Algorithm complexity of neighborhood total domination and (ρ,γnt)-graphs

A neighborhood total dominating set, abbreviated for NTD-set D , is a vertex set of G such that D is a dominating set with an extra property: the subgraph induced by the open neighborhood of D has no isolated vertex. The neighborhood total domination number, denoted by γ n t ( G ) , is the minimum c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of combinatorial optimization Ročník 35; číslo 2; s. 424 - 435
Hlavní autoři: Lu, Changhong, Wang, Bing, Wang, Kan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.02.2018
Springer Nature B.V
Témata:
ISSN:1382-6905, 1573-2886
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A neighborhood total dominating set, abbreviated for NTD-set D , is a vertex set of G such that D is a dominating set with an extra property: the subgraph induced by the open neighborhood of D has no isolated vertex. The neighborhood total domination number, denoted by γ n t ( G ) , is the minimum cardinality of a NTD-set in G . In this paper, we prove that NTD problem is NP-complete for bipartite graphs and split graphs. Then we give a linear-time algorithm to determine γ n t ( T ) for a given tree T . Finally, we characterize a constructive property of ( γ n t , 2 γ ) -trees and provide a constructive characterization for ( ρ , γ n t ) -graphs, where γ and ρ are domination number and packing number for the given graph, respectively.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1382-6905
1573-2886
DOI:10.1007/s10878-017-0181-6