Some Results on Distributed Source Coding for Interactive Function Computation

A two-terminal interactive distributed source coding problem with alternating messages for function computation at both locations is studied. For any number of messages, a computable characterization of the rate region is provided in terms of single-letter information measures. While interaction is...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information theory Ročník 57; číslo 9; s. 6180 - 6195
Hlavní autoři: Nan Ma, Ishwar, P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.09.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9448, 1557-9654
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A two-terminal interactive distributed source coding problem with alternating messages for function computation at both locations is studied. For any number of messages, a computable characterization of the rate region is provided in terms of single-letter information measures. While interaction is useless in terms of the minimum sum-rate for lossless source reproduction at one or both locations, the gains can be arbitrarily large for function computation even when the sources are independent. For a class of sources and functions, interaction is shown to be useless, even with infinite messages, when a function has to be computed at only one location, but is shown to be useful, if functions have to be computed at both locations. For computing the Boolean AND function of two independent Bernoulli sources at both locations, an achievable infinite-message sum-rate with infinitesimal-rate messages is derived in terms of a 2-D definite integral and a rate-allocation curve. The benefit of interaction is highlighted in multiterminal function computation problem through examples. For networks with a star topology, multiple rounds of interactive coding is shown to decrease the scaling law of the total network rate by an order of magnitude as the network grows.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2011.2161916