An orthogonal predictive model-based dynamic multi-objective optimization algorithm

In this paper, a new dynamic multi-objective optimization evolutionary algorithm is proposed for tracking the Pareto-optimal set of time-changing multi-objective optimization problems effectively. In the proposed algorithm, to select individuals which are best suited for a new time from the historic...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Soft computing (Berlin, Germany) Ročník 19; číslo 11; s. 3083 - 3107
Hlavní autori: Liu, Ruochen, Niu, Xu, Fan, Jing, Mu, Caihong, Jiao, Licheng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2015
Springer Nature B.V
Predmet:
ISSN:1432-7643, 1433-7479
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, a new dynamic multi-objective optimization evolutionary algorithm is proposed for tracking the Pareto-optimal set of time-changing multi-objective optimization problems effectively. In the proposed algorithm, to select individuals which are best suited for a new time from the historical optimal sets, an orthogonal predictive model is presented to predict the new individuals after the environment change is detected. Also, to converge to optimal front more quickly, an modified multi-objective optimization evolutionary algorithm based on decomposition is adopted. The proposed method has been extensively compared with other three dynamic multi-objective evolutionary algorithms over several benchmark dynamic multi-objective optimization problems. The experimental results indicate that the proposed algorithm achieves competitive results.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1432-7643
1433-7479
DOI:10.1007/s00500-014-1470-y