DEMORS: A hybrid multi-objective optimization algorithm using differential evolution and rough set theory for constrained problems
The aim of this paper is to show how the hybridization of a multi-objective evolutionary algorithm (MOEA) and a local search method based on the use of rough set theory is a viable alternative to obtain a robust algorithm able to solve difficult constrained multi-objective optimization problems at a...
Saved in:
| Published in: | Computers & operations research Vol. 37; no. 3; pp. 470 - 480 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Elsevier Ltd
01.03.2010
Pergamon Press Inc |
| Subjects: | |
| ISSN: | 0305-0548, 1873-765X, 0305-0548 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The aim of this paper is to show how the hybridization of a multi-objective evolutionary algorithm (MOEA) and a local search method based on the use of rough set theory is a viable alternative to obtain a robust algorithm able to solve difficult constrained multi-objective optimization problems at a moderate computational cost. This paper extends a previously published MOEA [Hernández-Díaz AG, Santana-Quintero LV, Coello Coello C, Caballero R, Molina J. A new proposal for multi-objective optimization using differential evolution and rough set theory. In: 2006 genetic and evolutionary computation conference (GECCO’2006). Seattle, Washington, USA: ACM Press; July 2006], which was limited to unconstrained multi-objective optimization problems. Here, the main idea is to use this sort of hybrid approach to approximate the Pareto front of a constrained multi-objective optimization problem while performing a relatively low number of fitness function evaluations. Since in real-world problems the cost of evaluating the objective functions is the most significant, our underlying assumption is that, by aiming to minimize the number of such evaluations, our MOEA can be considered efficient. As in its previous version, our hybrid approach operates in two stages: in the first one, a multi-objective version of differential evolution is used to generate an initial approximation of the Pareto front. Then, in the second stage, rough set theory is used to improve the spread and quality of this initial approximation. To assess the performance of our proposed approach, we adopt, on the one hand, a set of standard bi-objective constrained test problems and, on the other hand, a large real-world problem with eight objective functions and 160 decision variables. The first set of problems are solved performing 10,000 fitness function evaluations, which is a competitive value compared to the number of evaluations previously reported in the specialized literature for such problems. The real-world problem is solved performing 250,000 fitness function evaluations, mainly because of its high dimensionality. Our results are compared with respect to those generated by NSGA-II, which is a MOEA representative of the state-of-the-art in the area. |
|---|---|
| AbstractList | The aim of this paper is to show how the hybridization of a multi-objective evolutionary algorithm (MOEA) and a local search method based on the use of rough set theory is a viable alternative to obtain a robust algorithm able to solve difficult constrained multi-objective optimization problems at a moderate computational cost. This paper extends a previously published MOEA, which was limited to unconstrained multi-objective optimization problems. Since in real-world problems the cost of evaluating the objective functions is the most significant, the underlying assumption is that, by aiming to minimize the number of such evaluations, the MOEA can be considered efficient. As in its previous version, the hybrid approach operates in two stages: in the first one, a multi-objective version of differential evolution is used to generate an initial approximation of the Pareto front. Then, in the second stage, rough set theory is used to improve the spread and quality of this initial approximation. The aim of this paper is to show how the hybridization of a multi-objective evolutionary algorithm (MOEA) and a local search method based on the use of rough set theory is a viable alternative to obtain a robust algorithm able to solve difficult constrained multi-objective optimization problems at a moderate computational cost. This paper extends a previously published MOEA [Hernandez-Diaz AG, Santana-Quintero LV, Coello Coello C, Caballero R, Molina J. A new proposal for multi-objective optimization using differential evolution and rough set theory. In: 2006 genetic and evolutionary computation conference (GECCO2006). Seattle, Washington, USA: ACM Press; July 2006], which was limited to unconstrained multi-objective optimization problems. Here, the main idea is to use this sort of hybrid approach to approximate the Pareto front of a constrained multi-objective optimization problem while performing a relatively low number of fitness function evaluations. Since in real-world problems the cost of evaluating the objective functions is the most significant, our underlying assumption is that, by aiming to minimize the number of such evaluations, our MOEA can be considered efficient. As in its previous version, our hybrid approach operates in two stages: in the first one, a multi-objective version of differential evolution is used to generate an initial approximation of the Pareto front. Then, in the second stage, rough set theory is used to improve the spread and quality of this initial approximation. To assess the performance of our proposed approach, we adopt, on the one hand, a set of standard bi-objective constrained test problems and, on the other hand, a large real-world problem with eight objective functions and 160 decision variables. The first set of problems are solved performing 10,000 fitness function evaluations, which is a competitive value compared to the number of evaluations previously reported in the specialized literature for such problems. The real- world problem is solved performing 250,000 fitness function evaluations, mainly because of its high dimensionality. Our results are compared with respect to those generated by NSGA-II, which is a MOEA representative of the state-of-the-art in the area. The aim of this paper is to show how the hybridization of a multi-objective evolutionary algorithm (MOEA) and a local search method based on the use of rough set theory is a viable alternative to obtain a robust algorithm able to solve difficult constrained multi-objective optimization problems at a moderate computational cost. This paper extends a previously published MOEA [Hernández-Díaz AG, Santana-Quintero LV, Coello Coello C, Caballero R, Molina J. A new proposal for multi-objective optimization using differential evolution and rough set theory. In: 2006 genetic and evolutionary computation conference (GECCO’2006). Seattle, Washington, USA: ACM Press; July 2006], which was limited to unconstrained multi-objective optimization problems. Here, the main idea is to use this sort of hybrid approach to approximate the Pareto front of a constrained multi-objective optimization problem while performing a relatively low number of fitness function evaluations. Since in real-world problems the cost of evaluating the objective functions is the most significant, our underlying assumption is that, by aiming to minimize the number of such evaluations, our MOEA can be considered efficient. As in its previous version, our hybrid approach operates in two stages: in the first one, a multi-objective version of differential evolution is used to generate an initial approximation of the Pareto front. Then, in the second stage, rough set theory is used to improve the spread and quality of this initial approximation. To assess the performance of our proposed approach, we adopt, on the one hand, a set of standard bi-objective constrained test problems and, on the other hand, a large real-world problem with eight objective functions and 160 decision variables. The first set of problems are solved performing 10,000 fitness function evaluations, which is a competitive value compared to the number of evaluations previously reported in the specialized literature for such problems. The real-world problem is solved performing 250,000 fitness function evaluations, mainly because of its high dimensionality. Our results are compared with respect to those generated by NSGA-II, which is a MOEA representative of the state-of-the-art in the area. |
| Author | Coello Coello, Carlos A. Hernández-Díaz, Alfredo G. Molina, Julián Santana-Quintero, Luis V. Caballero, Rafael |
| Author_xml | – sequence: 1 givenname: Luis V. surname: Santana-Quintero fullname: Santana-Quintero, Luis V. email: lvspenny@hotmail.com organization: CINVESTAV-IPN, Computer Science Department, Av. IPN No. 2508 Col. San Pedro Zacatenco, México D.F. 07360, México – sequence: 2 givenname: Alfredo G. surname: Hernández-Díaz fullname: Hernández-Díaz, Alfredo G. email: agarher@upo.es organization: Pablo de Olavide University, Department of Economics, Quantitative Methods and Economic History, Ctra. de Utrera km. 1, 41013 Seville, Spain – sequence: 3 givenname: Julián surname: Molina fullname: Molina, Julián email: julian.molina@uma.es organization: University of Málaga, Department of Applied Economics (Mathematics), Campus El Ejido s./n. 29071, Spain – sequence: 4 givenname: Carlos A. surname: Coello Coello fullname: Coello Coello, Carlos A. email: ccoello@cs.cinvestav.mx organization: CINVESTAV-IPN, Computer Science Department, Av. IPN No. 2508 Col. San Pedro Zacatenco, México D.F. 07360, México – sequence: 5 givenname: Rafael surname: Caballero fullname: Caballero, Rafael email: rafael.caballero@uma.es organization: University of Málaga, Department of Applied Economics (Mathematics), Campus El Ejido s./n. 29071, Spain |
| BookMark | eNp9kUtv1DAURi1UJKaFH8DOYsEuwY_YSWBVlfKQiirxkNhZjnMz48ixB9sZaVjyy_EwrLqoN1eyzrnXvt8luvDBA0IvKakpofLNXJsQa0ZIXxNWEyKfoA3tWl61Uvy8QBvCiaiIaLpn6DKlmZTTMrpBf97ffrn_-u0tvsa74xDtiJfVZVuFYQaT7QFw2Ge72N862-CxdtsQbd4teE3Wb_Fopwki-Gy1w3AIbj1jfsQxrNsdTpBx3kGIRzyFiE3wKUdtPYx4H8PgYEnP0dNJuwQv_tcr9OPD7febT9Xd_cfPN9d3leGdzJXsKUyi5cKIlpGBck17oJ2Y-lG3tC_XBOTUcTYw2YxUSNkzAr0cemqk5IxfodfnvmXwrxVSVotNBpzTHsKaFG860TaMFPDVA3AOa_TlbarM6XjDOC9Qe4ZMDClFmJSx-d-STv9zihJ1CkbNqgSjTsEowlQJppj0gbmPdtHx-Kjz7uxAWdDBQlTJWPAGRhtLTmoM9hH7L4frqX4 |
| CODEN | CMORAP |
| CitedBy_id | crossref_primary_10_1007_s00500_019_04226_6 crossref_primary_10_1155_2014_617905 crossref_primary_10_1109_TSMC_2018_2875043 crossref_primary_10_1016_j_eswa_2020_113844 crossref_primary_10_1007_s11431_020_1789_9 crossref_primary_10_1007_s00500_012_0816_6 crossref_primary_10_1007_s10462_015_9452_8 crossref_primary_10_1016_j_apor_2021_102812 crossref_primary_10_1109_TEVC_2023_3241762 crossref_primary_10_1109_ACCESS_2018_2885947 crossref_primary_10_1016_j_asoc_2014_10_042 crossref_primary_10_1016_j_knosys_2010_02_003 crossref_primary_10_1016_j_oceaneng_2022_112108 crossref_primary_10_1007_s11831_022_09859_9 crossref_primary_10_1016_j_ins_2011_02_030 crossref_primary_10_1016_j_ins_2012_04_041 crossref_primary_10_1007_s11047_016_9585_y crossref_primary_10_1007_s10845_015_1087_8 crossref_primary_10_1016_j_cie_2019_106129 crossref_primary_10_1155_2018_8302324 crossref_primary_10_1016_j_knosys_2024_111998 crossref_primary_10_1080_0305215X_2021_1872067 crossref_primary_10_1016_j_oceaneng_2023_114782 crossref_primary_10_1109_TEVC_2014_2301794 crossref_primary_10_1016_j_cor_2016_04_026 crossref_primary_10_1016_j_oceaneng_2019_03_012 crossref_primary_10_1016_j_cor_2015_04_003 crossref_primary_10_1007_s10489_020_01733_0 crossref_primary_10_1016_j_ins_2016_01_068 crossref_primary_10_1080_0305215X_2013_765000 crossref_primary_10_1007_s10898_009_9503_2 crossref_primary_10_1109_TEVC_2010_2059031 crossref_primary_10_1109_TEVC_2022_3155533 crossref_primary_10_1016_j_cie_2011_03_001 crossref_primary_10_1016_j_cor_2012_07_014 crossref_primary_10_1016_j_swevo_2020_100676 |
| Cites_doi | 10.1287/ijoc.1050.0149 10.1145/1143997.1144117 10.1162/evco.1994.2.3.221 10.1109/4235.996017 10.1115/1.3438995 10.1007/BF01001956 10.5019/j.ijcir.2005.32 10.1007/BF01743536 10.1162/106365602760234108 10.1162/evco.2007.15.4.493 10.1109/TEVC.2003.810758 10.1023/A:1008202821328 10.1016/S0019-9958(65)90241-X 10.1109/4235.797969 10.1007/978-3-540-30549-1_74 |
| ContentType | Journal Article |
| Copyright | 2009 Elsevier Ltd Copyright Pergamon Press Inc. Mar 2010 |
| Copyright_xml | – notice: 2009 Elsevier Ltd – notice: Copyright Pergamon Press Inc. Mar 2010 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.cor.2009.02.006 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| EISSN | 1873-765X 0305-0548 |
| EndPage | 480 |
| ExternalDocumentID | 1867617771 10_1016_j_cor_2009_02_006 S0305054809000409 |
| Genre | Feature |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 186 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN AAYOK ABAOU ABBOA ABEFU ABFNM ABFRF ABJNI ABMAC ABMMH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD AEBSH AEFWE AEHXG AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ARUGR ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HAMUX HVGLF HZ~ H~9 IHE J1W KOM LY1 M41 MHUIS MO0 MS~ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ RXW SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSO SSV SSW SSZ T5K TAE TN5 U5U UAO UPT VH1 WUQ XFK XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c386t-691ef5735c5720b13a19e185f9da7195c50e6f832b264d1566920e96b91c66323 |
| ISICitedReferencesCount | 54 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000271369400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0305-0548 |
| IngestDate | Sun Sep 28 02:46:47 EDT 2025 Sun Nov 09 06:31:18 EST 2025 Sat Nov 29 03:23:34 EST 2025 Tue Nov 18 21:48:57 EST 2025 Fri Feb 23 02:33:26 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Differential evolution Hybrid algorithms Rough set theory Multi-objective optimization |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c386t-691ef5735c5720b13a19e185f9da7195c50e6f832b264d1566920e96b91c66323 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| PQID | 195834233 |
| PQPubID | 45870 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_34857420 proquest_journals_195834233 crossref_citationtrail_10_1016_j_cor_2009_02_006 crossref_primary_10_1016_j_cor_2009_02_006 elsevier_sciencedirect_doi_10_1016_j_cor_2009_02_006 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-03-01 |
| PublicationDateYYYYMMDD | 2010-03-01 |
| PublicationDate_xml | – month: 03 year: 2010 text: 2010-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Computers & operations research |
| PublicationYear | 2010 |
| Publisher | Elsevier Ltd Pergamon Press Inc |
| Publisher_xml | – name: Elsevier Ltd – name: Pergamon Press Inc |
| References | Zitzler, Thiele (bib36) 1999; 3 Abbass HA. The self-adaptive Pareto differential evolution algorithm. In: Congress on evolutionary computation (CEC’2002), vol. 1. Piscataway, New Jersey: IEEE Service Center; May 2002. p. 831–6. Santana-Quintero, Coello Coello (bib30) 2005; 1 Pawlak (bib26) 1991 Miettinen (bib21) 1999 Deb, Pratap, Agarwal, Meyarivan (bib8) 2002; 6 Ehrgott, Gandibleux (bib10) 2008 Mezura-Montes, Reyes-Sierra, Coello Coello (bib20) 2008 Babu BV, Mathew Leenus Jehan M. Differential evolution for multi-objective optimization. In: Proceedings of the 2003 congress on evolutionary computation (CEC’2003), vol. 4. Canberra, Australia: IEEE Press; December 2003. p. 2696–703. Coello Coello, Van Veldhuizen, Lamont (bib6) 2007 Cobacho B. Planificación de la inversión pública federal en México mediante técnicas de análisis multicriterio. PhD dissertation, University of Cartagena, Spain; 2007. Storn, Price (bib32) 1997; 11 Ragsdell, Phillips (bib28) 1975; 98 Deb (bib7) 2001 Xue F, Sanderson AC, Graves RJ. Pareto-based multi-objective differential evolution. In: Proceedings of the 2003 congress on evolutionary computation (CEC’2003), vol. 2. Canberra, Australia: IEEE Press; December 2003. p. 862–9. Iorio AW, Li X. Solving rotated multi-objective optimization problems using differential evolution. In: AI 2004: advances in artificial intelligence, proceedings. Lecture notes in artificial intelligence, vol. 3339. Berlin: Springer; 2004. p. 861–72. Robič, Filipič (bib29) 2005; vol. 3410 Tanaka M, Watanabe H, Furukawa Y, Tanino T. GA-based decision support system for multicriteria optimization. In: Proceedings of the international conference on systems, man, and cybernetics, vol. 2. Piscataway, NJ: IEEE; 1995. p. 1556–61. Coello Coello, Van Veldhuizen, Lamont (bib5) 2002 Srinivas, Deb (bib31) 1994; 2 Ehrgott (bib9) 2005 Pawlak (bib25) 1982; 11 Hernández-Díaz, Santana-Quintero, Coello Coello, Molina (bib13) 2007; 15 Laumanns, Thiele, Deb, Zitzler (bib17) 2002; 10 Hernández-Díaz AG, Santana-Quintero LV, Coello Coello C, Caballero R, Molina J. A new proposal for multi-objective optimization using differential evolution and rough set theory. In: 2006 genetic and evolutionary computation conference (GECCO’2006). Seattle, Washington, USA: ACM Press; July 2006. Lin (bib18) 1996; 2 Madavan NK. Multiobjective optimization using a Pareto differential evolution approach. In: Congress on evolutionary computation (CEC’2002), vol. 2. Piscataway, New Jersey: IEEE Service Center; May 2002. p. 1145–50. Osyczka, Kundu (bib23) 1995; 10 Binh TT, Korn U. MOBES: a multiobjective evolution strategy for constrained optimization problems. In: The third international conference on genetic algorithms (Mendel 97), Brno, Czech Republic, 1997. p. 176–82. Zadeh (bib35) 1965; 8 Price, Storn, Lampinen (bib27) 2005 Goldberg (bib11) 1989 Zitzler, Thiele, Laumanns, Fonseca, da Fonseca (bib37) 2003; 7 Kita, Yabumoto, Mori, Nishikawa (bib15) 1996; vol. 1141 Kukkonen S, Lampinen J. An extension of generalized differential evolution for multi-objective optimization with constraints. In: Parallel problem solving from nature—PPSN VIII. Lecture notes in computer science, vol. 3242. Birmingham, UK: Springer; 2004. p. 752–61. Molina, Laguna, Martí, Caballero (bib22) 2007; 19 Parsopoulos KE, Taoulis DK, Pavlidis NG, Plagianakos VP, Vrahatis MN. Vector evaluated differential evolution for multiobjective optimization. In: 2004 congress on evolutionary computation (CEC’2004), vol. 1. Portland, Oregon, USA: IEEE Service Center; June 2004. p. 204–11. Hernández-Díaz (10.1016/j.cor.2009.02.006_bib13) 2007; 15 10.1016/j.cor.2009.02.006_bib33 10.1016/j.cor.2009.02.006_bib12 Kita (10.1016/j.cor.2009.02.006_bib15) 1996; vol. 1141 10.1016/j.cor.2009.02.006_bib34 10.1016/j.cor.2009.02.006_bib14 Ehrgott (10.1016/j.cor.2009.02.006_bib9) 2005 Lin (10.1016/j.cor.2009.02.006_bib18) 1996; 2 10.1016/j.cor.2009.02.006_bib16 Pawlak (10.1016/j.cor.2009.02.006_bib26) 1991 10.1016/j.cor.2009.02.006_bib19 10.1016/j.cor.2009.02.006_bib2 Srinivas (10.1016/j.cor.2009.02.006_bib31) 1994; 2 10.1016/j.cor.2009.02.006_bib1 10.1016/j.cor.2009.02.006_bib4 10.1016/j.cor.2009.02.006_bib3 Coello Coello (10.1016/j.cor.2009.02.006_bib5) 2002 Coello Coello (10.1016/j.cor.2009.02.006_bib6) 2007 Goldberg (10.1016/j.cor.2009.02.006_bib11) 1989 Robič (10.1016/j.cor.2009.02.006_bib29) 2005; vol. 3410 Price (10.1016/j.cor.2009.02.006_bib27) 2005 Molina (10.1016/j.cor.2009.02.006_bib22) 2007; 19 Pawlak (10.1016/j.cor.2009.02.006_bib25) 1982; 11 Laumanns (10.1016/j.cor.2009.02.006_bib17) 2002; 10 Ehrgott (10.1016/j.cor.2009.02.006_bib10) 2008 Osyczka (10.1016/j.cor.2009.02.006_bib23) 1995; 10 Zitzler (10.1016/j.cor.2009.02.006_bib37) 2003; 7 Zadeh (10.1016/j.cor.2009.02.006_bib35) 1965; 8 10.1016/j.cor.2009.02.006_bib24 Ragsdell (10.1016/j.cor.2009.02.006_bib28) 1975; 98 Storn (10.1016/j.cor.2009.02.006_bib32) 1997; 11 Deb (10.1016/j.cor.2009.02.006_bib7) 2001 Deb (10.1016/j.cor.2009.02.006_bib8) 2002; 6 Mezura-Montes (10.1016/j.cor.2009.02.006_bib20) 2008 Santana-Quintero (10.1016/j.cor.2009.02.006_bib30) 2005; 1 Miettinen (10.1016/j.cor.2009.02.006_bib21) 1999 Zitzler (10.1016/j.cor.2009.02.006_bib36) 1999; 3 |
| References_xml | – volume: 10 start-page: 94 year: 1995 end-page: 99 ident: bib23 article-title: A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm publication-title: Structural Optimization – volume: 2 start-page: 221 year: 1994 end-page: 248 ident: bib31 article-title: Multiobjective optimization using nondominated sorting in genetic algorithms publication-title: Evolutionary Computation – reference: Parsopoulos KE, Taoulis DK, Pavlidis NG, Plagianakos VP, Vrahatis MN. Vector evaluated differential evolution for multiobjective optimization. In: 2004 congress on evolutionary computation (CEC’2004), vol. 1. Portland, Oregon, USA: IEEE Service Center; June 2004. p. 204–11. – volume: 1 start-page: 151 year: 2005 end-page: 169 ident: bib30 article-title: An algorithm based on differential evolution for multi-objective problems publication-title: International Journal of Computational Intelligence Research – reference: Cobacho B. Planificación de la inversión pública federal en México mediante técnicas de análisis multicriterio. PhD dissertation, University of Cartagena, Spain; 2007. – year: 2005 ident: bib9 article-title: Multicriteria optimization – reference: Hernández-Díaz AG, Santana-Quintero LV, Coello Coello C, Caballero R, Molina J. A new proposal for multi-objective optimization using differential evolution and rough set theory. In: 2006 genetic and evolutionary computation conference (GECCO’2006). Seattle, Washington, USA: ACM Press; July 2006. – volume: 3 start-page: 257 year: 1999 end-page: 271 ident: bib36 article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach publication-title: IEEE Transactions on Evolutionary Computation – volume: 2 year: 1996 ident: bib18 article-title: Special issue on rough sets publication-title: Journal of the Intelligent Automation and Soft Computing – reference: Iorio AW, Li X. Solving rotated multi-objective optimization problems using differential evolution. In: AI 2004: advances in artificial intelligence, proceedings. Lecture notes in artificial intelligence, vol. 3339. Berlin: Springer; 2004. p. 861–72. – reference: Abbass HA. The self-adaptive Pareto differential evolution algorithm. In: Congress on evolutionary computation (CEC’2002), vol. 1. Piscataway, New Jersey: IEEE Service Center; May 2002. p. 831–6. – reference: Kukkonen S, Lampinen J. An extension of generalized differential evolution for multi-objective optimization with constraints. In: Parallel problem solving from nature—PPSN VIII. Lecture notes in computer science, vol. 3242. Birmingham, UK: Springer; 2004. p. 752–61. – start-page: 173 year: 2008 end-page: 196 ident: bib20 article-title: Multi-objective optimization using differential evolution: a survey of the state-of-the-art publication-title: Advances in differential evolution – volume: 8 start-page: 338 year: 1965 end-page: 353 ident: bib35 article-title: Fuzzy sets publication-title: Information and Control – volume: vol. 1141 start-page: 504 year: 1996 end-page: 512 ident: bib15 article-title: Multi-objective optimization by means of the thermodynamical genetic algorithm publication-title: Parallel problem solving from nature—PPSN IV. Lecture notes in computer science – volume: vol. 3410 start-page: 520 year: 2005 end-page: 533 ident: bib29 article-title: DEMO: differential evolution for multiobjective optimization publication-title: Evolutionary multi-criterion optimization. Third international conference, EMO 2005. Lecture notes in computer science – year: 2008 ident: bib10 article-title: Hybrid metaheuristics for multi-objective combinatorial optimization publication-title: Hybrid metaheuristics – year: 2007 ident: bib6 article-title: Evolutionary algorithms for solving multi-objective problems – year: 1991 ident: bib26 article-title: Rough sets: theoretical aspects of reasoning about data – reference: Babu BV, Mathew Leenus Jehan M. Differential evolution for multi-objective optimization. In: Proceedings of the 2003 congress on evolutionary computation (CEC’2003), vol. 4. Canberra, Australia: IEEE Press; December 2003. p. 2696–703. – year: 2001 ident: bib7 article-title: Multi-objective optimization using evolutionary algorithms – volume: 11 start-page: 341 year: 1982 end-page: 356 ident: bib25 article-title: Rough sets publication-title: International Journal of Computer and Information Sciences – volume: 10 start-page: 263 year: 2002 end-page: 282 ident: bib17 article-title: Combining convergence and diversity in evolutionary multi-objective optimization publication-title: Evolutionary Computation – year: 1989 ident: bib11 article-title: Genetic algorithms in search, optimization and machine learning – year: 2002 ident: bib5 article-title: Evolutionary algorithms for solving multi-objective problems – year: 1999 ident: bib21 article-title: Nonlinear multiobjective optimization – volume: 98 start-page: 1021 year: 1975 end-page: 1025 ident: bib28 article-title: Optimal design of a class of welded structures using geometric programming publication-title: Journal of Engineering for Industry Series B – volume: 19 start-page: 91 year: 2007 end-page: 100 ident: bib22 article-title: SSPMO: a scatter tabu search procedure for non-linear multiobjective optimization publication-title: Informs Journal on Computing – reference: Xue F, Sanderson AC, Graves RJ. Pareto-based multi-objective differential evolution. In: Proceedings of the 2003 congress on evolutionary computation (CEC’2003), vol. 2. Canberra, Australia: IEEE Press; December 2003. p. 862–9. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib8 article-title: A fast and elitist multiobjective genetic algorithm: NSGA–II publication-title: IEEE Transactions on Evolutionary Computation – reference: Tanaka M, Watanabe H, Furukawa Y, Tanino T. GA-based decision support system for multicriteria optimization. In: Proceedings of the international conference on systems, man, and cybernetics, vol. 2. Piscataway, NJ: IEEE; 1995. p. 1556–61. – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: bib32 article-title: Differential evolution—a fast and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization – volume: 15 start-page: 493 year: 2007 end-page: 517 ident: bib13 article-title: Pareto adaptive— publication-title: Evolutionary Computation – reference: Madavan NK. Multiobjective optimization using a Pareto differential evolution approach. In: Congress on evolutionary computation (CEC’2002), vol. 2. Piscataway, New Jersey: IEEE Service Center; May 2002. p. 1145–50. – year: 2005 ident: bib27 article-title: Differential evolution: a practical approach to global optimization – volume: 7 start-page: 117 year: 2003 end-page: 132 ident: bib37 article-title: Performance assessment of multiobjective optimizers: an analysis and review publication-title: IEEE Transactions on Evolutionary Computation – reference: Binh TT, Korn U. MOBES: a multiobjective evolution strategy for constrained optimization problems. In: The third international conference on genetic algorithms (Mendel 97), Brno, Czech Republic, 1997. p. 176–82. – year: 1999 ident: 10.1016/j.cor.2009.02.006_bib21 – ident: 10.1016/j.cor.2009.02.006_bib24 – ident: 10.1016/j.cor.2009.02.006_bib2 – volume: 2 issue: 2 year: 1996 ident: 10.1016/j.cor.2009.02.006_bib18 article-title: Special issue on rough sets publication-title: Journal of the Intelligent Automation and Soft Computing – volume: 19 start-page: 91 issue: 1 year: 2007 ident: 10.1016/j.cor.2009.02.006_bib22 article-title: SSPMO: a scatter tabu search procedure for non-linear multiobjective optimization publication-title: Informs Journal on Computing doi: 10.1287/ijoc.1050.0149 – ident: 10.1016/j.cor.2009.02.006_bib12 doi: 10.1145/1143997.1144117 – volume: 2 start-page: 221 issue: 3 year: 1994 ident: 10.1016/j.cor.2009.02.006_bib31 article-title: Multiobjective optimization using nondominated sorting in genetic algorithms publication-title: Evolutionary Computation doi: 10.1162/evco.1994.2.3.221 – start-page: 173 year: 2008 ident: 10.1016/j.cor.2009.02.006_bib20 article-title: Multi-objective optimization using differential evolution: a survey of the state-of-the-art – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.cor.2009.02.006_bib8 article-title: A fast and elitist multiobjective genetic algorithm: NSGA–II publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.996017 – ident: 10.1016/j.cor.2009.02.006_bib34 – year: 2002 ident: 10.1016/j.cor.2009.02.006_bib5 – year: 2005 ident: 10.1016/j.cor.2009.02.006_bib9 – ident: 10.1016/j.cor.2009.02.006_bib3 – volume: 98 start-page: 1021 year: 1975 ident: 10.1016/j.cor.2009.02.006_bib28 article-title: Optimal design of a class of welded structures using geometric programming publication-title: Journal of Engineering for Industry Series B doi: 10.1115/1.3438995 – year: 2007 ident: 10.1016/j.cor.2009.02.006_bib6 – volume: 11 start-page: 341 issue: 1 year: 1982 ident: 10.1016/j.cor.2009.02.006_bib25 article-title: Rough sets publication-title: International Journal of Computer and Information Sciences doi: 10.1007/BF01001956 – volume: 1 start-page: 151 issue: 2 year: 2005 ident: 10.1016/j.cor.2009.02.006_bib30 article-title: An algorithm based on differential evolution for multi-objective problems publication-title: International Journal of Computational Intelligence Research doi: 10.5019/j.ijcir.2005.32 – ident: 10.1016/j.cor.2009.02.006_bib1 – year: 2001 ident: 10.1016/j.cor.2009.02.006_bib7 – volume: 10 start-page: 94 year: 1995 ident: 10.1016/j.cor.2009.02.006_bib23 article-title: A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm publication-title: Structural Optimization doi: 10.1007/BF01743536 – ident: 10.1016/j.cor.2009.02.006_bib19 – year: 2008 ident: 10.1016/j.cor.2009.02.006_bib10 article-title: Hybrid metaheuristics for multi-objective combinatorial optimization – volume: 10 start-page: 263 issue: 3 year: 2002 ident: 10.1016/j.cor.2009.02.006_bib17 article-title: Combining convergence and diversity in evolutionary multi-objective optimization publication-title: Evolutionary Computation doi: 10.1162/106365602760234108 – year: 1989 ident: 10.1016/j.cor.2009.02.006_bib11 – ident: 10.1016/j.cor.2009.02.006_bib33 – year: 2005 ident: 10.1016/j.cor.2009.02.006_bib27 – volume: 15 start-page: 493 issue: 4 year: 2007 ident: 10.1016/j.cor.2009.02.006_bib13 article-title: Pareto adaptive—ε-dominance publication-title: Evolutionary Computation doi: 10.1162/evco.2007.15.4.493 – volume: vol. 1141 start-page: 504 year: 1996 ident: 10.1016/j.cor.2009.02.006_bib15 article-title: Multi-objective optimization by means of the thermodynamical genetic algorithm – volume: 7 start-page: 117 issue: 2 year: 2003 ident: 10.1016/j.cor.2009.02.006_bib37 article-title: Performance assessment of multiobjective optimizers: an analysis and review publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2003.810758 – ident: 10.1016/j.cor.2009.02.006_bib16 – volume: 11 start-page: 341 year: 1997 ident: 10.1016/j.cor.2009.02.006_bib32 article-title: Differential evolution—a fast and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization doi: 10.1023/A:1008202821328 – volume: vol. 3410 start-page: 520 year: 2005 ident: 10.1016/j.cor.2009.02.006_bib29 article-title: DEMO: differential evolution for multiobjective optimization – volume: 8 start-page: 338 issue: 1 year: 1965 ident: 10.1016/j.cor.2009.02.006_bib35 article-title: Fuzzy sets publication-title: Information and Control doi: 10.1016/S0019-9958(65)90241-X – volume: 3 start-page: 257 issue: 4 year: 1999 ident: 10.1016/j.cor.2009.02.006_bib36 article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.797969 – ident: 10.1016/j.cor.2009.02.006_bib4 – ident: 10.1016/j.cor.2009.02.006_bib14 doi: 10.1007/978-3-540-30549-1_74 – year: 1991 ident: 10.1016/j.cor.2009.02.006_bib26 |
| SSID | ssj0000721 |
| Score | 2.1916988 |
| Snippet | The aim of this paper is to show how the hybridization of a multi-objective evolutionary algorithm (MOEA) and a local search method based on the use of rough... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 470 |
| SubjectTerms | Algorithms Approximation Differential evolution Genetic algorithms Hybrid algorithms Multi-objective optimization Optimization Optimization algorithms Pareto optimum Rough set theory Set theory Studies |
| Title | DEMORS: A hybrid multi-objective optimization algorithm using differential evolution and rough set theory for constrained problems |
| URI | https://dx.doi.org/10.1016/j.cor.2009.02.006 https://www.proquest.com/docview/195834233 https://www.proquest.com/docview/34857420 |
| Volume | 37 |
| WOSCitedRecordID | wos000271369400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-765X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000721 issn: 0305-0548 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB5FKUJwYAkgQlnmwAnLle2xPR5uES2bSllaqt4s2xnTRKkd2UlUOPKP-Qe8WWMFWtEDF8ea2NbE78u8N2_5HkLPkyJiJWVjlxZR7IZRkLlMZAKA6hNRnNgby3Zvx_v04CA5OWGfer1fphZmNaNVlZyfs_l_FTWMgbBF6ewVxG0fCgNwDkKHI4gdjv8keHizH78cqorz0--iIEtlDbp1PlWrm1PDOnGmCzCdbPatbiaL0zNnKf0GpmXKQvjS-UrPVeWhy5Y-Ldf1jyrXsxAWpmg0wQXjgGxP03ZNXtM3opUoq-e80dl3mmfI-qMPQchZlbmfl4LDQtXf7C8nrXO8s_bYNpUM7fvC9e3uyvPd7Icq1SkF-anzxl79QTYkslXg6j4bdKlF2MlRHzr1ZVa3zmin6wgRMXyTCWYKwEQeYqSIO83irhhlNIhJZ6UOVb8SrfRD1U7qD32iXBtTgEOjuU0Fv-tfuLs3dKrNdDRJdNMUHiF6frLUC1JJEr8V0IglfbQ1erd38n5tPlBZLGh_jQnFy6TEjXlcZExtmBXSVjq6g27pTQ4eKXDeRT1eDdB1U2MxQLcNJrBWLQN0s0OMeQ_9VCB-iUdYQRhvQBh3IYwthLGEMO5CGFsIY4AwlhDGAGGsIIwBwrgDYWwgfB99fb139Oqtq7uFuAVJ4oUbM5-XESVREdHAy32S-YyDNVqycUZ9BsMej0tQYDnsAcbCbcECj7M4Z34BZndAHqB-VVf8IcJekZCs5CyLCQl5Hudj6pcUNhsx5ySMiiHyzGtPC02lL2Y5Sy8U9xC9sLfMFY_MZReHRpapNoSVgZsCLi-7bdvIPdULUpsKMinB8kmG6Jn9FlSIiAtmFa-XbUrCJKJh4D26yhy30Y31n_Ax6i-aJX-CrhWrxaRtnmpQ_waKiuqb |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DEMORS%3A+A+hybrid+multi-objective+optimization+algorithm+using+differential+evolution+and+rough+set+theory+for+constrained+problems&rft.jtitle=Computers+%26+operations+research&rft.au=Santana-Quintero%2C+Luis+V.&rft.au=Hern%C3%A1ndez-D%C3%ADaz%2C+Alfredo+G.&rft.au=Molina%2C+Juli%C3%A1n&rft.au=Coello+Coello%2C+Carlos+A.&rft.date=2010-03-01&rft.issn=0305-0548&rft.volume=37&rft.issue=3&rft.spage=470&rft.epage=480&rft_id=info:doi/10.1016%2Fj.cor.2009.02.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cor_2009_02_006 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon |