DEMORS: A hybrid multi-objective optimization algorithm using differential evolution and rough set theory for constrained problems

The aim of this paper is to show how the hybridization of a multi-objective evolutionary algorithm (MOEA) and a local search method based on the use of rough set theory is a viable alternative to obtain a robust algorithm able to solve difficult constrained multi-objective optimization problems at a...

Full description

Saved in:
Bibliographic Details
Published in:Computers & operations research Vol. 37; no. 3; pp. 470 - 480
Main Authors: Santana-Quintero, Luis V., Hernández-Díaz, Alfredo G., Molina, Julián, Coello Coello, Carlos A., Caballero, Rafael
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 01.03.2010
Pergamon Press Inc
Subjects:
ISSN:0305-0548, 1873-765X, 0305-0548
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The aim of this paper is to show how the hybridization of a multi-objective evolutionary algorithm (MOEA) and a local search method based on the use of rough set theory is a viable alternative to obtain a robust algorithm able to solve difficult constrained multi-objective optimization problems at a moderate computational cost. This paper extends a previously published MOEA [Hernández-Díaz AG, Santana-Quintero LV, Coello Coello C, Caballero R, Molina J. A new proposal for multi-objective optimization using differential evolution and rough set theory. In: 2006 genetic and evolutionary computation conference (GECCO’2006). Seattle, Washington, USA: ACM Press; July 2006], which was limited to unconstrained multi-objective optimization problems. Here, the main idea is to use this sort of hybrid approach to approximate the Pareto front of a constrained multi-objective optimization problem while performing a relatively low number of fitness function evaluations. Since in real-world problems the cost of evaluating the objective functions is the most significant, our underlying assumption is that, by aiming to minimize the number of such evaluations, our MOEA can be considered efficient. As in its previous version, our hybrid approach operates in two stages: in the first one, a multi-objective version of differential evolution is used to generate an initial approximation of the Pareto front. Then, in the second stage, rough set theory is used to improve the spread and quality of this initial approximation. To assess the performance of our proposed approach, we adopt, on the one hand, a set of standard bi-objective constrained test problems and, on the other hand, a large real-world problem with eight objective functions and 160 decision variables. The first set of problems are solved performing 10,000 fitness function evaluations, which is a competitive value compared to the number of evaluations previously reported in the specialized literature for such problems. The real-world problem is solved performing 250,000 fitness function evaluations, mainly because of its high dimensionality. Our results are compared with respect to those generated by NSGA-II, which is a MOEA representative of the state-of-the-art in the area.
AbstractList The aim of this paper is to show how the hybridization of a multi-objective evolutionary algorithm (MOEA) and a local search method based on the use of rough set theory is a viable alternative to obtain a robust algorithm able to solve difficult constrained multi-objective optimization problems at a moderate computational cost. This paper extends a previously published MOEA, which was limited to unconstrained multi-objective optimization problems. Since in real-world problems the cost of evaluating the objective functions is the most significant, the underlying assumption is that, by aiming to minimize the number of such evaluations, the MOEA can be considered efficient. As in its previous version, the hybrid approach operates in two stages: in the first one, a multi-objective version of differential evolution is used to generate an initial approximation of the Pareto front. Then, in the second stage, rough set theory is used to improve the spread and quality of this initial approximation.
The aim of this paper is to show how the hybridization of a multi-objective evolutionary algorithm (MOEA) and a local search method based on the use of rough set theory is a viable alternative to obtain a robust algorithm able to solve difficult constrained multi-objective optimization problems at a moderate computational cost. This paper extends a previously published MOEA [Hernandez-Diaz AG, Santana-Quintero LV, Coello Coello C, Caballero R, Molina J. A new proposal for multi-objective optimization using differential evolution and rough set theory. In: 2006 genetic and evolutionary computation conference (GECCO2006). Seattle, Washington, USA: ACM Press; July 2006], which was limited to unconstrained multi-objective optimization problems. Here, the main idea is to use this sort of hybrid approach to approximate the Pareto front of a constrained multi-objective optimization problem while performing a relatively low number of fitness function evaluations. Since in real-world problems the cost of evaluating the objective functions is the most significant, our underlying assumption is that, by aiming to minimize the number of such evaluations, our MOEA can be considered efficient. As in its previous version, our hybrid approach operates in two stages: in the first one, a multi-objective version of differential evolution is used to generate an initial approximation of the Pareto front. Then, in the second stage, rough set theory is used to improve the spread and quality of this initial approximation. To assess the performance of our proposed approach, we adopt, on the one hand, a set of standard bi-objective constrained test problems and, on the other hand, a large real-world problem with eight objective functions and 160 decision variables. The first set of problems are solved performing 10,000 fitness function evaluations, which is a competitive value compared to the number of evaluations previously reported in the specialized literature for such problems. The real- world problem is solved performing 250,000 fitness function evaluations, mainly because of its high dimensionality. Our results are compared with respect to those generated by NSGA-II, which is a MOEA representative of the state-of-the-art in the area.
The aim of this paper is to show how the hybridization of a multi-objective evolutionary algorithm (MOEA) and a local search method based on the use of rough set theory is a viable alternative to obtain a robust algorithm able to solve difficult constrained multi-objective optimization problems at a moderate computational cost. This paper extends a previously published MOEA [Hernández-Díaz AG, Santana-Quintero LV, Coello Coello C, Caballero R, Molina J. A new proposal for multi-objective optimization using differential evolution and rough set theory. In: 2006 genetic and evolutionary computation conference (GECCO’2006). Seattle, Washington, USA: ACM Press; July 2006], which was limited to unconstrained multi-objective optimization problems. Here, the main idea is to use this sort of hybrid approach to approximate the Pareto front of a constrained multi-objective optimization problem while performing a relatively low number of fitness function evaluations. Since in real-world problems the cost of evaluating the objective functions is the most significant, our underlying assumption is that, by aiming to minimize the number of such evaluations, our MOEA can be considered efficient. As in its previous version, our hybrid approach operates in two stages: in the first one, a multi-objective version of differential evolution is used to generate an initial approximation of the Pareto front. Then, in the second stage, rough set theory is used to improve the spread and quality of this initial approximation. To assess the performance of our proposed approach, we adopt, on the one hand, a set of standard bi-objective constrained test problems and, on the other hand, a large real-world problem with eight objective functions and 160 decision variables. The first set of problems are solved performing 10,000 fitness function evaluations, which is a competitive value compared to the number of evaluations previously reported in the specialized literature for such problems. The real-world problem is solved performing 250,000 fitness function evaluations, mainly because of its high dimensionality. Our results are compared with respect to those generated by NSGA-II, which is a MOEA representative of the state-of-the-art in the area.
Author Coello Coello, Carlos A.
Hernández-Díaz, Alfredo G.
Molina, Julián
Santana-Quintero, Luis V.
Caballero, Rafael
Author_xml – sequence: 1
  givenname: Luis V.
  surname: Santana-Quintero
  fullname: Santana-Quintero, Luis V.
  email: lvspenny@hotmail.com
  organization: CINVESTAV-IPN, Computer Science Department, Av. IPN No. 2508 Col. San Pedro Zacatenco, México D.F. 07360, México
– sequence: 2
  givenname: Alfredo G.
  surname: Hernández-Díaz
  fullname: Hernández-Díaz, Alfredo G.
  email: agarher@upo.es
  organization: Pablo de Olavide University, Department of Economics, Quantitative Methods and Economic History, Ctra. de Utrera km. 1, 41013 Seville, Spain
– sequence: 3
  givenname: Julián
  surname: Molina
  fullname: Molina, Julián
  email: julian.molina@uma.es
  organization: University of Málaga, Department of Applied Economics (Mathematics), Campus El Ejido s./n. 29071, Spain
– sequence: 4
  givenname: Carlos A.
  surname: Coello Coello
  fullname: Coello Coello, Carlos A.
  email: ccoello@cs.cinvestav.mx
  organization: CINVESTAV-IPN, Computer Science Department, Av. IPN No. 2508 Col. San Pedro Zacatenco, México D.F. 07360, México
– sequence: 5
  givenname: Rafael
  surname: Caballero
  fullname: Caballero, Rafael
  email: rafael.caballero@uma.es
  organization: University of Málaga, Department of Applied Economics (Mathematics), Campus El Ejido s./n. 29071, Spain
BookMark eNp9kUtv1DAURi1UJKaFH8DOYsEuwY_YSWBVlfKQiirxkNhZjnMz48ixB9sZaVjyy_EwrLqoN1eyzrnXvt8luvDBA0IvKakpofLNXJsQa0ZIXxNWEyKfoA3tWl61Uvy8QBvCiaiIaLpn6DKlmZTTMrpBf97ffrn_-u0tvsa74xDtiJfVZVuFYQaT7QFw2Ge72N862-CxdtsQbd4teE3Wb_Fopwki-Gy1w3AIbj1jfsQxrNsdTpBx3kGIRzyFiE3wKUdtPYx4H8PgYEnP0dNJuwQv_tcr9OPD7febT9Xd_cfPN9d3leGdzJXsKUyi5cKIlpGBck17oJ2Y-lG3tC_XBOTUcTYw2YxUSNkzAr0cemqk5IxfodfnvmXwrxVSVotNBpzTHsKaFG860TaMFPDVA3AOa_TlbarM6XjDOC9Qe4ZMDClFmJSx-d-STv9zihJ1CkbNqgSjTsEowlQJppj0gbmPdtHx-Kjz7uxAWdDBQlTJWPAGRhtLTmoM9hH7L4frqX4
CODEN CMORAP
CitedBy_id crossref_primary_10_1007_s00500_019_04226_6
crossref_primary_10_1155_2014_617905
crossref_primary_10_1109_TSMC_2018_2875043
crossref_primary_10_1016_j_eswa_2020_113844
crossref_primary_10_1007_s11431_020_1789_9
crossref_primary_10_1007_s00500_012_0816_6
crossref_primary_10_1007_s10462_015_9452_8
crossref_primary_10_1016_j_apor_2021_102812
crossref_primary_10_1109_TEVC_2023_3241762
crossref_primary_10_1109_ACCESS_2018_2885947
crossref_primary_10_1016_j_asoc_2014_10_042
crossref_primary_10_1016_j_knosys_2010_02_003
crossref_primary_10_1016_j_oceaneng_2022_112108
crossref_primary_10_1007_s11831_022_09859_9
crossref_primary_10_1016_j_ins_2011_02_030
crossref_primary_10_1016_j_ins_2012_04_041
crossref_primary_10_1007_s11047_016_9585_y
crossref_primary_10_1007_s10845_015_1087_8
crossref_primary_10_1016_j_cie_2019_106129
crossref_primary_10_1155_2018_8302324
crossref_primary_10_1016_j_knosys_2024_111998
crossref_primary_10_1080_0305215X_2021_1872067
crossref_primary_10_1016_j_oceaneng_2023_114782
crossref_primary_10_1109_TEVC_2014_2301794
crossref_primary_10_1016_j_cor_2016_04_026
crossref_primary_10_1016_j_oceaneng_2019_03_012
crossref_primary_10_1016_j_cor_2015_04_003
crossref_primary_10_1007_s10489_020_01733_0
crossref_primary_10_1016_j_ins_2016_01_068
crossref_primary_10_1080_0305215X_2013_765000
crossref_primary_10_1007_s10898_009_9503_2
crossref_primary_10_1109_TEVC_2010_2059031
crossref_primary_10_1109_TEVC_2022_3155533
crossref_primary_10_1016_j_cie_2011_03_001
crossref_primary_10_1016_j_cor_2012_07_014
crossref_primary_10_1016_j_swevo_2020_100676
Cites_doi 10.1287/ijoc.1050.0149
10.1145/1143997.1144117
10.1162/evco.1994.2.3.221
10.1109/4235.996017
10.1115/1.3438995
10.1007/BF01001956
10.5019/j.ijcir.2005.32
10.1007/BF01743536
10.1162/106365602760234108
10.1162/evco.2007.15.4.493
10.1109/TEVC.2003.810758
10.1023/A:1008202821328
10.1016/S0019-9958(65)90241-X
10.1109/4235.797969
10.1007/978-3-540-30549-1_74
ContentType Journal Article
Copyright 2009 Elsevier Ltd
Copyright Pergamon Press Inc. Mar 2010
Copyright_xml – notice: 2009 Elsevier Ltd
– notice: Copyright Pergamon Press Inc. Mar 2010
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cor.2009.02.006
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1873-765X
0305-0548
EndPage 480
ExternalDocumentID 1867617771
10_1016_j_cor_2009_02_006
S0305054809000409
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
186
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
AEBSH
AEFWE
AEHXG
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ARUGR
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSO
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
UAO
UPT
VH1
WUQ
XFK
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c386t-691ef5735c5720b13a19e185f9da7195c50e6f832b264d1566920e96b91c66323
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000271369400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-0548
IngestDate Sun Sep 28 02:46:47 EDT 2025
Sun Nov 09 06:31:18 EST 2025
Sat Nov 29 03:23:34 EST 2025
Tue Nov 18 21:48:57 EST 2025
Fri Feb 23 02:33:26 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Differential evolution
Hybrid algorithms
Rough set theory
Multi-objective optimization
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c386t-691ef5735c5720b13a19e185f9da7195c50e6f832b264d1566920e96b91c66323
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 195834233
PQPubID 45870
PageCount 11
ParticipantIDs proquest_miscellaneous_34857420
proquest_journals_195834233
crossref_citationtrail_10_1016_j_cor_2009_02_006
crossref_primary_10_1016_j_cor_2009_02_006
elsevier_sciencedirect_doi_10_1016_j_cor_2009_02_006
PublicationCentury 2000
PublicationDate 2010-03-01
PublicationDateYYYYMMDD 2010-03-01
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computers & operations research
PublicationYear 2010
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References Zitzler, Thiele (bib36) 1999; 3
Abbass HA. The self-adaptive Pareto differential evolution algorithm. In: Congress on evolutionary computation (CEC’2002), vol. 1. Piscataway, New Jersey: IEEE Service Center; May 2002. p. 831–6.
Santana-Quintero, Coello Coello (bib30) 2005; 1
Pawlak (bib26) 1991
Miettinen (bib21) 1999
Deb, Pratap, Agarwal, Meyarivan (bib8) 2002; 6
Ehrgott, Gandibleux (bib10) 2008
Mezura-Montes, Reyes-Sierra, Coello Coello (bib20) 2008
Babu BV, Mathew Leenus Jehan M. Differential evolution for multi-objective optimization. In: Proceedings of the 2003 congress on evolutionary computation (CEC’2003), vol. 4. Canberra, Australia: IEEE Press; December 2003. p. 2696–703.
Coello Coello, Van Veldhuizen, Lamont (bib6) 2007
Cobacho B. Planificación de la inversión pública federal en México mediante técnicas de análisis multicriterio. PhD dissertation, University of Cartagena, Spain; 2007.
Storn, Price (bib32) 1997; 11
Ragsdell, Phillips (bib28) 1975; 98
Deb (bib7) 2001
Xue F, Sanderson AC, Graves RJ. Pareto-based multi-objective differential evolution. In: Proceedings of the 2003 congress on evolutionary computation (CEC’2003), vol. 2. Canberra, Australia: IEEE Press; December 2003. p. 862–9.
Iorio AW, Li X. Solving rotated multi-objective optimization problems using differential evolution. In: AI 2004: advances in artificial intelligence, proceedings. Lecture notes in artificial intelligence, vol. 3339. Berlin: Springer; 2004. p. 861–72.
Robič, Filipič (bib29) 2005; vol. 3410
Tanaka M, Watanabe H, Furukawa Y, Tanino T. GA-based decision support system for multicriteria optimization. In: Proceedings of the international conference on systems, man, and cybernetics, vol. 2. Piscataway, NJ: IEEE; 1995. p. 1556–61.
Coello Coello, Van Veldhuizen, Lamont (bib5) 2002
Srinivas, Deb (bib31) 1994; 2
Ehrgott (bib9) 2005
Pawlak (bib25) 1982; 11
Hernández-Díaz, Santana-Quintero, Coello Coello, Molina (bib13) 2007; 15
Laumanns, Thiele, Deb, Zitzler (bib17) 2002; 10
Hernández-Díaz AG, Santana-Quintero LV, Coello Coello C, Caballero R, Molina J. A new proposal for multi-objective optimization using differential evolution and rough set theory. In: 2006 genetic and evolutionary computation conference (GECCO’2006). Seattle, Washington, USA: ACM Press; July 2006.
Lin (bib18) 1996; 2
Madavan NK. Multiobjective optimization using a Pareto differential evolution approach. In: Congress on evolutionary computation (CEC’2002), vol. 2. Piscataway, New Jersey: IEEE Service Center; May 2002. p. 1145–50.
Osyczka, Kundu (bib23) 1995; 10
Binh TT, Korn U. MOBES: a multiobjective evolution strategy for constrained optimization problems. In: The third international conference on genetic algorithms (Mendel 97), Brno, Czech Republic, 1997. p. 176–82.
Zadeh (bib35) 1965; 8
Price, Storn, Lampinen (bib27) 2005
Goldberg (bib11) 1989
Zitzler, Thiele, Laumanns, Fonseca, da Fonseca (bib37) 2003; 7
Kita, Yabumoto, Mori, Nishikawa (bib15) 1996; vol. 1141
Kukkonen S, Lampinen J. An extension of generalized differential evolution for multi-objective optimization with constraints. In: Parallel problem solving from nature—PPSN VIII. Lecture notes in computer science, vol. 3242. Birmingham, UK: Springer; 2004. p. 752–61.
Molina, Laguna, Martí, Caballero (bib22) 2007; 19
Parsopoulos KE, Taoulis DK, Pavlidis NG, Plagianakos VP, Vrahatis MN. Vector evaluated differential evolution for multiobjective optimization. In: 2004 congress on evolutionary computation (CEC’2004), vol. 1. Portland, Oregon, USA: IEEE Service Center; June 2004. p. 204–11.
Hernández-Díaz (10.1016/j.cor.2009.02.006_bib13) 2007; 15
10.1016/j.cor.2009.02.006_bib33
10.1016/j.cor.2009.02.006_bib12
Kita (10.1016/j.cor.2009.02.006_bib15) 1996; vol. 1141
10.1016/j.cor.2009.02.006_bib34
10.1016/j.cor.2009.02.006_bib14
Ehrgott (10.1016/j.cor.2009.02.006_bib9) 2005
Lin (10.1016/j.cor.2009.02.006_bib18) 1996; 2
10.1016/j.cor.2009.02.006_bib16
Pawlak (10.1016/j.cor.2009.02.006_bib26) 1991
10.1016/j.cor.2009.02.006_bib19
10.1016/j.cor.2009.02.006_bib2
Srinivas (10.1016/j.cor.2009.02.006_bib31) 1994; 2
10.1016/j.cor.2009.02.006_bib1
10.1016/j.cor.2009.02.006_bib4
10.1016/j.cor.2009.02.006_bib3
Coello Coello (10.1016/j.cor.2009.02.006_bib5) 2002
Coello Coello (10.1016/j.cor.2009.02.006_bib6) 2007
Goldberg (10.1016/j.cor.2009.02.006_bib11) 1989
Robič (10.1016/j.cor.2009.02.006_bib29) 2005; vol. 3410
Price (10.1016/j.cor.2009.02.006_bib27) 2005
Molina (10.1016/j.cor.2009.02.006_bib22) 2007; 19
Pawlak (10.1016/j.cor.2009.02.006_bib25) 1982; 11
Laumanns (10.1016/j.cor.2009.02.006_bib17) 2002; 10
Ehrgott (10.1016/j.cor.2009.02.006_bib10) 2008
Osyczka (10.1016/j.cor.2009.02.006_bib23) 1995; 10
Zitzler (10.1016/j.cor.2009.02.006_bib37) 2003; 7
Zadeh (10.1016/j.cor.2009.02.006_bib35) 1965; 8
10.1016/j.cor.2009.02.006_bib24
Ragsdell (10.1016/j.cor.2009.02.006_bib28) 1975; 98
Storn (10.1016/j.cor.2009.02.006_bib32) 1997; 11
Deb (10.1016/j.cor.2009.02.006_bib7) 2001
Deb (10.1016/j.cor.2009.02.006_bib8) 2002; 6
Mezura-Montes (10.1016/j.cor.2009.02.006_bib20) 2008
Santana-Quintero (10.1016/j.cor.2009.02.006_bib30) 2005; 1
Miettinen (10.1016/j.cor.2009.02.006_bib21) 1999
Zitzler (10.1016/j.cor.2009.02.006_bib36) 1999; 3
References_xml – volume: 10
  start-page: 94
  year: 1995
  end-page: 99
  ident: bib23
  article-title: A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm
  publication-title: Structural Optimization
– volume: 2
  start-page: 221
  year: 1994
  end-page: 248
  ident: bib31
  article-title: Multiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evolutionary Computation
– reference: Parsopoulos KE, Taoulis DK, Pavlidis NG, Plagianakos VP, Vrahatis MN. Vector evaluated differential evolution for multiobjective optimization. In: 2004 congress on evolutionary computation (CEC’2004), vol. 1. Portland, Oregon, USA: IEEE Service Center; June 2004. p. 204–11.
– volume: 1
  start-page: 151
  year: 2005
  end-page: 169
  ident: bib30
  article-title: An algorithm based on differential evolution for multi-objective problems
  publication-title: International Journal of Computational Intelligence Research
– reference: Cobacho B. Planificación de la inversión pública federal en México mediante técnicas de análisis multicriterio. PhD dissertation, University of Cartagena, Spain; 2007.
– year: 2005
  ident: bib9
  article-title: Multicriteria optimization
– reference: Hernández-Díaz AG, Santana-Quintero LV, Coello Coello C, Caballero R, Molina J. A new proposal for multi-objective optimization using differential evolution and rough set theory. In: 2006 genetic and evolutionary computation conference (GECCO’2006). Seattle, Washington, USA: ACM Press; July 2006.
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: bib36
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 2
  year: 1996
  ident: bib18
  article-title: Special issue on rough sets
  publication-title: Journal of the Intelligent Automation and Soft Computing
– reference: Iorio AW, Li X. Solving rotated multi-objective optimization problems using differential evolution. In: AI 2004: advances in artificial intelligence, proceedings. Lecture notes in artificial intelligence, vol. 3339. Berlin: Springer; 2004. p. 861–72.
– reference: Abbass HA. The self-adaptive Pareto differential evolution algorithm. In: Congress on evolutionary computation (CEC’2002), vol. 1. Piscataway, New Jersey: IEEE Service Center; May 2002. p. 831–6.
– reference: Kukkonen S, Lampinen J. An extension of generalized differential evolution for multi-objective optimization with constraints. In: Parallel problem solving from nature—PPSN VIII. Lecture notes in computer science, vol. 3242. Birmingham, UK: Springer; 2004. p. 752–61.
– start-page: 173
  year: 2008
  end-page: 196
  ident: bib20
  article-title: Multi-objective optimization using differential evolution: a survey of the state-of-the-art
  publication-title: Advances in differential evolution
– volume: 8
  start-page: 338
  year: 1965
  end-page: 353
  ident: bib35
  article-title: Fuzzy sets
  publication-title: Information and Control
– volume: vol. 1141
  start-page: 504
  year: 1996
  end-page: 512
  ident: bib15
  article-title: Multi-objective optimization by means of the thermodynamical genetic algorithm
  publication-title: Parallel problem solving from nature—PPSN IV. Lecture notes in computer science
– volume: vol. 3410
  start-page: 520
  year: 2005
  end-page: 533
  ident: bib29
  article-title: DEMO: differential evolution for multiobjective optimization
  publication-title: Evolutionary multi-criterion optimization. Third international conference, EMO 2005. Lecture notes in computer science
– year: 2008
  ident: bib10
  article-title: Hybrid metaheuristics for multi-objective combinatorial optimization
  publication-title: Hybrid metaheuristics
– year: 2007
  ident: bib6
  article-title: Evolutionary algorithms for solving multi-objective problems
– year: 1991
  ident: bib26
  article-title: Rough sets: theoretical aspects of reasoning about data
– reference: Babu BV, Mathew Leenus Jehan M. Differential evolution for multi-objective optimization. In: Proceedings of the 2003 congress on evolutionary computation (CEC’2003), vol. 4. Canberra, Australia: IEEE Press; December 2003. p. 2696–703.
– year: 2001
  ident: bib7
  article-title: Multi-objective optimization using evolutionary algorithms
– volume: 11
  start-page: 341
  year: 1982
  end-page: 356
  ident: bib25
  article-title: Rough sets
  publication-title: International Journal of Computer and Information Sciences
– volume: 10
  start-page: 263
  year: 2002
  end-page: 282
  ident: bib17
  article-title: Combining convergence and diversity in evolutionary multi-objective optimization
  publication-title: Evolutionary Computation
– year: 1989
  ident: bib11
  article-title: Genetic algorithms in search, optimization and machine learning
– year: 2002
  ident: bib5
  article-title: Evolutionary algorithms for solving multi-objective problems
– year: 1999
  ident: bib21
  article-title: Nonlinear multiobjective optimization
– volume: 98
  start-page: 1021
  year: 1975
  end-page: 1025
  ident: bib28
  article-title: Optimal design of a class of welded structures using geometric programming
  publication-title: Journal of Engineering for Industry Series B
– volume: 19
  start-page: 91
  year: 2007
  end-page: 100
  ident: bib22
  article-title: SSPMO: a scatter tabu search procedure for non-linear multiobjective optimization
  publication-title: Informs Journal on Computing
– reference: Xue F, Sanderson AC, Graves RJ. Pareto-based multi-objective differential evolution. In: Proceedings of the 2003 congress on evolutionary computation (CEC’2003), vol. 2. Canberra, Australia: IEEE Press; December 2003. p. 862–9.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib8
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA–II
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: Tanaka M, Watanabe H, Furukawa Y, Tanino T. GA-based decision support system for multicriteria optimization. In: Proceedings of the international conference on systems, man, and cybernetics, vol. 2. Piscataway, NJ: IEEE; 1995. p. 1556–61.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib32
  article-title: Differential evolution—a fast and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
– volume: 15
  start-page: 493
  year: 2007
  end-page: 517
  ident: bib13
  article-title: Pareto adaptive—
  publication-title: Evolutionary Computation
– reference: Madavan NK. Multiobjective optimization using a Pareto differential evolution approach. In: Congress on evolutionary computation (CEC’2002), vol. 2. Piscataway, New Jersey: IEEE Service Center; May 2002. p. 1145–50.
– year: 2005
  ident: bib27
  article-title: Differential evolution: a practical approach to global optimization
– volume: 7
  start-page: 117
  year: 2003
  end-page: 132
  ident: bib37
  article-title: Performance assessment of multiobjective optimizers: an analysis and review
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: Binh TT, Korn U. MOBES: a multiobjective evolution strategy for constrained optimization problems. In: The third international conference on genetic algorithms (Mendel 97), Brno, Czech Republic, 1997. p. 176–82.
– year: 1999
  ident: 10.1016/j.cor.2009.02.006_bib21
– ident: 10.1016/j.cor.2009.02.006_bib24
– ident: 10.1016/j.cor.2009.02.006_bib2
– volume: 2
  issue: 2
  year: 1996
  ident: 10.1016/j.cor.2009.02.006_bib18
  article-title: Special issue on rough sets
  publication-title: Journal of the Intelligent Automation and Soft Computing
– volume: 19
  start-page: 91
  issue: 1
  year: 2007
  ident: 10.1016/j.cor.2009.02.006_bib22
  article-title: SSPMO: a scatter tabu search procedure for non-linear multiobjective optimization
  publication-title: Informs Journal on Computing
  doi: 10.1287/ijoc.1050.0149
– ident: 10.1016/j.cor.2009.02.006_bib12
  doi: 10.1145/1143997.1144117
– volume: 2
  start-page: 221
  issue: 3
  year: 1994
  ident: 10.1016/j.cor.2009.02.006_bib31
  article-title: Multiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.1994.2.3.221
– start-page: 173
  year: 2008
  ident: 10.1016/j.cor.2009.02.006_bib20
  article-title: Multi-objective optimization using differential evolution: a survey of the state-of-the-art
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.cor.2009.02.006_bib8
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA–II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– ident: 10.1016/j.cor.2009.02.006_bib34
– year: 2002
  ident: 10.1016/j.cor.2009.02.006_bib5
– year: 2005
  ident: 10.1016/j.cor.2009.02.006_bib9
– ident: 10.1016/j.cor.2009.02.006_bib3
– volume: 98
  start-page: 1021
  year: 1975
  ident: 10.1016/j.cor.2009.02.006_bib28
  article-title: Optimal design of a class of welded structures using geometric programming
  publication-title: Journal of Engineering for Industry Series B
  doi: 10.1115/1.3438995
– year: 2007
  ident: 10.1016/j.cor.2009.02.006_bib6
– volume: 11
  start-page: 341
  issue: 1
  year: 1982
  ident: 10.1016/j.cor.2009.02.006_bib25
  article-title: Rough sets
  publication-title: International Journal of Computer and Information Sciences
  doi: 10.1007/BF01001956
– volume: 1
  start-page: 151
  issue: 2
  year: 2005
  ident: 10.1016/j.cor.2009.02.006_bib30
  article-title: An algorithm based on differential evolution for multi-objective problems
  publication-title: International Journal of Computational Intelligence Research
  doi: 10.5019/j.ijcir.2005.32
– ident: 10.1016/j.cor.2009.02.006_bib1
– year: 2001
  ident: 10.1016/j.cor.2009.02.006_bib7
– volume: 10
  start-page: 94
  year: 1995
  ident: 10.1016/j.cor.2009.02.006_bib23
  article-title: A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm
  publication-title: Structural Optimization
  doi: 10.1007/BF01743536
– ident: 10.1016/j.cor.2009.02.006_bib19
– year: 2008
  ident: 10.1016/j.cor.2009.02.006_bib10
  article-title: Hybrid metaheuristics for multi-objective combinatorial optimization
– volume: 10
  start-page: 263
  issue: 3
  year: 2002
  ident: 10.1016/j.cor.2009.02.006_bib17
  article-title: Combining convergence and diversity in evolutionary multi-objective optimization
  publication-title: Evolutionary Computation
  doi: 10.1162/106365602760234108
– year: 1989
  ident: 10.1016/j.cor.2009.02.006_bib11
– ident: 10.1016/j.cor.2009.02.006_bib33
– year: 2005
  ident: 10.1016/j.cor.2009.02.006_bib27
– volume: 15
  start-page: 493
  issue: 4
  year: 2007
  ident: 10.1016/j.cor.2009.02.006_bib13
  article-title: Pareto adaptive—ε-dominance
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.2007.15.4.493
– volume: vol. 1141
  start-page: 504
  year: 1996
  ident: 10.1016/j.cor.2009.02.006_bib15
  article-title: Multi-objective optimization by means of the thermodynamical genetic algorithm
– volume: 7
  start-page: 117
  issue: 2
  year: 2003
  ident: 10.1016/j.cor.2009.02.006_bib37
  article-title: Performance assessment of multiobjective optimizers: an analysis and review
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2003.810758
– ident: 10.1016/j.cor.2009.02.006_bib16
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.cor.2009.02.006_bib32
  article-title: Differential evolution—a fast and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– volume: vol. 3410
  start-page: 520
  year: 2005
  ident: 10.1016/j.cor.2009.02.006_bib29
  article-title: DEMO: differential evolution for multiobjective optimization
– volume: 8
  start-page: 338
  issue: 1
  year: 1965
  ident: 10.1016/j.cor.2009.02.006_bib35
  article-title: Fuzzy sets
  publication-title: Information and Control
  doi: 10.1016/S0019-9958(65)90241-X
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 10.1016/j.cor.2009.02.006_bib36
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.797969
– ident: 10.1016/j.cor.2009.02.006_bib4
– ident: 10.1016/j.cor.2009.02.006_bib14
  doi: 10.1007/978-3-540-30549-1_74
– year: 1991
  ident: 10.1016/j.cor.2009.02.006_bib26
SSID ssj0000721
Score 2.1916988
Snippet The aim of this paper is to show how the hybridization of a multi-objective evolutionary algorithm (MOEA) and a local search method based on the use of rough...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 470
SubjectTerms Algorithms
Approximation
Differential evolution
Genetic algorithms
Hybrid algorithms
Multi-objective optimization
Optimization
Optimization algorithms
Pareto optimum
Rough set theory
Set theory
Studies
Title DEMORS: A hybrid multi-objective optimization algorithm using differential evolution and rough set theory for constrained problems
URI https://dx.doi.org/10.1016/j.cor.2009.02.006
https://www.proquest.com/docview/195834233
https://www.proquest.com/docview/34857420
Volume 37
WOSCitedRecordID wos000271369400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-765X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000721
  issn: 0305-0548
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB5FKUJwYAkgQlnmwAnLle2xPR5uES2bSllaqt4s2xnTRKkd2UlUOPKP-Qe8WWMFWtEDF8ea2NbE78u8N2_5HkLPkyJiJWVjlxZR7IZRkLlMZAKA6hNRnNgby3Zvx_v04CA5OWGfer1fphZmNaNVlZyfs_l_FTWMgbBF6ewVxG0fCgNwDkKHI4gdjv8keHizH78cqorz0--iIEtlDbp1PlWrm1PDOnGmCzCdbPatbiaL0zNnKf0GpmXKQvjS-UrPVeWhy5Y-Ldf1jyrXsxAWpmg0wQXjgGxP03ZNXtM3opUoq-e80dl3mmfI-qMPQchZlbmfl4LDQtXf7C8nrXO8s_bYNpUM7fvC9e3uyvPd7Icq1SkF-anzxl79QTYkslXg6j4bdKlF2MlRHzr1ZVa3zmin6wgRMXyTCWYKwEQeYqSIO83irhhlNIhJZ6UOVb8SrfRD1U7qD32iXBtTgEOjuU0Fv-tfuLs3dKrNdDRJdNMUHiF6frLUC1JJEr8V0IglfbQ1erd38n5tPlBZLGh_jQnFy6TEjXlcZExtmBXSVjq6g27pTQ4eKXDeRT1eDdB1U2MxQLcNJrBWLQN0s0OMeQ_9VCB-iUdYQRhvQBh3IYwthLGEMO5CGFsIY4AwlhDGAGGsIIwBwrgDYWwgfB99fb139Oqtq7uFuAVJ4oUbM5-XESVREdHAy32S-YyDNVqycUZ9BsMej0tQYDnsAcbCbcECj7M4Z34BZndAHqB-VVf8IcJekZCs5CyLCQl5Hudj6pcUNhsx5ySMiiHyzGtPC02lL2Y5Sy8U9xC9sLfMFY_MZReHRpapNoSVgZsCLi-7bdvIPdULUpsKMinB8kmG6Jn9FlSIiAtmFa-XbUrCJKJh4D26yhy30Y31n_Ax6i-aJX-CrhWrxaRtnmpQ_waKiuqb
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DEMORS%3A+A+hybrid+multi-objective+optimization+algorithm+using+differential+evolution+and+rough+set+theory+for+constrained+problems&rft.jtitle=Computers+%26+operations+research&rft.au=Santana-Quintero%2C+Luis+V.&rft.au=Hern%C3%A1ndez-D%C3%ADaz%2C+Alfredo+G.&rft.au=Molina%2C+Juli%C3%A1n&rft.au=Coello+Coello%2C+Carlos+A.&rft.date=2010-03-01&rft.issn=0305-0548&rft.volume=37&rft.issue=3&rft.spage=470&rft.epage=480&rft_id=info:doi/10.1016%2Fj.cor.2009.02.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cor_2009_02_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon