Power consumption minimization by distributive particle swarm optimization for luminance control and its parallel implementations

•Luminance control is formalized as a constrained search problem.•Both power consumption minimization and sufficient illuminance are considered.•A distributive PSO-based algorithm is developed to do an effective search.•Parallel implementations in GPU and Hadoop MapReduce are developed.•The develope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 96; S. 479 - 491
Hauptverfasser: Liao, Chih-Lun, Lee, Shie-Jue, Chiou, Yu-Shu, Lee, Ching-Ran, Lee, Chie-Hong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Elsevier Ltd 15.04.2018
Elsevier BV
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Luminance control is formalized as a constrained search problem.•Both power consumption minimization and sufficient illuminance are considered.•A distributive PSO-based algorithm is developed to do an effective search.•Parallel implementations in GPU and Hadoop MapReduce are developed.•The developed systems are demonstrated to be effective in real-time luminance control. We present an intelligent system, based on the particle swarm optimization (PSO) technique, to solve a power consumption minimization problem which is commonly encountered at the industrial factories or workshops. The power minimization problem is concerned with adjusting the settings of a number of lighting devices in real time in a working environment, subject to the requirements of minimizing the power consumption of the lighting devices as well as producing sufficient illuminance over all the specified working spots in the working area. Usually, the search space involved is too huge and solving the problem with traditional methods, e.g., brute force or least squares, is out of the question. In this paper we describe a distributive-PSO (DPSO) based algorithm to solve the problem. We show that by dividing the whole population of particles into a number of groups, PSO can be done distributively on each group and the best settings for the lighting devices, which meet the requirements, can be efficiently obtained. DPSO is very suitable to be parallelized. Parallel implementations in GPU and Hadoop MapReduce are developed. Simulation results show that our developed system is effective for a variety of working environments. We believe our work facilitates developing an efficient tool for energy conservation as well as other optimization applications.
AbstractList We present an intelligent system, based on the particle swarm optimization (PSO) technique, to solve a power consumption minimization problem which is commonly encountered at the industrial factories or workshops. The power minimization problem is concerned with adjusting the settings of a number of lighting devices in real time in a working environment, subject to the requirements of minimizing the power consumption of the lighting devices as well as producing sufficient illuminance over all the specified working spots in the working area. Usually, the search space involved is too huge and solving the problem with traditional methods, e.g., brute force or least squares, is out of the question. In this paper we describe a distributive-PSO (DPSO) based algorithm to solve the problem. We show that by dividing the whole population of particles into a number of groups, PSO can be done distributively on each group and the best settings for the lighting devices, which meet the requirements, can be efficiently obtained. DPSO is very suitable to be parallelized. Parallel implementations in GPU and Hadoop MapReduce are developed. Simulation results show that our developed system is effective for a variety of working environments. We believe our work facilitates developing an efficient tool for energy conservation as well as other optimization applications.
•Luminance control is formalized as a constrained search problem.•Both power consumption minimization and sufficient illuminance are considered.•A distributive PSO-based algorithm is developed to do an effective search.•Parallel implementations in GPU and Hadoop MapReduce are developed.•The developed systems are demonstrated to be effective in real-time luminance control. We present an intelligent system, based on the particle swarm optimization (PSO) technique, to solve a power consumption minimization problem which is commonly encountered at the industrial factories or workshops. The power minimization problem is concerned with adjusting the settings of a number of lighting devices in real time in a working environment, subject to the requirements of minimizing the power consumption of the lighting devices as well as producing sufficient illuminance over all the specified working spots in the working area. Usually, the search space involved is too huge and solving the problem with traditional methods, e.g., brute force or least squares, is out of the question. In this paper we describe a distributive-PSO (DPSO) based algorithm to solve the problem. We show that by dividing the whole population of particles into a number of groups, PSO can be done distributively on each group and the best settings for the lighting devices, which meet the requirements, can be efficiently obtained. DPSO is very suitable to be parallelized. Parallel implementations in GPU and Hadoop MapReduce are developed. Simulation results show that our developed system is effective for a variety of working environments. We believe our work facilitates developing an efficient tool for energy conservation as well as other optimization applications.
Author Lee, Chie-Hong
Lee, Shie-Jue
Lee, Ching-Ran
Liao, Chih-Lun
Chiou, Yu-Shu
Author_xml – sequence: 1
  givenname: Chih-Lun
  surname: Liao
  fullname: Liao, Chih-Lun
  email: clliao@water.ee.nsysu.edu.tw
  organization: Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
– sequence: 2
  givenname: Shie-Jue
  surname: Lee
  fullname: Lee, Shie-Jue
  email: leesj@mail.ee.nsysu.edu.tw
  organization: Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
– sequence: 3
  givenname: Yu-Shu
  surname: Chiou
  fullname: Chiou, Yu-Shu
  email: yschiou@water.ee.nsysu.edu.tw
  organization: Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
– sequence: 4
  givenname: Ching-Ran
  surname: Lee
  fullname: Lee, Ching-Ran
  email: lee0624@itri.org.tw
  organization: Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
– sequence: 5
  givenname: Chie-Hong
  surname: Lee
  fullname: Lee, Chie-Hong
  organization: Department of Digital Content Application and Management, Wenzao Ursuline University of Languages, Kaohsiung 807, Taiwan
BookMark eNp90E1r3DAQBmBREsgmzR_ISdCzXX3YlhdyKaFJCoH20J6FVh7DLLLkSvIu6S3_vHI29NBDTkLwPjPMe0nOfPBAyA1nNWe8-7yvIR1NLRhXNec1Y-ID2fBeyapTW3lGNmzbqqrhqrkglyntWQkypjbk5Uc4QqQ2-LRMc8bg6YQeJ_xjXj-7ZzpgyhF3S8YD0NnEjNYBLeviREMh_7JjiNQthRtvYR2ZY3DU-IFiTqs0zoGjOM0OJvD5VaWP5Hw0LsH123tFft1__Xn3WD19f_h29-WpsrLvctWJxjLRWWabkRtpdyMTTccEM6Yfdn0PW8MUB8GU7IzsBwOiaVsDbSutMqKVV-TTae4cw-8FUtb7sERfVupSm-il2jaqpMQpZWNIKcKo54iTic-aM71Wrfd6rXo1SnOuS9UF9f8hi6frcjTo3qe3Jwrl9ANC1MkilP4GjGCzHgK-x_8CEcqgJA
CitedBy_id crossref_primary_10_1007_s13369_018_03713_6
crossref_primary_10_1016_j_eswa_2021_115995
crossref_primary_10_3390_a14100275
crossref_primary_10_1007_s10489_018_1364_2
crossref_primary_10_1109_ACCESS_2021_3093277
crossref_primary_10_1016_j_paerosci_2024_101046
crossref_primary_10_1016_j_swevo_2021_100868
crossref_primary_10_1109_ACCESS_2023_3278261
crossref_primary_10_3390_app12178392
crossref_primary_10_1016_j_engappai_2018_09_003
crossref_primary_10_1007_s11227_024_06433_x
crossref_primary_10_1109_ACCESS_2019_2960516
crossref_primary_10_1109_ACCESS_2019_2963502
Cites_doi 10.1016/j.asoc.2015.10.004
10.1145/1327452.1327492
10.1016/j.apenergy.2009.05.016
10.1109/4235.985692
10.4007/annals.2004.160.781
10.1109/TEVC.2011.2112662
10.1109/TPEL.2012.2185713
10.1109/TEVC.2004.826071
10.1109/TPDS.2014.2317713
10.1016/j.future.2012.07.009
10.1155/2017/1063045
10.1016/j.neucom.2015.09.025
10.4236/ajor.2016.65037
10.1109/TCYB.2014.2322602
10.1016/j.future.2013.06.002
10.1109/PGEC.1966.264565
10.1109/TGRS.2014.2319337
10.1016/j.eswa.2015.04.032
10.1109/TSMC.2015.2482938
10.1145/327070.327215
10.3906/elk-1507-226
10.1109/TEVC.2010.2052054
10.1155/2017/2782679
10.1016/j.eswa.2012.12.033
10.2528/PIER15040602
10.1162/EVCO_r_00180
10.1109/TPDS.2012.161
10.1016/j.neucom.2013.01.027
10.1016/j.asoc.2009.07.001
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Apr 15, 2018
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Apr 15, 2018
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2017.11.002
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 491
ExternalDocumentID 10_1016_j_eswa_2017_11_002
S0957417417307431
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c386t-624c026c0c4f1a3cbf0246020aa8db88e9a071e20736a38dae2455ae553c7a253
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424176900034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Mon Jul 14 10:28:29 EDT 2025
Tue Nov 18 22:35:02 EST 2025
Sat Nov 29 04:44:48 EST 2025
Fri Feb 23 02:24:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords CUDA
Parallel algorithm
Energy conservation
Hadoop
Particle swarm optimization
GPU
MapReduce
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c386t-624c026c0c4f1a3cbf0246020aa8db88e9a071e20736a38dae2455ae553c7a253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2012837947
PQPubID 2045477
PageCount 13
ParticipantIDs proquest_journals_2012837947
crossref_primary_10_1016_j_eswa_2017_11_002
crossref_citationtrail_10_1016_j_eswa_2017_11_002
elsevier_sciencedirect_doi_10_1016_j_eswa_2017_11_002
PublicationCentury 2000
PublicationDate 2018-04-15
PublicationDateYYYYMMDD 2018-04-15
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-15
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References CPU (2008). CPU frequency.
MPI (2014). Open MPI: Open source high performance computing.
Zhang, Zhuang, Gao, Luo, Ran, Du (bib0076) 2014; 52
Niknam, Amiri (bib0050) 2010; 10
Zhan, Zhang, Li, Shi (bib0075) 2011; 15
Evers (bib0024) 2009
Sipser (bib0063) 2006
Clerc, Kennedy (bib0015) 2002; 6
Golberg (bib0027) 1989
Hennessy, Patterson, Larus (bib0034) 1999
Oliveira, Pinheiro, Andrade, Bastos-Filho, Menezes (bib0053) 2016
Cazzaniga, Nobile, Besozzi (bib0011) 2015
Zhang, Wang, Ji (bib0079) 2015; 2015
Darwin (bib0020) 1998
Boggan, Pressel (bib0009) 2007
Kann (bib0038) 1992
Melin, Olivas, Castillo, Valdez, Soria, Valdez (bib0045) 2013; 40
Ausiello, Crescenzi, Gambosi, Kann, Marchetti-Spaccamela, Protasi (bib0004) 2012
Yeh, Peng, Lee (bib0074) 2013; 24
Chen (bib0012) 2016; 173
Hennessy, Patterson (bib0033) 2011
Feng, Pan (bib0025) 2014
Bernstein (bib0008) 1966; 15
Dean, Ghemawat (bib0021) 2008; 51
Dijkstra (bib0023) 2002
Rodgers (bib0060) 1985; 13
.
Wang (bib0068) 2010
Parsopoulos, Vrahatis (bib0055) 2002; 76
Peng, Yeh, Lee (bib0057) 2011
Agrawal, Kayal, Saxena (bib0002) 2004; 160
Zhang, Wang, Dong, Phillip, Ji, Yang (bib0078) 2015; 152
Cui, Charles, Potok (bib0019) 2013; 29
Chen, Chen (bib0013) 2016; 46
Li, Yao (bib0041) 2012; 16
Taherkhani, Safabakhsh (bib0066) 2016; 38
Ravi, Becchi, Jiang, Agrawal, Chakradhar (bib0059) 2013; 29
Wenna, Zhenyu (bib0070) 2011
Bonyadi, Michalewicz (bib0010) 2017; 25
Cobham (bib0016) 1965
GPU (2014). NVIDIA Corporation: GPU accelerated computing.
Multicore (2007). What is (a) multi-core processor?
Roosta (bib0061) 2012
Nobile, Pasi, Cazzaniga, Besozzi, Colombo, Mauri (bib0051) 2015
CUDA (2014). NVIDIA Corporation : CUDA.
Mcnabb, Monson, Seppi (bib0044) 2007
Ratnaweera, Halgamuge, Watson (bib0058) 2004; 8
Hu, Eberhart (bib0035) 2002
Jakus, Čad̄enović, Bogdanović, Sarajćev, Vasilj (bib0037) 2017
Silva Filho, Pimentel, Souza, Oliveira (bib0062) 2015; 42
Niknam (bib0049) 2010; 87
Woeginger (bib0072) 2003
White (bib0071) 2009
Bao, Hu, Xiong (bib0005) 2013; 117
Barnett (bib0006) 1990
Barrera, Coello (bib0007) 2009
Deep, Sharma, Pant (bib0022) 2010
Almasi, Gottlieb (bib0003) 1988
Fisher (bib0026) 1930
Madan, Kaur, Bhavsar, Patel, Mishra (bib0042) 2015
Cheng, Jin (bib0014) 2015; 45
Yapici, Cetinkaya (bib0073) 2017; 2017
Hazewinkel (bib0032) 2002
Matei (bib0043) 2011
Govindarajan, Boulanger, Suresh, Kinshuk (bib0028) 2015
Patil, Bhalchandra (bib0056) 2017
Abdi, Lak, Seyfari (bib0001) 2017; 25
Ishaque, Salam, Amjad, Mekhilef (bib0036) 2012; 27
Kennedy (bib0039) 1997
Hadoop (2014). The apache software foundation.
Kennedy, Eberhart (bib0040) 1995; 4
Suzuki (bib0065) 2016; 6
Novell (2011). NDK: Libraries for C.
Sun, Xu (bib0064) 2017; 2017
Gudmundsson, Valladares (bib0030) 2015; 26
Microsoft (2014). Multiple threads (Windows).
Papadimitriou (bib0054) 2007
Welton, Miller (bib0069) 2014
Tsujimoto, Shindo, Kimura, Jin’no (bib0067) 2012
Zhang (bib0077) 2017; 1864
Agrawal (10.1016/j.eswa.2017.11.002_bib0002) 2004; 160
Zhan (10.1016/j.eswa.2017.11.002_bib0075) 2011; 15
Taherkhani (10.1016/j.eswa.2017.11.002_bib0066) 2016; 38
Ishaque (10.1016/j.eswa.2017.11.002_bib0036) 2012; 27
Rodgers (10.1016/j.eswa.2017.11.002_bib0060) 1985; 13
Ravi (10.1016/j.eswa.2017.11.002_bib0059) 2013; 29
Barrera (10.1016/j.eswa.2017.11.002_bib0007) 2009
Boggan (10.1016/j.eswa.2017.11.002_bib0009) 2007
Peng (10.1016/j.eswa.2017.11.002_bib0057) 2011
Zhang (10.1016/j.eswa.2017.11.002_bib0078) 2015; 152
Yeh (10.1016/j.eswa.2017.11.002_bib0074) 2013; 24
Melin (10.1016/j.eswa.2017.11.002_bib0045) 2013; 40
10.1016/j.eswa.2017.11.002_bib0031
Jakus (10.1016/j.eswa.2017.11.002_bib0037) 2017
Matei (10.1016/j.eswa.2017.11.002_bib0043) 2011
Evers (10.1016/j.eswa.2017.11.002_bib0024) 2009
Cui (10.1016/j.eswa.2017.11.002_bib0019) 2013; 29
Ausiello (10.1016/j.eswa.2017.11.002_bib0004) 2012
Dijkstra (10.1016/j.eswa.2017.11.002_bib0023) 2002
Woeginger (10.1016/j.eswa.2017.11.002_bib0072) 2003
Chen (10.1016/j.eswa.2017.11.002_bib0012) 2016; 173
Golberg (10.1016/j.eswa.2017.11.002_bib0027) 1989
Kann (10.1016/j.eswa.2017.11.002_bib0038) 1992
Govindarajan (10.1016/j.eswa.2017.11.002_bib0028) 2015
Mcnabb (10.1016/j.eswa.2017.11.002_bib0044) 2007
Oliveira (10.1016/j.eswa.2017.11.002_bib0053) 2016
Hennessy (10.1016/j.eswa.2017.11.002_bib0034) 1999
Hennessy (10.1016/j.eswa.2017.11.002_bib0033) 2011
Hu (10.1016/j.eswa.2017.11.002_bib0035) 2002
Chen (10.1016/j.eswa.2017.11.002_bib0013) 2016; 46
10.1016/j.eswa.2017.11.002_bib0029
Clerc (10.1016/j.eswa.2017.11.002_bib0015) 2002; 6
Patil (10.1016/j.eswa.2017.11.002_bib0056) 2017
Niknam (10.1016/j.eswa.2017.11.002_bib0050) 2010; 10
Gudmundsson (10.1016/j.eswa.2017.11.002_bib0030) 2015; 26
Abdi (10.1016/j.eswa.2017.11.002_bib0001) 2017; 25
Roosta (10.1016/j.eswa.2017.11.002_bib0061) 2012
Cobham (10.1016/j.eswa.2017.11.002_bib0016) 1965
Deep (10.1016/j.eswa.2017.11.002_bib0022) 2010
Bonyadi (10.1016/j.eswa.2017.11.002_bib0010) 2017; 25
Hazewinkel (10.1016/j.eswa.2017.11.002_bib0032) 2002
Zhang (10.1016/j.eswa.2017.11.002_bib0079) 2015; 2015
Suzuki (10.1016/j.eswa.2017.11.002_bib0065) 2016; 6
10.1016/j.eswa.2017.11.002_bib0052
Parsopoulos (10.1016/j.eswa.2017.11.002_bib0055) 2002; 76
Feng (10.1016/j.eswa.2017.11.002_bib0025) 2014
Niknam (10.1016/j.eswa.2017.11.002_bib0049) 2010; 87
10.1016/j.eswa.2017.11.002_bib0017
10.1016/j.eswa.2017.11.002_bib0018
Yapici (10.1016/j.eswa.2017.11.002_bib0073) 2017; 2017
Ratnaweera (10.1016/j.eswa.2017.11.002_bib0058) 2004; 8
Fisher (10.1016/j.eswa.2017.11.002_bib0026) 1930
Papadimitriou (10.1016/j.eswa.2017.11.002_bib0054) 2007
Zhang (10.1016/j.eswa.2017.11.002_bib0076) 2014; 52
Almasi (10.1016/j.eswa.2017.11.002_bib0003) 1988
Cazzaniga (10.1016/j.eswa.2017.11.002_bib0011) 2015
Kennedy (10.1016/j.eswa.2017.11.002_bib0039) 1997
Li (10.1016/j.eswa.2017.11.002_bib0041) 2012; 16
Barnett (10.1016/j.eswa.2017.11.002_bib0006) 1990
Darwin (10.1016/j.eswa.2017.11.002_bib0020) 1998
Sun (10.1016/j.eswa.2017.11.002_bib0064) 2017; 2017
Silva Filho (10.1016/j.eswa.2017.11.002_bib0062) 2015; 42
Wenna (10.1016/j.eswa.2017.11.002_bib0070) 2011
Bao (10.1016/j.eswa.2017.11.002_bib0005) 2013; 117
White (10.1016/j.eswa.2017.11.002_bib0071) 2009
Welton (10.1016/j.eswa.2017.11.002_bib0069) 2014
Zhang (10.1016/j.eswa.2017.11.002_sbref0069) 2017; 1864
Dean (10.1016/j.eswa.2017.11.002_bib0021) 2008; 51
Wang (10.1016/j.eswa.2017.11.002_bib0068) 2010
Cheng (10.1016/j.eswa.2017.11.002_bib0014) 2015; 45
10.1016/j.eswa.2017.11.002_bib0046
10.1016/j.eswa.2017.11.002_bib0047
Madan (10.1016/j.eswa.2017.11.002_bib0042) 2015
Sipser (10.1016/j.eswa.2017.11.002_bib0063) 2006
Bernstein (10.1016/j.eswa.2017.11.002_bib0008) 1966; 15
Kennedy (10.1016/j.eswa.2017.11.002_bib0040) 1995; 4
10.1016/j.eswa.2017.11.002_bib0048
Nobile (10.1016/j.eswa.2017.11.002_bib0051) 2015
Tsujimoto (10.1016/j.eswa.2017.11.002_bib0067) 2012
References_xml – start-page: 1
  year: 2012
  end-page: 6
  ident: bib0067
  article-title: A relationship between network topology and search performance of PSO
  publication-title: Proceedings of ieee congress on evolutionary computation
– volume: 45
  start-page: 191
  year: 2015
  end-page: 204
  ident: bib0014
  article-title: A competitive swarm optimizer for large scale optimization
  publication-title: IEEE Transactions on Cybernetics
– reference: Multicore (2007). What is (a) multi-core processor?
– volume: 76
  start-page: 214
  year: 2002
  end-page: 220
  ident: bib0055
  article-title: Particle swarm optimization method for constrained optimization problems
  publication-title: Intelligent Technologies-Theory and Application: New Trends in Intelligent Technologies
– start-page: 177
  year: 2007
  ident: bib0044
  article-title: MRPSO: MapReduce particle swarm optimization
  publication-title: Proceedings of 9th annual conference on genetic and evolutionary computation
– year: 1992
  ident: bib0038
  publication-title: On the approximability of NP-complete optimization problems
– start-page: 124
  year: 2015
  end-page: 125
  ident: bib0042
  article-title: GPU-based out-of-core MDL clustering algorithm
  publication-title: Proceedings of 2nd acm ikdd conference on data sciences
– reference: GPU (2014). NVIDIA Corporation: GPU accelerated computing.
– reference: Novell (2011). NDK: Libraries for C.
– volume: 52
  start-page: 7782
  year: 2014
  end-page: 7792
  ident: bib0076
  article-title: PSO-EM: A hyperspectral unmixing algorithm based on normal compositional model
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– year: 1998
  ident: bib0020
  article-title: On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life
– year: 2012
  ident: bib0061
  article-title: Parallel processing and parallel algorithms: Theory and computation
– volume: 25
  start-page: 1
  year: 2017
  end-page: 54
  ident: bib0010
  article-title: Particle swarm optimization for single objective continuous space problems: A review
  publication-title: Evolutionary Computation
– year: 2007
  ident: bib0054
  article-title: Computational complexity
– year: 2002
  ident: bib0023
  article-title: Cooperating Sequential Processes
– year: 2011
  ident: bib0043
  article-title: Spark: In-memory cluster computing for iterative and interactive applications
  publication-title: Nips 2011 big learning - algorithms, systems, & tools workshop
– year: 2015
  ident: bib0028
  article-title: Parallel particle swarm optimization (PPSO) clustering for learning analytics
  publication-title: Proceedings of ieee international conference on big data
– reference: MPI (2014). Open MPI: Open source high performance computing.
– volume: 27
  start-page: 3627
  year: 2012
  end-page: 3638
  ident: bib0036
  article-title: An improved particle swarm optimization (PSO)–based MPPT for PV with reduced steady-state oscillation
  publication-title: IEEE Transactions on Power Electronics
– year: 2016
  ident: bib0053
  article-title: Communication diversity in particle swarm optimizers
  publication-title: Proceedings of international conference on swarm intelligence
– volume: 25
  start-page: 209
  year: 2017
  end-page: 221
  ident: bib0001
  article-title: GICA: Imperialist competitive algorithm with globalization mechanism for optimization problems
  publication-title: Turkish Journal of Electrical Engineering & Computer Sciences
– volume: 15
  start-page: 757
  year: 1966
  end-page: 763
  ident: bib0008
  article-title: Analysis of programs for parallel processing
  publication-title: IEEE Transactions on Electronic Computers
– volume: 29
  start-page: 1736
  year: 2013
  end-page: 1741
  ident: bib0019
  article-title: GPU enhanced parallel computing for large scale data clustering
  publication-title: Future Generation Computer Systems
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 38
  ident: bib0079
  article-title: A comprehensive survey on particle swarm optimization algorithm and its applications
  publication-title: Mathematical Problems in Engineering
– year: 2015
  ident: bib0011
  article-title: The impact of particles initialization in PSO: Parameter estimation as a case in point
  publication-title: Proceedings of ieee international conference on computational intelligence in bioinformatics and computational biology
– start-page: 1
  year: 2015
  end-page: 8
  ident: bib0051
  article-title: Proactive particles in swarm optimization: A self-tuning algorithm based on fuzzy logic
  publication-title: Proceedings of ieee international conference on fuzzy systems (fuzz-ieee 2015)
– year: 2007
  ident: bib0009
  article-title: GPUs: An emerging platform for general-purpose computation
  publication-title: Technical Report
– start-page: 1
  year: 2011
  end-page: 4
  ident: bib0070
  article-title: A CUDA-based multi-channel particle swarm algorithm
  publication-title: Proceedings of ieee international conference on control, automation and systems engineering
– volume: 2017
  start-page: ID2782679
  year: 2017
  ident: bib0064
  article-title: A swarm optimization genetic algorithm based on quantum-behaved particle swarm optimization
  publication-title: Computational Intelligence and Neuroscience
– volume: 29
  start-page: 2262
  year: 2013
  end-page: 2271
  ident: bib0059
  article-title: Scheduling concurrent applications on a cluster of CPU – GPU nodes
  publication-title: Future Generation Computer Systems
– volume: 24
  start-page: 428
  year: 2013
  end-page: 438
  ident: bib0074
  article-title: An iterative divide-and-merge-based approach for solving large-scale least squares problems
  publication-title: IEEE Transactions on Parallel and Distributed Systems
– volume: 16
  start-page: 210
  year: 2012
  end-page: 224
  ident: bib0041
  article-title: Cooperatively coevolving particle swarms for large scale optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 42
  start-page: 6315
  year: 2015
  end-page: 6328
  ident: bib0062
  article-title: Hybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimization
  publication-title: Expert Systems with Applications
– year: 1990
  ident: bib0006
  article-title: Matrices. Methods and applications
– start-page: 1661
  year: 2010
  end-page: 1666
  ident: bib0068
  article-title: Variable velocity limit chaotic particle swarm optimization
  publication-title: Proceedings of ieee international conference on information and automation
– year: 2012
  ident: bib0004
  article-title: Complexity and approximation: Combinatorial optimization problems and their approximability properties
– year: 1930
  ident: bib0026
  article-title: The genetical theory of natural selection
– year: 2017
  ident: bib0037
  article-title: Distribution network reconfiguration using hybrid heuristic-genetic algorithm
  publication-title: Proceedings of 2nd international multidisciplinary conference on computer and energy science
– start-page: 558
  year: 2014
  end-page: 562
  ident: bib0025
  article-title: A modified PSO algorithm based on cache replacement algorithm
  publication-title: Proceedings of 10th ieee international conference on computational intelligence and security
– volume: 6
  start-page: 401
  year: 2016
  end-page: 413
  ident: bib0065
  article-title: Adaptive parallel particle swarm optimization algorithm based on dynamic exchange of control parameters
  publication-title: American Journal of Operations Research
– start-page: 1739
  year: 2009
  end-page: 1740
  ident: bib0007
  article-title: Limiting the velocity in particle swarm optimization using a geometric series
  publication-title: Proceedings of 11th annual conference on genetic and evolutionary computation
– reference: Hadoop (2014). The apache software foundation.
– volume: 15
  start-page: 832
  year: 2011
  end-page: 847
  ident: bib0075
  article-title: Orthogonal learning particle swarm optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 117
  start-page: 98
  year: 2013
  end-page: 106
  ident: bib0005
  article-title: A PSO and pattern search based memetic algorithm for SVMs parameters optimization
  publication-title: Neurocomputing
– start-page: 203
  year: 2002
  end-page: 206
  ident: bib0035
  article-title: Solving constrained nonlinear optimization problems with particle swarm optimization
  publication-title: Proceedings of world multiconference on systemics, cybernetics and informatics
– volume: 2017
  start-page: ID1063045
  year: 2017
  ident: bib0073
  article-title: An improved particle swarm optimization algorithm using eagle strategy for power loss minimization
  publication-title: Mathematical Problems in Engineering
– reference: Microsoft (2014). Multiple threads (Windows).
– volume: 51
  start-page: 107
  year: 2008
  end-page: 113
  ident: bib0021
  article-title: MapReduce: Simplified data processing on large clusters
  publication-title: Communications of the ACM
– year: 2009
  ident: bib0071
  article-title: Hadoop: The definitive guide
– year: 2017
  ident: bib0056
  article-title: Pattern recognition using genetic algorithm
  publication-title: Proceedings of international conference on IoT in social, mobile, analytics and cloud
– year: 2006
  ident: bib0063
  article-title: Introduction to the theory of computation
– start-page: 24
  year: 1965
  end-page: 50
  ident: bib0016
  article-title: The intrinsic computational difficulty of functions
  publication-title: Proceedings of international congress on logic, methodology and philosophy of science
– volume: 173
  start-page: 1519
  year: 2016
  end-page: 1528
  ident: bib0012
  article-title: Bare-bones imperialist competitive algorithm for a compensatory neural fuzzy controller
  publication-title: Neurocomputing
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0040
  article-title: Particle swarm optimization
  publication-title: Proceedings of ieee international conference on neural networks
– year: 2011
  ident: bib0033
  article-title: Computer architecture: A quantitative approach
– volume: 1864
  year: 2017
  ident: bib0077
  article-title: Combinatorial optimization problem solution based on improved genetic algorithm
  publication-title: AIP Conference Proceedings
– reference: CUDA (2014). NVIDIA Corporation : CUDA.
– year: 1989
  ident: bib0027
  article-title: Genetic algorithms in search, optimization, and machine learning
– reference: CPU (2008). CPU frequency.
– start-page: 54
  year: 2014
  end-page: 60
  ident: bib0069
  article-title: The anatomy of Mr. Scan: A dissection of performance of an extreme scale GPU-based clustering algorithm
  publication-title: Proceedings of 5th ieee workshop on latest advances in scalable algorithms for large-scale systems
– start-page: 1451
  year: 2010
  end-page: 1458
  ident: bib0022
  article-title: Modified parallel particle swarm optimization for global optimization using message passing interface
  publication-title: Proceedings of ieee 5th international conference on bio-inspired computing: Theories and applications
– start-page: 185
  year: 2003
  end-page: 207
  ident: bib0072
  article-title: Exact algorithms for NP-hard problems: A survey
  publication-title: Combinatorial optimization – eureka, you shrink!
– year: 2009
  ident: bib0024
  publication-title: An automatic regrouping mechanism to deal with stagnation in particle swarm optimization
– volume: 40
  start-page: 3196
  year: 2013
  end-page: 3206
  ident: bib0045
  article-title: Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic
  publication-title: Expert Systems with Applications
– volume: 46
  start-page: 1180
  year: 2016
  end-page: 1189
  ident: bib0013
  article-title: United-based imperialist competitive algorithm for compensatory neural fuzzy systems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– reference: .
– year: 1988
  ident: bib0003
  article-title: Highly parallel computing
– volume: 26
  start-page: 924
  year: 2015
  end-page: 937
  ident: bib0030
  article-title: A GPU approach to subtrajectory clustering using the fréchet distance
  publication-title: IEEE Transactions on Parallel and Distributed Systems
– volume: 10
  start-page: 183
  year: 2010
  end-page: 197
  ident: bib0050
  article-title: An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis
  publication-title: Applied Soft Computing
– volume: 8
  start-page: 240
  year: 2004
  end-page: 255
  ident: bib0058
  article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
  publication-title: IEEE Transactions on Evolutionary Computation
– year: 2002
  ident: bib0032
  article-title: Encyclopedia of mathematics
– volume: 152
  start-page: 41
  year: 2015
  end-page: 58
  ident: bib0078
  article-title: Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization
  publication-title: Progress in Electromagnetics Research
– start-page: 303
  year: 1997
  end-page: 308
  ident: bib0039
  article-title: The particle swarm: social adaptation of knowledge
  publication-title: Proceedings of ieee international conference on evolutionary computation
– volume: 160
  start-page: 781
  year: 2004
  end-page: 793
  ident: bib0002
  article-title: PRIMES is in P
  publication-title: Annals of mathematics
– volume: 87
  start-page: 327
  year: 2010
  end-page: 339
  ident: bib0049
  article-title: A new fuzzy adaptive hybrid particle swarm optimization algorithm for non-linear, non-smooth and non-convex economic dispatch problem
  publication-title: Applied Energy
– start-page: 219
  year: 2011
  end-page: 222
  ident: bib0057
  article-title: A hierarchical SVD-based least squares method for parameter estimation
  publication-title: Proceedings of international conference on data engineering and internet technology
– volume: 13
  start-page: 225
  year: 1985
  end-page: 231
  ident: bib0060
  article-title: Improvements in multiprocessor system design
  publication-title: ACM SIGARCH Computer Architecture News
– volume: 6
  start-page: 58
  year: 2002
  end-page: 73
  ident: bib0015
  article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Transactions on Evolutionary Computation
– year: 1999
  ident: bib0034
  article-title: Computer organization and design: The hardware/software interface (3rd ed.)
– volume: 38
  start-page: 281
  year: 2016
  end-page: 295
  ident: bib0066
  article-title: A novel stability-based adaptive inertia weight for particle swarm optimization
  publication-title: Applied Soft Computing
– year: 1998
  ident: 10.1016/j.eswa.2017.11.002_bib0020
– volume: 38
  start-page: 281
  year: 2016
  ident: 10.1016/j.eswa.2017.11.002_bib0066
  article-title: A novel stability-based adaptive inertia weight for particle swarm optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.10.004
– volume: 51
  start-page: 107
  issue: 1
  year: 2008
  ident: 10.1016/j.eswa.2017.11.002_bib0021
  article-title: MapReduce: Simplified data processing on large clusters
  publication-title: Communications of the ACM
  doi: 10.1145/1327452.1327492
– year: 2015
  ident: 10.1016/j.eswa.2017.11.002_bib0011
  article-title: The impact of particles initialization in PSO: Parameter estimation as a case in point
– volume: 87
  start-page: 327
  issue: 1
  year: 2010
  ident: 10.1016/j.eswa.2017.11.002_bib0049
  article-title: A new fuzzy adaptive hybrid particle swarm optimization algorithm for non-linear, non-smooth and non-convex economic dispatch problem
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2009.05.016
– volume: 6
  start-page: 58
  issue: 1
  year: 2002
  ident: 10.1016/j.eswa.2017.11.002_bib0015
  article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.985692
– year: 1988
  ident: 10.1016/j.eswa.2017.11.002_bib0003
– start-page: 303
  year: 1997
  ident: 10.1016/j.eswa.2017.11.002_bib0039
  article-title: The particle swarm: social adaptation of knowledge
– start-page: 219
  year: 2011
  ident: 10.1016/j.eswa.2017.11.002_bib0057
  article-title: A hierarchical SVD-based least squares method for parameter estimation
– year: 1990
  ident: 10.1016/j.eswa.2017.11.002_bib0006
– ident: 10.1016/j.eswa.2017.11.002_bib0048
– volume: 160
  start-page: 781
  issue: 2
  year: 2004
  ident: 10.1016/j.eswa.2017.11.002_bib0002
  article-title: PRIMES is in P
  publication-title: Annals of mathematics
  doi: 10.4007/annals.2004.160.781
– ident: 10.1016/j.eswa.2017.11.002_bib0029
– volume: 16
  start-page: 210
  issue: 2
  year: 2012
  ident: 10.1016/j.eswa.2017.11.002_bib0041
  article-title: Cooperatively coevolving particle swarms for large scale optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2011.2112662
– year: 2011
  ident: 10.1016/j.eswa.2017.11.002_bib0043
  article-title: Spark: In-memory cluster computing for iterative and interactive applications
– year: 2002
  ident: 10.1016/j.eswa.2017.11.002_bib0032
– year: 2011
  ident: 10.1016/j.eswa.2017.11.002_bib0033
– volume: 27
  start-page: 3627
  issue: 8
  year: 2012
  ident: 10.1016/j.eswa.2017.11.002_bib0036
  article-title: An improved particle swarm optimization (PSO)–based MPPT for PV with reduced steady-state oscillation
  publication-title: IEEE Transactions on Power Electronics
  doi: 10.1109/TPEL.2012.2185713
– start-page: 1739
  year: 2009
  ident: 10.1016/j.eswa.2017.11.002_bib0007
  article-title: Limiting the velocity in particle swarm optimization using a geometric series
– volume: 8
  start-page: 240
  issue: 3
  year: 2004
  ident: 10.1016/j.eswa.2017.11.002_bib0058
  article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2004.826071
– start-page: 1661
  year: 2010
  ident: 10.1016/j.eswa.2017.11.002_bib0068
  article-title: Variable velocity limit chaotic particle swarm optimization
– volume: 26
  start-page: 924
  issue: 4
  year: 2015
  ident: 10.1016/j.eswa.2017.11.002_bib0030
  article-title: A GPU approach to subtrajectory clustering using the fréchet distance
  publication-title: IEEE Transactions on Parallel and Distributed Systems
  doi: 10.1109/TPDS.2014.2317713
– volume: 29
  start-page: 1736
  issue: 7
  year: 2013
  ident: 10.1016/j.eswa.2017.11.002_bib0019
  article-title: GPU enhanced parallel computing for large scale data clustering
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2012.07.009
– year: 1999
  ident: 10.1016/j.eswa.2017.11.002_bib0034
– volume: 2017
  start-page: ID1063045
  year: 2017
  ident: 10.1016/j.eswa.2017.11.002_bib0073
  article-title: An improved particle swarm optimization algorithm using eagle strategy for power loss minimization
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2017/1063045
– volume: 173
  start-page: 1519
  year: 2016
  ident: 10.1016/j.eswa.2017.11.002_bib0012
  article-title: Bare-bones imperialist competitive algorithm for a compensatory neural fuzzy controller
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.025
– volume: 6
  start-page: 401
  issue: 5
  year: 2016
  ident: 10.1016/j.eswa.2017.11.002_bib0065
  article-title: Adaptive parallel particle swarm optimization algorithm based on dynamic exchange of control parameters
  publication-title: American Journal of Operations Research
  doi: 10.4236/ajor.2016.65037
– volume: 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.eswa.2017.11.002_bib0040
  article-title: Particle swarm optimization
– volume: 45
  start-page: 191
  issue: 2
  year: 2015
  ident: 10.1016/j.eswa.2017.11.002_bib0014
  article-title: A competitive swarm optimizer for large scale optimization
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2322602
– volume: 29
  start-page: 2262
  issue: 8
  year: 2013
  ident: 10.1016/j.eswa.2017.11.002_bib0059
  article-title: Scheduling concurrent applications on a cluster of CPU – GPU nodes
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2013.06.002
– volume: 15
  start-page: 757
  issue: 5
  year: 1966
  ident: 10.1016/j.eswa.2017.11.002_bib0008
  article-title: Analysis of programs for parallel processing
  publication-title: IEEE Transactions on Electronic Computers
  doi: 10.1109/PGEC.1966.264565
– year: 2012
  ident: 10.1016/j.eswa.2017.11.002_bib0004
– ident: 10.1016/j.eswa.2017.11.002_bib0047
– volume: 52
  start-page: 7782
  issue: 12
  year: 2014
  ident: 10.1016/j.eswa.2017.11.002_bib0076
  article-title: PSO-EM: A hyperspectral unmixing algorithm based on normal compositional model
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2014.2319337
– year: 2002
  ident: 10.1016/j.eswa.2017.11.002_bib0023
– year: 2017
  ident: 10.1016/j.eswa.2017.11.002_bib0056
  article-title: Pattern recognition using genetic algorithm
– start-page: 1
  year: 2012
  ident: 10.1016/j.eswa.2017.11.002_bib0067
  article-title: A relationship between network topology and search performance of PSO
– year: 2009
  ident: 10.1016/j.eswa.2017.11.002_bib0024
– start-page: 124
  year: 2015
  ident: 10.1016/j.eswa.2017.11.002_bib0042
  article-title: GPU-based out-of-core MDL clustering algorithm
– volume: 42
  start-page: 6315
  issue: 17
  year: 2015
  ident: 10.1016/j.eswa.2017.11.002_bib0062
  article-title: Hybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.04.032
– volume: 46
  start-page: 1180
  issue: 9
  year: 2016
  ident: 10.1016/j.eswa.2017.11.002_bib0013
  article-title: United-based imperialist competitive algorithm for compensatory neural fuzzy systems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2015.2482938
– year: 1989
  ident: 10.1016/j.eswa.2017.11.002_bib0027
– volume: 13
  start-page: 225
  issue: 3
  year: 1985
  ident: 10.1016/j.eswa.2017.11.002_bib0060
  article-title: Improvements in multiprocessor system design
  publication-title: ACM SIGARCH Computer Architecture News
  doi: 10.1145/327070.327215
– start-page: 24
  year: 1965
  ident: 10.1016/j.eswa.2017.11.002_bib0016
  article-title: The intrinsic computational difficulty of functions
– year: 2016
  ident: 10.1016/j.eswa.2017.11.002_bib0053
  article-title: Communication diversity in particle swarm optimizers
– volume: 25
  start-page: 209
  year: 2017
  ident: 10.1016/j.eswa.2017.11.002_bib0001
  article-title: GICA: Imperialist competitive algorithm with globalization mechanism for optimization problems
  publication-title: Turkish Journal of Electrical Engineering & Computer Sciences
  doi: 10.3906/elk-1507-226
– volume: 76
  start-page: 214
  year: 2002
  ident: 10.1016/j.eswa.2017.11.002_bib0055
  article-title: Particle swarm optimization method for constrained optimization problems
  publication-title: Intelligent Technologies-Theory and Application: New Trends in Intelligent Technologies
– volume: 15
  start-page: 832
  issue: 6
  year: 2011
  ident: 10.1016/j.eswa.2017.11.002_bib0075
  article-title: Orthogonal learning particle swarm optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2010.2052054
– year: 1930
  ident: 10.1016/j.eswa.2017.11.002_bib0026
– volume: 2015
  start-page: 1
  year: 2015
  ident: 10.1016/j.eswa.2017.11.002_bib0079
  article-title: A comprehensive survey on particle swarm optimization algorithm and its applications
  publication-title: Mathematical Problems in Engineering
– ident: 10.1016/j.eswa.2017.11.002_bib0046
– volume: 2017
  start-page: ID2782679
  year: 2017
  ident: 10.1016/j.eswa.2017.11.002_bib0064
  article-title: A swarm optimization genetic algorithm based on quantum-behaved particle swarm optimization
  publication-title: Computational Intelligence and Neuroscience
  doi: 10.1155/2017/2782679
– start-page: 203
  year: 2002
  ident: 10.1016/j.eswa.2017.11.002_bib0035
  article-title: Solving constrained nonlinear optimization problems with particle swarm optimization
– year: 2015
  ident: 10.1016/j.eswa.2017.11.002_bib0028
  article-title: Parallel particle swarm optimization (PPSO) clustering for learning analytics
– volume: 40
  start-page: 3196
  issue: 8
  year: 2013
  ident: 10.1016/j.eswa.2017.11.002_bib0045
  article-title: Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.12.033
– start-page: 1
  year: 2015
  ident: 10.1016/j.eswa.2017.11.002_bib0051
  article-title: Proactive particles in swarm optimization: A self-tuning algorithm based on fuzzy logic
– volume: 152
  start-page: 41
  year: 2015
  ident: 10.1016/j.eswa.2017.11.002_bib0078
  article-title: Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization
  publication-title: Progress in Electromagnetics Research
  doi: 10.2528/PIER15040602
– volume: 25
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.eswa.2017.11.002_bib0010
  article-title: Particle swarm optimization for single objective continuous space problems: A review
  publication-title: Evolutionary Computation
  doi: 10.1162/EVCO_r_00180
– start-page: 558
  year: 2014
  ident: 10.1016/j.eswa.2017.11.002_bib0025
  article-title: A modified PSO algorithm based on cache replacement algorithm
– year: 2006
  ident: 10.1016/j.eswa.2017.11.002_bib0063
– ident: 10.1016/j.eswa.2017.11.002_bib0017
– volume: 24
  start-page: 428
  issue: 3
  year: 2013
  ident: 10.1016/j.eswa.2017.11.002_bib0074
  article-title: An iterative divide-and-merge-based approach for solving large-scale least squares problems
  publication-title: IEEE Transactions on Parallel and Distributed Systems
  doi: 10.1109/TPDS.2012.161
– volume: 117
  start-page: 98
  year: 2013
  ident: 10.1016/j.eswa.2017.11.002_bib0005
  article-title: A PSO and pattern search based memetic algorithm for SVMs parameters optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.01.027
– start-page: 1451
  year: 2010
  ident: 10.1016/j.eswa.2017.11.002_bib0022
  article-title: Modified parallel particle swarm optimization for global optimization using message passing interface
– year: 2012
  ident: 10.1016/j.eswa.2017.11.002_bib0061
– year: 2009
  ident: 10.1016/j.eswa.2017.11.002_bib0071
– start-page: 54
  year: 2014
  ident: 10.1016/j.eswa.2017.11.002_bib0069
  article-title: The anatomy of Mr. Scan: A dissection of performance of an extreme scale GPU-based clustering algorithm
– start-page: 1
  year: 2011
  ident: 10.1016/j.eswa.2017.11.002_bib0070
  article-title: A CUDA-based multi-channel particle swarm algorithm
– year: 2007
  ident: 10.1016/j.eswa.2017.11.002_bib0009
  article-title: GPUs: An emerging platform for general-purpose computation
– volume: 10
  start-page: 183
  issue: 1
  year: 2010
  ident: 10.1016/j.eswa.2017.11.002_bib0050
  article-title: An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2009.07.001
– start-page: 177
  year: 2007
  ident: 10.1016/j.eswa.2017.11.002_bib0044
  article-title: MRPSO: MapReduce particle swarm optimization
– year: 2007
  ident: 10.1016/j.eswa.2017.11.002_bib0054
– volume: 1864
  issue: 1
  year: 2017
  ident: 10.1016/j.eswa.2017.11.002_sbref0069
  article-title: Combinatorial optimization problem solution based on improved genetic algorithm
  publication-title: AIP Conference Proceedings
– year: 2017
  ident: 10.1016/j.eswa.2017.11.002_bib0037
  article-title: Distribution network reconfiguration using hybrid heuristic-genetic algorithm
– ident: 10.1016/j.eswa.2017.11.002_bib0052
– start-page: 185
  year: 2003
  ident: 10.1016/j.eswa.2017.11.002_bib0072
  article-title: Exact algorithms for NP-hard problems: A survey
– ident: 10.1016/j.eswa.2017.11.002_bib0018
– ident: 10.1016/j.eswa.2017.11.002_bib0031
– year: 1992
  ident: 10.1016/j.eswa.2017.11.002_bib0038
SSID ssj0017007
Score 2.3376374
Snippet •Luminance control is formalized as a constrained search problem.•Both power consumption minimization and sufficient illuminance are considered.•A distributive...
We present an intelligent system, based on the particle swarm optimization (PSO) technique, to solve a power consumption minimization problem which is commonly...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 479
SubjectTerms Computer simulation
CUDA
Electricity
Energy conservation
Energy consumption
GPU
Hadoop
Illuminance
Industrial plants
Lighting
Luminance
MapReduce
Parallel algorithm
Parallel processing
Particle swarm optimization
Power consumption
Real time
Working conditions
Workshops
Title Power consumption minimization by distributive particle swarm optimization for luminance control and its parallel implementations
URI https://dx.doi.org/10.1016/j.eswa.2017.11.002
https://www.proquest.com/docview/2012837947
Volume 96
WOSCitedRecordID wos000424176900034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgcuvBELC_IBcalSNU87xxXqClZVWUEX9RY5jktbZdPSNmU58q_4eczEdhqCqODAJWoTO6kyX2fG45n5CHmVgYlxUxU4U1zpBC4sULiAr54fZH4Uy9iVWUU2wUYjPpnEl53OD1sLs8tZUfCbm3j1X0UN50DYWDr7D-Kubwon4DMIHY4gdjj-leAvkfcMs8nhoVofYPuQa1Nvie5mhs1yK56rnequzC26m69ifd1dwpR6LKYggvKqmnLss9rtdgN2Dc9zlWOlpUlC30f_FnWKn1pvTb9oW0nX2DOv84HmQsdsZ_OZMyzbeULI2O1clDUIYdiyrKxH6Xycla3RyAn-2flgcG9CGi7H3Rld1KnjbHWtzadf4pUMsKQpfXpKa2vOfCdimmLRqvO4qY8DzVTzm53QIYtFT8G7xfw-1sNWrn1vbxVtJsDofXJ-NRwm48Fk_Hr1xUG-MtzXN-Qtt8ixx8IY9Onx2bvB5KLewWJ9Xapvf7Yp2NK5he3H_skparkHlc8zvk_umsUKPdMIeUA6qnhI7lkiEGrswiPyvcIcbWCONjFH02-0iTlqMUcrzNEm5ihgjtaYowZzFDBHAXPUYo62MPeYXJ0Pxm_eOobbw5E-j7ZO5AUSlv-yL4OpK3yZTsFZjGDtIgTPUs5VLMD5VR5YoEj4PBPKC8JQqDD0JRNe6D8hR8WyUE8JdVnmcxUqxXkagEERMu6rCPv8Kuy2FJ0Q177cRJrG98i_kic2w3GRoEASFAisiBMQyAnp1nNWuu3LwdGhlVliHFftkCaAt4PzTq2AE6NBNngdO1LFAXt2-PJzcmf_5zklR9t1qV6Q23K3nW_WLw0efwKaf8lC
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power+consumption+minimization+by+distributive+particle+swarm+optimization+for+luminance+control+and+its+parallel+implementations&rft.jtitle=Expert+systems+with+applications&rft.au=Liao%2C+Chih-Lun&rft.au=Lee%2C+Shie-Jue&rft.au=Chiou%2C+Yu-Shu&rft.au=Lee%2C+Ching-Ran&rft.date=2018-04-15&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=96&rft.spage=479&rft_id=info:doi/10.1016%2Fj.eswa.2017.11.002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon