178+p.404-414&rft.spage=404&rft.epage=414&rft_id=info:doi/10.1016%2Fj.apenergy.2016.06.085&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |