Matrix Stability of Multiquadric Radial Basis Function Methods for Hyperbolic Equations with Uniform Centers
The fully discretized multiquadric radial basis function methods for hyperbolic equations are considered. We use the matrix stability analysis for various methods, including the single and multi-domain method and the local radial basis function method, to find the stability condition. The CFL condit...
Gespeichert in:
| Veröffentlicht in: | Journal of scientific computing Jg. 51; H. 3; S. 683 - 702 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Boston
Springer US
01.06.2012
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0885-7474, 1573-7691 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The fully discretized multiquadric radial basis function methods for hyperbolic equations are considered. We use the matrix stability analysis for various methods, including the single and multi-domain method and the local radial basis function method, to find the stability condition. The CFL condition for each method is obtained numerically. It is explained that the obtained CFL condition is only a necessary condition. That is, the numerical solution may grow for a finite time. It is also explained that the boundary condition is crucial for stability; however, it may degrade accuracy if it is imposed. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0885-7474 1573-7691 |
| DOI: | 10.1007/s10915-011-9526-y |