An orthogonal predictive model-based dynamic multi-objective optimization algorithm

In this paper, a new dynamic multi-objective optimization evolutionary algorithm is proposed for tracking the Pareto-optimal set of time-changing multi-objective optimization problems effectively. In the proposed algorithm, to select individuals which are best suited for a new time from the historic...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Soft computing (Berlin, Germany) Ročník 19; číslo 11; s. 3083 - 3107
Hlavní autoři: Liu, Ruochen, Niu, Xu, Fan, Jing, Mu, Caihong, Jiao, Licheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2015
Springer Nature B.V
Témata:
ISSN:1432-7643, 1433-7479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, a new dynamic multi-objective optimization evolutionary algorithm is proposed for tracking the Pareto-optimal set of time-changing multi-objective optimization problems effectively. In the proposed algorithm, to select individuals which are best suited for a new time from the historical optimal sets, an orthogonal predictive model is presented to predict the new individuals after the environment change is detected. Also, to converge to optimal front more quickly, an modified multi-objective optimization evolutionary algorithm based on decomposition is adopted. The proposed method has been extensively compared with other three dynamic multi-objective evolutionary algorithms over several benchmark dynamic multi-objective optimization problems. The experimental results indicate that the proposed algorithm achieves competitive results.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1432-7643
1433-7479
DOI:10.1007/s00500-014-1470-y