Some spectral and quasi-spectral characterizations of distance-regular graphs
In this paper we consider the concept of preintersection numbers of a graph. These numbers are determined by the spectrum of the adjacency matrix of the graph, and generalize the intersection numbers of a distance-regular graph. By using the preintersection numbers we give some new spectral and quas...
Uloženo v:
| Vydáno v: | Journal of combinatorial theory. Series A Ročník 143; s. 1 - 18 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article Publikace |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.10.2016
|
| Témata: | |
| ISSN: | 0097-3165, 1096-0899 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper we consider the concept of preintersection numbers of a graph. These numbers are determined by the spectrum of the adjacency matrix of the graph, and generalize the intersection numbers of a distance-regular graph. By using the preintersection numbers we give some new spectral and quasi-spectral characterizations of distance-regularity, in particular for graphs with large girth or large odd-girth. |
|---|---|
| ISSN: | 0097-3165 1096-0899 |
| DOI: | 10.1016/j.jcta.2016.04.004 |