Asymptotic analysis of Sturm–Liouville problem with nonlocal integral-type boundary condition

In this study, we obtain asymptotic formulas for eigenvalues and eigenfunctions of the one-dimensional Sturm–Liouville equation with one classical-type Dirichlet boundary condition and integral-type nonlocal boundary condition. We investigate solutions of special initial value problem and find asymp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nonlinear analysis (Vilnius, Lithuania) Ročník 26; číslo 5; s. 969 - 991
Hlavní autoři: Štikonas, Artūras, Şen, Erdoğan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Vilnius University Press 01.09.2021
Témata:
ISSN:1392-5113, 2335-8963
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this study, we obtain asymptotic formulas for eigenvalues and eigenfunctions of the one-dimensional Sturm–Liouville equation with one classical-type Dirichlet boundary condition and integral-type nonlocal boundary condition. We investigate solutions of special initial value problem and find asymptotic formulas of arbitrary order. We analyze the characteristic equation of the boundary value problem for eigenvalues and derive asymptotic formulas of arbitrary order. We apply the obtained results to the problem with integral-type nonlocal boundary condition.
ISSN:1392-5113
2335-8963
DOI:10.15388/namc.2021.26.24299