Parameterized algorithm for eternal vertex cover

In this paper we initiate the study of a “dynamic” variant of the classical Vertex Cover problem, the Eternal Vertex Cover problem introduced by Klostermeyer and Mynhardt, from the perspective of parameterized algorithms. This problem consists in placing a minimum number of guards on the vertices of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters Jg. 110; H. 16; S. 702 - 706
Hauptverfasser: Fomin, Fedor V., Gaspers, Serge, Golovach, Petr A., Kratsch, Dieter, Saurabh, Saket
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 31.07.2010
Elsevier
Elsevier Sequoia S.A
Schlagworte:
ISSN:0020-0190, 1872-6119
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper we initiate the study of a “dynamic” variant of the classical Vertex Cover problem, the Eternal Vertex Cover problem introduced by Klostermeyer and Mynhardt, from the perspective of parameterized algorithms. This problem consists in placing a minimum number of guards on the vertices of a graph such that these guards can protect the graph from any sequence of attacks on its edges. In response to an attack, each guard is allowed either to stay in his vertex, or to move to a neighboring vertex. However, at least one guard has to fix the attacked edge by moving along it. The other guards may move to reconfigure and prepare for the next attack. Thus at every step the vertices occupied by guards form a vertex cover. We show that the problem admits a kernel of size 4 k ( k + 1 ) + 2 k , which shows that the problem is fixed parameter tractable when parameterized by the number of available guards k. Finally, we also provide an algorithm with running time O ( 2 O ( k 2 ) + n m ) for Eternal Vertex Cover, where n is the number of vertices and m the number of edges of the input graph. In passing we also observe that Eternal Vertex Cover is NP-hard, yet it has a polynomial time 2-approximation algorithm.
AbstractList In this paper the authors initiate the study of a "dynamic" variant of the classical Vertex Cover problem, the Eternal Vertex Cover problem introduced by Klostermeyer and Mynhardt, from the perspective of parameterized algorithms. This problem consists in placing a minimum number of guards on the vertices of a graph such that these guards can protect the graph from any sequence of attacks on its edges. In response to an attack, each guard is allowed either to stay in his vertex, or to move to a neighboring vertex. However, at least one guard has to fix the attacked edge by moving along it. The other guards may move to reconfigure and prepare for the next attack. Thus at every step the vertices occupied by guards form a vertex cover. The authors show that the problem admits a kernel of size 4...(k+1)+2k, which shows that the problem is fixed parameter tractable when parameterized by the number of available guards k. Finally, they also provide an algorithm with running time ... for Eternal Vertex Cover, where n is the number of vertices and m the number of edges of the input graph. In passing they also observe that Eternal Vertex Cover is NP-hard, yet it has a polynomial time 2-approximation algorithm. (ProQuest: ... denotes formulae/symbols omitted.)
In this paper we initiate the study of a "dynamic" variant of the classical Vertex Cover problem, the Eternal Vertex Cover problem introduced by Klostermeyer and Mynhardt, from the perspective of parameterized algorithms. This problem consists in placing a minimum number of guards on the vertices of a graph such that these guards can protect the graph from any sequence of attacks on its edges. In response to an attack, each guard is allowed either to stay in his vertex, or to move to a neighboring vertex. However, at least one guard has to fix the attacked edge by moving along it. The other guards may move to reconfigure and prepare for the next attack. Thus at every step the vertices occupied by guards form a vertex cover. We show that the problem admits a kernel of size 4 super()kk+1)+2k, which shows that the problem is fixed parameter tractable when parameterized by the number of available guards k. Finally, we also provide an algorithm with running time [MathML equation] for Eternal Vertex Cover, where n is the number of vertices and m the number of edges of the input graph. In passing we also observe that Eternal Vertex Cover is NP-hard, yet it has a polynomial time 2-approximation algorithm.
In this paper we initiate the study of a “dynamic” variant of the classical Vertex Cover problem, the Eternal Vertex Cover problem introduced by Klostermeyer and Mynhardt, from the perspective of parameterized algorithms. This problem consists in placing a minimum number of guards on the vertices of a graph such that these guards can protect the graph from any sequence of attacks on its edges. In response to an attack, each guard is allowed either to stay in his vertex, or to move to a neighboring vertex. However, at least one guard has to fix the attacked edge by moving along it. The other guards may move to reconfigure and prepare for the next attack. Thus at every step the vertices occupied by guards form a vertex cover. We show that the problem admits a kernel of size 4 k ( k + 1 ) + 2 k , which shows that the problem is fixed parameter tractable when parameterized by the number of available guards k. Finally, we also provide an algorithm with running time O ( 2 O ( k 2 ) + n m ) for Eternal Vertex Cover, where n is the number of vertices and m the number of edges of the input graph. In passing we also observe that Eternal Vertex Cover is NP-hard, yet it has a polynomial time 2-approximation algorithm.
Author Fomin, Fedor V.
Golovach, Petr A.
Gaspers, Serge
Kratsch, Dieter
Saurabh, Saket
Author_xml – sequence: 1
  givenname: Fedor V.
  surname: Fomin
  fullname: Fomin, Fedor V.
  organization: Department of Informatics, University of Bergen, N-5020 Bergen, Norway
– sequence: 2
  givenname: Serge
  surname: Gaspers
  fullname: Gaspers, Serge
  organization: CMM – Universidad de Chile, Av. Blanco Encalada 2120, Santiago, Chile
– sequence: 3
  givenname: Petr A.
  surname: Golovach
  fullname: Golovach, Petr A.
  organization: School of Engineering and Computing Sciences, Durham University, South Road, DH1 3LE Durham, UK
– sequence: 4
  givenname: Dieter
  surname: Kratsch
  fullname: Kratsch, Dieter
  organization: Laboratoire d'Informatique Théorique et Appliquée, Université Paul Verlaine – Metz, 57045 Metz Cedex 01, France
– sequence: 5
  givenname: Saket
  surname: Saurabh
  fullname: Saurabh, Saket
  email: saket@imsc.res.in
  organization: The Institute of Mathematical Sciences, CIT Campus, Chennai 600 113, India
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23000078$$DView record in Pascal Francis
BookMark eNp9kMFqGzEQhkVJoE7SB-htKZSc1p2RrNUuPYWQtAVDc0jPYqydbWXWK0eSQ5Onj4yTSw4-jUZ8_8_wnYmTKUwsxGeEOQI239Zzvx3nEsoOeg6y-yBm2BpZN4jdiZgBSKgBO_gozlJaA0CzUGYm4I4ibThz9M_cVzT-DdHnf5tqCLHaf080Vo8cM_-vXCiPC3E60Jj40-s8F39ub-6vf9bL3z9-XV8ta6faJteEintjaAWt66Qj7RoNDhsceCFXqluRW2AjtVYGENsVLhxKORhCwp67Tp2Ly0PvNoaHHadsNz45HkeaOOySNVo1rWpRFfLLO3Iddvu7k9WydIPRpkBfXyFKjsYh0uR8stvoNxSfrFTFCJi2cObAuRhSijxY5zNlH6YcyY8Wwe5927Utvu3etwVti--SxHfJt_Jjme-HDBeTj56jTc7z5Lj3kV22ffBH0i-uwphR
CODEN IFPLAT
CitedBy_id crossref_primary_10_1016_j_tcs_2014_01_009
crossref_primary_10_1016_j_tcs_2018_09_008
crossref_primary_10_1016_j_tcs_2021_08_018
crossref_primary_10_1145_3742439
crossref_primary_10_1016_j_disc_2011_03_026
crossref_primary_10_1016_j_tcs_2025_115261
crossref_primary_10_1016_j_tcs_2025_115530
crossref_primary_10_1134_S1990478924020030
crossref_primary_10_1007_s00224_023_10150_y
crossref_primary_10_1007_s10878_021_00764_8
crossref_primary_10_1016_j_tcs_2025_115509
Cites_doi 10.1109/SFCS.1980.12
10.1007/s00453-007-9148-9
10.1016/j.jcss.2009.04.001
10.1007/s00224-007-9089-3
10.1007/s00224-007-1309-3
ContentType Journal Article
Copyright 2010 Elsevier B.V.
2015 INIST-CNRS
Copyright Elsevier Sequoia S.A. Jul 31, 2010
Copyright_xml – notice: 2010 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Copyright Elsevier Sequoia S.A. Jul 31, 2010
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ipl.2010.05.029
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
Mathematics
EISSN 1872-6119
EndPage 706
ExternalDocumentID 2067087211
23000078
10_1016_j_ipl_2010_05_029
S0020019010001602
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SSV
SSZ
T5K
TN5
UQL
WH7
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c386t-a13ed77ab08c92ca5c650c161fe42b39bac416255370118b14c122f7a1a1de993
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000280205500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0190
IngestDate Sun Sep 28 06:32:17 EDT 2025
Sun Nov 30 05:12:16 EST 2025
Mon Jul 21 09:16:53 EDT 2025
Sat Nov 29 03:44:17 EST 2025
Tue Nov 18 21:39:27 EST 2025
Fri Feb 23 02:30:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Vertex cover
Graph algorithms
Parameterized complexity
Eternal vertex cover
Fixed parameter tractability
Vertex
Edge(graph)
Computer theory
Polynomial approximation
Approximation algorithm
Complexity
Polynomial time
Response
Input
Information processing
Algorithm analysis
Graph algorithm
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c386t-a13ed77ab08c92ca5c650c161fe42b39bac416255370118b14c122f7a1a1de993
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 521180757
PQPubID 45522
PageCount 5
ParticipantIDs proquest_miscellaneous_753683813
proquest_journals_521180757
pascalfrancis_primary_23000078
crossref_citationtrail_10_1016_j_ipl_2010_05_029
crossref_primary_10_1016_j_ipl_2010_05_029
elsevier_sciencedirect_doi_10_1016_j_ipl_2010_05_029
PublicationCentury 2000
PublicationDate 2010-07-31
PublicationDateYYYYMMDD 2010-07-31
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-07-31
  day: 31
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Information processing letters
PublicationYear 2010
Publisher Elsevier B.V
Elsevier
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: Elsevier Sequoia S.A
References Dom, Lokshtanov, Saurabh, Villanger (bib004) 2008; vol. 5018
S. Micali, V.V. Vazirani, An
algorithm for finding maximum matching in general graphs, in: FOCS 1980, pp. 17–27
Niedermeier (bib011) 2002; vol. 31
Klostermeyer, Mynhardt (bib007) 2009; 45
Chen, Kanj, Xia (bib002) 2006; vol. 4162
Bodlaender, Downey, Fellows, Hermelin (bib001) 2009; 75
Diestel (bib003) 2000; vol. 173
Guo, Niedermeier, Wernicke (bib006) 2007; 41
Mölle, Richter, Rossmanith (bib010) 2008; 43
Downey, Fellows (bib005) 1999
Kneis, Langer, Rossmanith (bib008) 2008; vol. 5344
Raman, Saurabh (bib012) 2008; 52
Downey (10.1016/j.ipl.2010.05.029_bib005) 1999
Dom (10.1016/j.ipl.2010.05.029_bib004) 2008; vol. 5018
Raman (10.1016/j.ipl.2010.05.029_bib012) 2008; 52
Bodlaender (10.1016/j.ipl.2010.05.029_bib001) 2009; 75
Guo (10.1016/j.ipl.2010.05.029_bib006) 2007; 41
Niedermeier (10.1016/j.ipl.2010.05.029_bib011) 2002; vol. 31
Chen (10.1016/j.ipl.2010.05.029_bib002) 2006; vol. 4162
10.1016/j.ipl.2010.05.029_bib009
Diestel (10.1016/j.ipl.2010.05.029_bib003) 2000; vol. 173
Mölle (10.1016/j.ipl.2010.05.029_bib010) 2008; 43
Klostermeyer (10.1016/j.ipl.2010.05.029_bib007) 2009; 45
Kneis (10.1016/j.ipl.2010.05.029_bib008) 2008; vol. 5344
References_xml – volume: vol. 5018
  start-page: 78
  year: 2008
  end-page: 90
  ident: bib004
  article-title: Capacitated domination and covering: A parameterized perspective
  publication-title: Proceedings of IWPEC 2008
– volume: 75
  start-page: 423
  year: 2009
  end-page: 434
  ident: bib001
  article-title: On problems without polynomial kernels
  publication-title: J. Comput. Syst. Sci.
– reference: algorithm for finding maximum matching in general graphs, in: FOCS 1980, pp. 17–27
– year: 1999
  ident: bib005
  article-title: Parameterized Complexity
– volume: 43
  start-page: 234
  year: 2008
  end-page: 253
  ident: bib010
  article-title: Enumerate and expand: Improved algorithms for connected vertex cover and tree cover
  publication-title: Theory Comput. Syst.
– volume: 41
  start-page: 501
  year: 2007
  end-page: 520
  ident: bib006
  article-title: Parameterized complexity of vertex cover variants
  publication-title: Theory Comput. Syst.
– volume: vol. 5344
  start-page: 240
  year: 2008
  end-page: 251
  ident: bib008
  article-title: Improved upper bounds for partial vertex cover
  publication-title: Proceedings of WG 2008
– volume: vol. 173
  year: 2000
  ident: bib003
  article-title: Graph Theory
  publication-title: Graduate Texts in Mathematics
– volume: 45
  start-page: 235
  year: 2009
  end-page: 250
  ident: bib007
  article-title: Edge protection in graphs
  publication-title: Australasian Journal of Combinatorics
– volume: vol. 31
  year: 2002
  ident: bib011
  article-title: Invitation to Fixed-Parameter Algorithms
  publication-title: Oxford Lecture Series in Mathematics and Its Applications
– volume: vol. 4162
  start-page: 238
  year: 2006
  end-page: 249
  ident: bib002
  article-title: Improved parameterized upper bounds for vertex cover
  publication-title: Proceedings of MFCS 2006
– volume: 52
  start-page: 203
  year: 2008
  end-page: 225
  ident: bib012
  article-title: Short cycles make W-hard problems hard: FPT algorithms for W-hard problems in graphs with no short cycles
  publication-title: Algorithmica
– reference: S. Micali, V.V. Vazirani, An
– volume: vol. 5018
  start-page: 78
  year: 2008
  ident: 10.1016/j.ipl.2010.05.029_bib004
  article-title: Capacitated domination and covering: A parameterized perspective
– volume: vol. 5344
  start-page: 240
  year: 2008
  ident: 10.1016/j.ipl.2010.05.029_bib008
  article-title: Improved upper bounds for partial vertex cover
– volume: vol. 173
  year: 2000
  ident: 10.1016/j.ipl.2010.05.029_bib003
  article-title: Graph Theory
– ident: 10.1016/j.ipl.2010.05.029_bib009
  doi: 10.1109/SFCS.1980.12
– volume: vol. 31
  year: 2002
  ident: 10.1016/j.ipl.2010.05.029_bib011
  article-title: Invitation to Fixed-Parameter Algorithms
– volume: 52
  start-page: 203
  issue: 2
  year: 2008
  ident: 10.1016/j.ipl.2010.05.029_bib012
  article-title: Short cycles make W-hard problems hard: FPT algorithms for W-hard problems in graphs with no short cycles
  publication-title: Algorithmica
  doi: 10.1007/s00453-007-9148-9
– volume: 75
  start-page: 423
  issue: 8
  year: 2009
  ident: 10.1016/j.ipl.2010.05.029_bib001
  article-title: On problems without polynomial kernels
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2009.04.001
– volume: 43
  start-page: 234
  issue: 2
  year: 2008
  ident: 10.1016/j.ipl.2010.05.029_bib010
  article-title: Enumerate and expand: Improved algorithms for connected vertex cover and tree cover
  publication-title: Theory Comput. Syst.
  doi: 10.1007/s00224-007-9089-3
– year: 1999
  ident: 10.1016/j.ipl.2010.05.029_bib005
– volume: 41
  start-page: 501
  issue: 3
  year: 2007
  ident: 10.1016/j.ipl.2010.05.029_bib006
  article-title: Parameterized complexity of vertex cover variants
  publication-title: Theory Comput. Syst.
  doi: 10.1007/s00224-007-1309-3
– volume: 45
  start-page: 235
  year: 2009
  ident: 10.1016/j.ipl.2010.05.029_bib007
  article-title: Edge protection in graphs
  publication-title: Australasian Journal of Combinatorics
– volume: vol. 4162
  start-page: 238
  year: 2006
  ident: 10.1016/j.ipl.2010.05.029_bib002
  article-title: Improved parameterized upper bounds for vertex cover
SSID ssj0006437
Score 2.0006046
Snippet In this paper we initiate the study of a “dynamic” variant of the classical Vertex Cover problem, the Eternal Vertex Cover problem introduced by Klostermeyer...
In this paper the authors initiate the study of a "dynamic" variant of the classical Vertex Cover problem, the Eternal Vertex Cover problem introduced by...
In this paper we initiate the study of a "dynamic" variant of the classical Vertex Cover problem, the Eternal Vertex Cover problem introduced by Klostermeyer...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 702
SubjectTerms Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Approximation
Approximations and expansions
Computer science; control theory; systems
Dynamic tests
Eternal vertex cover
Exact sciences and technology
Fixed parameter tractability
Graph algorithms
Graphs
Guards
Information processing
Information retrieval. Graph
Kernels
Mathematical analysis
Mathematics
Miscellaneous
Parameterized complexity
Placing
Running
Sciences and techniques of general use
Studies
Theoretical computing
Vertex cover
Title Parameterized algorithm for eternal vertex cover
URI https://dx.doi.org/10.1016/j.ipl.2010.05.029
https://www.proquest.com/docview/521180757
https://www.proquest.com/docview/753683813
Volume 110
WOSCitedRecordID wos000280205500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6119
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006437
  issn: 0020-0190
  databaseCode: AIEXJ
  dateStart: 19950113
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgckxBtRFlY5IA5UqfKsk2MFLa-qrNSu1JvluM7SVTbJbtqq4r_wX5mxnbRlRQUHLlGVNH14voy_sWfmI-QNzsowD6a2K1JuB9SRdhxz35YC2HsaoyacUi0Z0fE4ms3is1brZ10Ls85onkebTVz-V1PDOTA2ls7-g7mbD4UT8BqMDkcwOxz_yvBnHPOtsAXzDyCTPLsoIP7_fqV7e-uWzx0UYZabjsD8zV16aoqTFCZKXUKASwmZqvnZVooUV7rzwBB1SrZpsh85th1XwJhgUWdzHhzsmmvNKVTw2q6ffgX8VfrCh0WTKWwWIXD_nNbeW62M1dUxE3m9Kha8M-n2d72uh8lvWha0K7WjjagHYatxl7UnNhmuBnK7jpWquuzbDl-vPVx2F2Vm8vTCrmPWUPaaa4-_seH5aMSmg9l0_6qazLGLvRNhOPy2vLZRlAw3741Cyx1y7NEwBr9_3P88mH1ppnrc9dQ5RPoP1tvmKoHwt5_0J-Jzv-QVPI6p1lG5RQkUz5k-Ig9MgGL1NbAek5bMn5CHtfiHZeaCp8TZw5nV4MwCBFkGZ5bGmaVw9oycDwfT959sI79hCz_qLW3u-nJOKU-cSMSe4KEANi8gQkhl4CV-nHABbB5CUp9i-XLiBsL1vJRyl7tzCbz3OTnKi1y-IFYQ-DKBmaDn-HMIsQUPuE-FI3rzSMZhFLeJU48NE6Y3PUqkZKxOQrxkMJwMh5M5IYPhbJN3zS2lbsxy6M1BPeDMMEvNGBng6NBtp3vGab4I4nZFrtvkpLYWMy6gYkCIXWzxTdvEaq6C08adOJ7LYlUxGvq9CLiy__LgB5yQe9uH7RU5Wt6s5GtyV6yXi-rm1IDxF0vetSs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameterized+algorithm+for+eternal+vertex+cover&rft.jtitle=Information+processing+letters&rft.au=Fomin%2C+Fedor+V&rft.au=Gaspers%2C+Serge&rft.au=Golovach%2C+Petr+A&rft.au=Kratsch%2C+Dieter&rft.date=2010-07-31&rft.pub=Elsevier+Sequoia+S.A&rft.issn=0020-0190&rft.eissn=1872-6119&rft.volume=110&rft.issue=16&rft.spage=702&rft_id=info:doi/10.1016%2Fj.ipl.2010.05.029&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2067087211
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0190&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0190&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0190&client=summon