Power consumption minimization by distributive particle swarm optimization for luminance control and its parallel implementations
•Luminance control is formalized as a constrained search problem.•Both power consumption minimization and sufficient illuminance are considered.•A distributive PSO-based algorithm is developed to do an effective search.•Parallel implementations in GPU and Hadoop MapReduce are developed.•The develope...
Gespeichert in:
| Veröffentlicht in: | Expert systems with applications Jg. 96; S. 479 - 491 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Elsevier Ltd
15.04.2018
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Luminance control is formalized as a constrained search problem.•Both power consumption minimization and sufficient illuminance are considered.•A distributive PSO-based algorithm is developed to do an effective search.•Parallel implementations in GPU and Hadoop MapReduce are developed.•The developed systems are demonstrated to be effective in real-time luminance control.
We present an intelligent system, based on the particle swarm optimization (PSO) technique, to solve a power consumption minimization problem which is commonly encountered at the industrial factories or workshops. The power minimization problem is concerned with adjusting the settings of a number of lighting devices in real time in a working environment, subject to the requirements of minimizing the power consumption of the lighting devices as well as producing sufficient illuminance over all the specified working spots in the working area. Usually, the search space involved is too huge and solving the problem with traditional methods, e.g., brute force or least squares, is out of the question. In this paper we describe a distributive-PSO (DPSO) based algorithm to solve the problem. We show that by dividing the whole population of particles into a number of groups, PSO can be done distributively on each group and the best settings for the lighting devices, which meet the requirements, can be efficiently obtained. DPSO is very suitable to be parallelized. Parallel implementations in GPU and Hadoop MapReduce are developed. Simulation results show that our developed system is effective for a variety of working environments. We believe our work facilitates developing an efficient tool for energy conservation as well as other optimization applications. |
|---|---|
| AbstractList | We present an intelligent system, based on the particle swarm optimization (PSO) technique, to solve a power consumption minimization problem which is commonly encountered at the industrial factories or workshops. The power minimization problem is concerned with adjusting the settings of a number of lighting devices in real time in a working environment, subject to the requirements of minimizing the power consumption of the lighting devices as well as producing sufficient illuminance over all the specified working spots in the working area. Usually, the search space involved is too huge and solving the problem with traditional methods, e.g., brute force or least squares, is out of the question. In this paper we describe a distributive-PSO (DPSO) based algorithm to solve the problem. We show that by dividing the whole population of particles into a number of groups, PSO can be done distributively on each group and the best settings for the lighting devices, which meet the requirements, can be efficiently obtained. DPSO is very suitable to be parallelized. Parallel implementations in GPU and Hadoop MapReduce are developed. Simulation results show that our developed system is effective for a variety of working environments. We believe our work facilitates developing an efficient tool for energy conservation as well as other optimization applications. •Luminance control is formalized as a constrained search problem.•Both power consumption minimization and sufficient illuminance are considered.•A distributive PSO-based algorithm is developed to do an effective search.•Parallel implementations in GPU and Hadoop MapReduce are developed.•The developed systems are demonstrated to be effective in real-time luminance control. We present an intelligent system, based on the particle swarm optimization (PSO) technique, to solve a power consumption minimization problem which is commonly encountered at the industrial factories or workshops. The power minimization problem is concerned with adjusting the settings of a number of lighting devices in real time in a working environment, subject to the requirements of minimizing the power consumption of the lighting devices as well as producing sufficient illuminance over all the specified working spots in the working area. Usually, the search space involved is too huge and solving the problem with traditional methods, e.g., brute force or least squares, is out of the question. In this paper we describe a distributive-PSO (DPSO) based algorithm to solve the problem. We show that by dividing the whole population of particles into a number of groups, PSO can be done distributively on each group and the best settings for the lighting devices, which meet the requirements, can be efficiently obtained. DPSO is very suitable to be parallelized. Parallel implementations in GPU and Hadoop MapReduce are developed. Simulation results show that our developed system is effective for a variety of working environments. We believe our work facilitates developing an efficient tool for energy conservation as well as other optimization applications. |
| Author | Lee, Chie-Hong Lee, Shie-Jue Lee, Ching-Ran Liao, Chih-Lun Chiou, Yu-Shu |
| Author_xml | – sequence: 1 givenname: Chih-Lun surname: Liao fullname: Liao, Chih-Lun email: clliao@water.ee.nsysu.edu.tw organization: Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan – sequence: 2 givenname: Shie-Jue surname: Lee fullname: Lee, Shie-Jue email: leesj@mail.ee.nsysu.edu.tw organization: Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan – sequence: 3 givenname: Yu-Shu surname: Chiou fullname: Chiou, Yu-Shu email: yschiou@water.ee.nsysu.edu.tw organization: Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan – sequence: 4 givenname: Ching-Ran surname: Lee fullname: Lee, Ching-Ran email: lee0624@itri.org.tw organization: Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan – sequence: 5 givenname: Chie-Hong surname: Lee fullname: Lee, Chie-Hong organization: Department of Digital Content Application and Management, Wenzao Ursuline University of Languages, Kaohsiung 807, Taiwan |
| BookMark | eNp90E1r3DAQBmBREsgmzR_ISdCzXX3YlhdyKaFJCoH20J6FVh7DLLLkSvIu6S3_vHI29NBDTkLwPjPMe0nOfPBAyA1nNWe8-7yvIR1NLRhXNec1Y-ID2fBeyapTW3lGNmzbqqrhqrkglyntWQkypjbk5Uc4QqQ2-LRMc8bg6YQeJ_xjXj-7ZzpgyhF3S8YD0NnEjNYBLeviREMh_7JjiNQthRtvYR2ZY3DU-IFiTqs0zoGjOM0OJvD5VaWP5Hw0LsH123tFft1__Xn3WD19f_h29-WpsrLvctWJxjLRWWabkRtpdyMTTccEM6Yfdn0PW8MUB8GU7IzsBwOiaVsDbSutMqKVV-TTae4cw-8FUtb7sERfVupSm-il2jaqpMQpZWNIKcKo54iTic-aM71Wrfd6rXo1SnOuS9UF9f8hi6frcjTo3qe3Jwrl9ANC1MkilP4GjGCzHgK-x_8CEcqgJA |
| CitedBy_id | crossref_primary_10_1007_s13369_018_03713_6 crossref_primary_10_1016_j_eswa_2021_115995 crossref_primary_10_3390_a14100275 crossref_primary_10_1007_s10489_018_1364_2 crossref_primary_10_1109_ACCESS_2021_3093277 crossref_primary_10_1016_j_paerosci_2024_101046 crossref_primary_10_1016_j_swevo_2021_100868 crossref_primary_10_1109_ACCESS_2023_3278261 crossref_primary_10_3390_app12178392 crossref_primary_10_1016_j_engappai_2018_09_003 crossref_primary_10_1007_s11227_024_06433_x crossref_primary_10_1109_ACCESS_2019_2960516 crossref_primary_10_1109_ACCESS_2019_2963502 |
| Cites_doi | 10.1016/j.asoc.2015.10.004 10.1145/1327452.1327492 10.1016/j.apenergy.2009.05.016 10.1109/4235.985692 10.4007/annals.2004.160.781 10.1109/TEVC.2011.2112662 10.1109/TPEL.2012.2185713 10.1109/TEVC.2004.826071 10.1109/TPDS.2014.2317713 10.1016/j.future.2012.07.009 10.1155/2017/1063045 10.1016/j.neucom.2015.09.025 10.4236/ajor.2016.65037 10.1109/TCYB.2014.2322602 10.1016/j.future.2013.06.002 10.1109/PGEC.1966.264565 10.1109/TGRS.2014.2319337 10.1016/j.eswa.2015.04.032 10.1109/TSMC.2015.2482938 10.1145/327070.327215 10.3906/elk-1507-226 10.1109/TEVC.2010.2052054 10.1155/2017/2782679 10.1016/j.eswa.2012.12.033 10.2528/PIER15040602 10.1162/EVCO_r_00180 10.1109/TPDS.2012.161 10.1016/j.neucom.2013.01.027 10.1016/j.asoc.2009.07.001 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Apr 15, 2018 |
| Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Apr 15, 2018 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2017.11.002 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| EndPage | 491 |
| ExternalDocumentID | 10_1016_j_eswa_2017_11_002 S0957417417307431 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD AFXIZ AGCQF AGRNS JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c386t-624c026c0c4f1a3cbf0246020aa8db88e9a071e20736a38dae2455ae553c7a253 |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424176900034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Mon Jul 14 10:28:29 EDT 2025 Tue Nov 18 22:35:02 EST 2025 Sat Nov 29 04:44:48 EST 2025 Fri Feb 23 02:24:26 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | CUDA Parallel algorithm Energy conservation Hadoop Particle swarm optimization GPU MapReduce |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c386t-624c026c0c4f1a3cbf0246020aa8db88e9a071e20736a38dae2455ae553c7a253 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2012837947 |
| PQPubID | 2045477 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2012837947 crossref_primary_10_1016_j_eswa_2017_11_002 crossref_citationtrail_10_1016_j_eswa_2017_11_002 elsevier_sciencedirect_doi_10_1016_j_eswa_2017_11_002 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-15 |
| PublicationDateYYYYMMDD | 2018-04-15 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | CPU (2008). CPU frequency. MPI (2014). Open MPI: Open source high performance computing. Zhang, Zhuang, Gao, Luo, Ran, Du (bib0076) 2014; 52 Niknam, Amiri (bib0050) 2010; 10 Zhan, Zhang, Li, Shi (bib0075) 2011; 15 Evers (bib0024) 2009 Sipser (bib0063) 2006 Clerc, Kennedy (bib0015) 2002; 6 Golberg (bib0027) 1989 Hennessy, Patterson, Larus (bib0034) 1999 Oliveira, Pinheiro, Andrade, Bastos-Filho, Menezes (bib0053) 2016 Cazzaniga, Nobile, Besozzi (bib0011) 2015 Zhang, Wang, Ji (bib0079) 2015; 2015 Darwin (bib0020) 1998 Boggan, Pressel (bib0009) 2007 Kann (bib0038) 1992 Melin, Olivas, Castillo, Valdez, Soria, Valdez (bib0045) 2013; 40 Ausiello, Crescenzi, Gambosi, Kann, Marchetti-Spaccamela, Protasi (bib0004) 2012 Yeh, Peng, Lee (bib0074) 2013; 24 Chen (bib0012) 2016; 173 Hennessy, Patterson (bib0033) 2011 Feng, Pan (bib0025) 2014 Bernstein (bib0008) 1966; 15 Dean, Ghemawat (bib0021) 2008; 51 Dijkstra (bib0023) 2002 Rodgers (bib0060) 1985; 13 . Wang (bib0068) 2010 Parsopoulos, Vrahatis (bib0055) 2002; 76 Peng, Yeh, Lee (bib0057) 2011 Agrawal, Kayal, Saxena (bib0002) 2004; 160 Zhang, Wang, Dong, Phillip, Ji, Yang (bib0078) 2015; 152 Cui, Charles, Potok (bib0019) 2013; 29 Chen, Chen (bib0013) 2016; 46 Li, Yao (bib0041) 2012; 16 Taherkhani, Safabakhsh (bib0066) 2016; 38 Ravi, Becchi, Jiang, Agrawal, Chakradhar (bib0059) 2013; 29 Wenna, Zhenyu (bib0070) 2011 Bonyadi, Michalewicz (bib0010) 2017; 25 Cobham (bib0016) 1965 GPU (2014). NVIDIA Corporation: GPU accelerated computing. Multicore (2007). What is (a) multi-core processor? Roosta (bib0061) 2012 Nobile, Pasi, Cazzaniga, Besozzi, Colombo, Mauri (bib0051) 2015 CUDA (2014). NVIDIA Corporation : CUDA. Mcnabb, Monson, Seppi (bib0044) 2007 Ratnaweera, Halgamuge, Watson (bib0058) 2004; 8 Hu, Eberhart (bib0035) 2002 Jakus, Čad̄enović, Bogdanović, Sarajćev, Vasilj (bib0037) 2017 Silva Filho, Pimentel, Souza, Oliveira (bib0062) 2015; 42 Niknam (bib0049) 2010; 87 Woeginger (bib0072) 2003 White (bib0071) 2009 Bao, Hu, Xiong (bib0005) 2013; 117 Barnett (bib0006) 1990 Barrera, Coello (bib0007) 2009 Deep, Sharma, Pant (bib0022) 2010 Almasi, Gottlieb (bib0003) 1988 Fisher (bib0026) 1930 Madan, Kaur, Bhavsar, Patel, Mishra (bib0042) 2015 Cheng, Jin (bib0014) 2015; 45 Yapici, Cetinkaya (bib0073) 2017; 2017 Hazewinkel (bib0032) 2002 Matei (bib0043) 2011 Govindarajan, Boulanger, Suresh, Kinshuk (bib0028) 2015 Patil, Bhalchandra (bib0056) 2017 Abdi, Lak, Seyfari (bib0001) 2017; 25 Ishaque, Salam, Amjad, Mekhilef (bib0036) 2012; 27 Kennedy (bib0039) 1997 Hadoop (2014). The apache software foundation. Kennedy, Eberhart (bib0040) 1995; 4 Suzuki (bib0065) 2016; 6 Novell (2011). NDK: Libraries for C. Sun, Xu (bib0064) 2017; 2017 Gudmundsson, Valladares (bib0030) 2015; 26 Microsoft (2014). Multiple threads (Windows). Papadimitriou (bib0054) 2007 Welton, Miller (bib0069) 2014 Tsujimoto, Shindo, Kimura, Jin’no (bib0067) 2012 Zhang (bib0077) 2017; 1864 Agrawal (10.1016/j.eswa.2017.11.002_bib0002) 2004; 160 Zhan (10.1016/j.eswa.2017.11.002_bib0075) 2011; 15 Taherkhani (10.1016/j.eswa.2017.11.002_bib0066) 2016; 38 Ishaque (10.1016/j.eswa.2017.11.002_bib0036) 2012; 27 Rodgers (10.1016/j.eswa.2017.11.002_bib0060) 1985; 13 Ravi (10.1016/j.eswa.2017.11.002_bib0059) 2013; 29 Barrera (10.1016/j.eswa.2017.11.002_bib0007) 2009 Boggan (10.1016/j.eswa.2017.11.002_bib0009) 2007 Peng (10.1016/j.eswa.2017.11.002_bib0057) 2011 Zhang (10.1016/j.eswa.2017.11.002_bib0078) 2015; 152 Yeh (10.1016/j.eswa.2017.11.002_bib0074) 2013; 24 Melin (10.1016/j.eswa.2017.11.002_bib0045) 2013; 40 10.1016/j.eswa.2017.11.002_bib0031 Jakus (10.1016/j.eswa.2017.11.002_bib0037) 2017 Matei (10.1016/j.eswa.2017.11.002_bib0043) 2011 Evers (10.1016/j.eswa.2017.11.002_bib0024) 2009 Cui (10.1016/j.eswa.2017.11.002_bib0019) 2013; 29 Ausiello (10.1016/j.eswa.2017.11.002_bib0004) 2012 Dijkstra (10.1016/j.eswa.2017.11.002_bib0023) 2002 Woeginger (10.1016/j.eswa.2017.11.002_bib0072) 2003 Chen (10.1016/j.eswa.2017.11.002_bib0012) 2016; 173 Golberg (10.1016/j.eswa.2017.11.002_bib0027) 1989 Kann (10.1016/j.eswa.2017.11.002_bib0038) 1992 Govindarajan (10.1016/j.eswa.2017.11.002_bib0028) 2015 Mcnabb (10.1016/j.eswa.2017.11.002_bib0044) 2007 Oliveira (10.1016/j.eswa.2017.11.002_bib0053) 2016 Hennessy (10.1016/j.eswa.2017.11.002_bib0034) 1999 Hennessy (10.1016/j.eswa.2017.11.002_bib0033) 2011 Hu (10.1016/j.eswa.2017.11.002_bib0035) 2002 Chen (10.1016/j.eswa.2017.11.002_bib0013) 2016; 46 10.1016/j.eswa.2017.11.002_bib0029 Clerc (10.1016/j.eswa.2017.11.002_bib0015) 2002; 6 Patil (10.1016/j.eswa.2017.11.002_bib0056) 2017 Niknam (10.1016/j.eswa.2017.11.002_bib0050) 2010; 10 Gudmundsson (10.1016/j.eswa.2017.11.002_bib0030) 2015; 26 Abdi (10.1016/j.eswa.2017.11.002_bib0001) 2017; 25 Roosta (10.1016/j.eswa.2017.11.002_bib0061) 2012 Cobham (10.1016/j.eswa.2017.11.002_bib0016) 1965 Deep (10.1016/j.eswa.2017.11.002_bib0022) 2010 Bonyadi (10.1016/j.eswa.2017.11.002_bib0010) 2017; 25 Hazewinkel (10.1016/j.eswa.2017.11.002_bib0032) 2002 Zhang (10.1016/j.eswa.2017.11.002_bib0079) 2015; 2015 Suzuki (10.1016/j.eswa.2017.11.002_bib0065) 2016; 6 10.1016/j.eswa.2017.11.002_bib0052 Parsopoulos (10.1016/j.eswa.2017.11.002_bib0055) 2002; 76 Feng (10.1016/j.eswa.2017.11.002_bib0025) 2014 Niknam (10.1016/j.eswa.2017.11.002_bib0049) 2010; 87 10.1016/j.eswa.2017.11.002_bib0017 10.1016/j.eswa.2017.11.002_bib0018 Yapici (10.1016/j.eswa.2017.11.002_bib0073) 2017; 2017 Ratnaweera (10.1016/j.eswa.2017.11.002_bib0058) 2004; 8 Fisher (10.1016/j.eswa.2017.11.002_bib0026) 1930 Papadimitriou (10.1016/j.eswa.2017.11.002_bib0054) 2007 Zhang (10.1016/j.eswa.2017.11.002_bib0076) 2014; 52 Almasi (10.1016/j.eswa.2017.11.002_bib0003) 1988 Cazzaniga (10.1016/j.eswa.2017.11.002_bib0011) 2015 Kennedy (10.1016/j.eswa.2017.11.002_bib0039) 1997 Li (10.1016/j.eswa.2017.11.002_bib0041) 2012; 16 Barnett (10.1016/j.eswa.2017.11.002_bib0006) 1990 Darwin (10.1016/j.eswa.2017.11.002_bib0020) 1998 Sun (10.1016/j.eswa.2017.11.002_bib0064) 2017; 2017 Silva Filho (10.1016/j.eswa.2017.11.002_bib0062) 2015; 42 Wenna (10.1016/j.eswa.2017.11.002_bib0070) 2011 Bao (10.1016/j.eswa.2017.11.002_bib0005) 2013; 117 White (10.1016/j.eswa.2017.11.002_bib0071) 2009 Welton (10.1016/j.eswa.2017.11.002_bib0069) 2014 Zhang (10.1016/j.eswa.2017.11.002_sbref0069) 2017; 1864 Dean (10.1016/j.eswa.2017.11.002_bib0021) 2008; 51 Wang (10.1016/j.eswa.2017.11.002_bib0068) 2010 Cheng (10.1016/j.eswa.2017.11.002_bib0014) 2015; 45 10.1016/j.eswa.2017.11.002_bib0046 10.1016/j.eswa.2017.11.002_bib0047 Madan (10.1016/j.eswa.2017.11.002_bib0042) 2015 Sipser (10.1016/j.eswa.2017.11.002_bib0063) 2006 Bernstein (10.1016/j.eswa.2017.11.002_bib0008) 1966; 15 Kennedy (10.1016/j.eswa.2017.11.002_bib0040) 1995; 4 10.1016/j.eswa.2017.11.002_bib0048 Nobile (10.1016/j.eswa.2017.11.002_bib0051) 2015 Tsujimoto (10.1016/j.eswa.2017.11.002_bib0067) 2012 |
| References_xml | – start-page: 1 year: 2012 end-page: 6 ident: bib0067 article-title: A relationship between network topology and search performance of PSO publication-title: Proceedings of ieee congress on evolutionary computation – volume: 45 start-page: 191 year: 2015 end-page: 204 ident: bib0014 article-title: A competitive swarm optimizer for large scale optimization publication-title: IEEE Transactions on Cybernetics – reference: Multicore (2007). What is (a) multi-core processor? – volume: 76 start-page: 214 year: 2002 end-page: 220 ident: bib0055 article-title: Particle swarm optimization method for constrained optimization problems publication-title: Intelligent Technologies-Theory and Application: New Trends in Intelligent Technologies – start-page: 177 year: 2007 ident: bib0044 article-title: MRPSO: MapReduce particle swarm optimization publication-title: Proceedings of 9th annual conference on genetic and evolutionary computation – year: 1992 ident: bib0038 publication-title: On the approximability of NP-complete optimization problems – start-page: 124 year: 2015 end-page: 125 ident: bib0042 article-title: GPU-based out-of-core MDL clustering algorithm publication-title: Proceedings of 2nd acm ikdd conference on data sciences – reference: GPU (2014). NVIDIA Corporation: GPU accelerated computing. – reference: Novell (2011). NDK: Libraries for C. – volume: 52 start-page: 7782 year: 2014 end-page: 7792 ident: bib0076 article-title: PSO-EM: A hyperspectral unmixing algorithm based on normal compositional model publication-title: IEEE Transactions on Geoscience and Remote Sensing – year: 1998 ident: bib0020 article-title: On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life – year: 2012 ident: bib0061 article-title: Parallel processing and parallel algorithms: Theory and computation – volume: 25 start-page: 1 year: 2017 end-page: 54 ident: bib0010 article-title: Particle swarm optimization for single objective continuous space problems: A review publication-title: Evolutionary Computation – year: 2007 ident: bib0054 article-title: Computational complexity – year: 2002 ident: bib0023 article-title: Cooperating Sequential Processes – year: 2011 ident: bib0043 article-title: Spark: In-memory cluster computing for iterative and interactive applications publication-title: Nips 2011 big learning - algorithms, systems, & tools workshop – year: 2015 ident: bib0028 article-title: Parallel particle swarm optimization (PPSO) clustering for learning analytics publication-title: Proceedings of ieee international conference on big data – reference: MPI (2014). Open MPI: Open source high performance computing. – volume: 27 start-page: 3627 year: 2012 end-page: 3638 ident: bib0036 article-title: An improved particle swarm optimization (PSO)–based MPPT for PV with reduced steady-state oscillation publication-title: IEEE Transactions on Power Electronics – year: 2016 ident: bib0053 article-title: Communication diversity in particle swarm optimizers publication-title: Proceedings of international conference on swarm intelligence – volume: 25 start-page: 209 year: 2017 end-page: 221 ident: bib0001 article-title: GICA: Imperialist competitive algorithm with globalization mechanism for optimization problems publication-title: Turkish Journal of Electrical Engineering & Computer Sciences – volume: 15 start-page: 757 year: 1966 end-page: 763 ident: bib0008 article-title: Analysis of programs for parallel processing publication-title: IEEE Transactions on Electronic Computers – volume: 29 start-page: 1736 year: 2013 end-page: 1741 ident: bib0019 article-title: GPU enhanced parallel computing for large scale data clustering publication-title: Future Generation Computer Systems – volume: 2015 start-page: 1 year: 2015 end-page: 38 ident: bib0079 article-title: A comprehensive survey on particle swarm optimization algorithm and its applications publication-title: Mathematical Problems in Engineering – year: 2015 ident: bib0011 article-title: The impact of particles initialization in PSO: Parameter estimation as a case in point publication-title: Proceedings of ieee international conference on computational intelligence in bioinformatics and computational biology – start-page: 1 year: 2015 end-page: 8 ident: bib0051 article-title: Proactive particles in swarm optimization: A self-tuning algorithm based on fuzzy logic publication-title: Proceedings of ieee international conference on fuzzy systems (fuzz-ieee 2015) – year: 2007 ident: bib0009 article-title: GPUs: An emerging platform for general-purpose computation publication-title: Technical Report – start-page: 1 year: 2011 end-page: 4 ident: bib0070 article-title: A CUDA-based multi-channel particle swarm algorithm publication-title: Proceedings of ieee international conference on control, automation and systems engineering – volume: 2017 start-page: ID2782679 year: 2017 ident: bib0064 article-title: A swarm optimization genetic algorithm based on quantum-behaved particle swarm optimization publication-title: Computational Intelligence and Neuroscience – volume: 29 start-page: 2262 year: 2013 end-page: 2271 ident: bib0059 article-title: Scheduling concurrent applications on a cluster of CPU – GPU nodes publication-title: Future Generation Computer Systems – volume: 24 start-page: 428 year: 2013 end-page: 438 ident: bib0074 article-title: An iterative divide-and-merge-based approach for solving large-scale least squares problems publication-title: IEEE Transactions on Parallel and Distributed Systems – volume: 16 start-page: 210 year: 2012 end-page: 224 ident: bib0041 article-title: Cooperatively coevolving particle swarms for large scale optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 42 start-page: 6315 year: 2015 end-page: 6328 ident: bib0062 article-title: Hybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimization publication-title: Expert Systems with Applications – year: 1990 ident: bib0006 article-title: Matrices. Methods and applications – start-page: 1661 year: 2010 end-page: 1666 ident: bib0068 article-title: Variable velocity limit chaotic particle swarm optimization publication-title: Proceedings of ieee international conference on information and automation – year: 2012 ident: bib0004 article-title: Complexity and approximation: Combinatorial optimization problems and their approximability properties – year: 1930 ident: bib0026 article-title: The genetical theory of natural selection – year: 2017 ident: bib0037 article-title: Distribution network reconfiguration using hybrid heuristic-genetic algorithm publication-title: Proceedings of 2nd international multidisciplinary conference on computer and energy science – start-page: 558 year: 2014 end-page: 562 ident: bib0025 article-title: A modified PSO algorithm based on cache replacement algorithm publication-title: Proceedings of 10th ieee international conference on computational intelligence and security – volume: 6 start-page: 401 year: 2016 end-page: 413 ident: bib0065 article-title: Adaptive parallel particle swarm optimization algorithm based on dynamic exchange of control parameters publication-title: American Journal of Operations Research – start-page: 1739 year: 2009 end-page: 1740 ident: bib0007 article-title: Limiting the velocity in particle swarm optimization using a geometric series publication-title: Proceedings of 11th annual conference on genetic and evolutionary computation – reference: Hadoop (2014). The apache software foundation. – volume: 15 start-page: 832 year: 2011 end-page: 847 ident: bib0075 article-title: Orthogonal learning particle swarm optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 117 start-page: 98 year: 2013 end-page: 106 ident: bib0005 article-title: A PSO and pattern search based memetic algorithm for SVMs parameters optimization publication-title: Neurocomputing – start-page: 203 year: 2002 end-page: 206 ident: bib0035 article-title: Solving constrained nonlinear optimization problems with particle swarm optimization publication-title: Proceedings of world multiconference on systemics, cybernetics and informatics – volume: 2017 start-page: ID1063045 year: 2017 ident: bib0073 article-title: An improved particle swarm optimization algorithm using eagle strategy for power loss minimization publication-title: Mathematical Problems in Engineering – reference: Microsoft (2014). Multiple threads (Windows). – volume: 51 start-page: 107 year: 2008 end-page: 113 ident: bib0021 article-title: MapReduce: Simplified data processing on large clusters publication-title: Communications of the ACM – year: 2009 ident: bib0071 article-title: Hadoop: The definitive guide – year: 2017 ident: bib0056 article-title: Pattern recognition using genetic algorithm publication-title: Proceedings of international conference on IoT in social, mobile, analytics and cloud – year: 2006 ident: bib0063 article-title: Introduction to the theory of computation – start-page: 24 year: 1965 end-page: 50 ident: bib0016 article-title: The intrinsic computational difficulty of functions publication-title: Proceedings of international congress on logic, methodology and philosophy of science – volume: 173 start-page: 1519 year: 2016 end-page: 1528 ident: bib0012 article-title: Bare-bones imperialist competitive algorithm for a compensatory neural fuzzy controller publication-title: Neurocomputing – volume: 4 start-page: 1942 year: 1995 end-page: 1948 ident: bib0040 article-title: Particle swarm optimization publication-title: Proceedings of ieee international conference on neural networks – year: 2011 ident: bib0033 article-title: Computer architecture: A quantitative approach – volume: 1864 year: 2017 ident: bib0077 article-title: Combinatorial optimization problem solution based on improved genetic algorithm publication-title: AIP Conference Proceedings – reference: CUDA (2014). NVIDIA Corporation : CUDA. – year: 1989 ident: bib0027 article-title: Genetic algorithms in search, optimization, and machine learning – reference: CPU (2008). CPU frequency. – start-page: 54 year: 2014 end-page: 60 ident: bib0069 article-title: The anatomy of Mr. Scan: A dissection of performance of an extreme scale GPU-based clustering algorithm publication-title: Proceedings of 5th ieee workshop on latest advances in scalable algorithms for large-scale systems – start-page: 1451 year: 2010 end-page: 1458 ident: bib0022 article-title: Modified parallel particle swarm optimization for global optimization using message passing interface publication-title: Proceedings of ieee 5th international conference on bio-inspired computing: Theories and applications – start-page: 185 year: 2003 end-page: 207 ident: bib0072 article-title: Exact algorithms for NP-hard problems: A survey publication-title: Combinatorial optimization – eureka, you shrink! – year: 2009 ident: bib0024 publication-title: An automatic regrouping mechanism to deal with stagnation in particle swarm optimization – volume: 40 start-page: 3196 year: 2013 end-page: 3206 ident: bib0045 article-title: Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic publication-title: Expert Systems with Applications – volume: 46 start-page: 1180 year: 2016 end-page: 1189 ident: bib0013 article-title: United-based imperialist competitive algorithm for compensatory neural fuzzy systems publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – reference: . – year: 1988 ident: bib0003 article-title: Highly parallel computing – volume: 26 start-page: 924 year: 2015 end-page: 937 ident: bib0030 article-title: A GPU approach to subtrajectory clustering using the fréchet distance publication-title: IEEE Transactions on Parallel and Distributed Systems – volume: 10 start-page: 183 year: 2010 end-page: 197 ident: bib0050 article-title: An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis publication-title: Applied Soft Computing – volume: 8 start-page: 240 year: 2004 end-page: 255 ident: bib0058 article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients publication-title: IEEE Transactions on Evolutionary Computation – year: 2002 ident: bib0032 article-title: Encyclopedia of mathematics – volume: 152 start-page: 41 year: 2015 end-page: 58 ident: bib0078 article-title: Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization publication-title: Progress in Electromagnetics Research – start-page: 303 year: 1997 end-page: 308 ident: bib0039 article-title: The particle swarm: social adaptation of knowledge publication-title: Proceedings of ieee international conference on evolutionary computation – volume: 160 start-page: 781 year: 2004 end-page: 793 ident: bib0002 article-title: PRIMES is in P publication-title: Annals of mathematics – volume: 87 start-page: 327 year: 2010 end-page: 339 ident: bib0049 article-title: A new fuzzy adaptive hybrid particle swarm optimization algorithm for non-linear, non-smooth and non-convex economic dispatch problem publication-title: Applied Energy – start-page: 219 year: 2011 end-page: 222 ident: bib0057 article-title: A hierarchical SVD-based least squares method for parameter estimation publication-title: Proceedings of international conference on data engineering and internet technology – volume: 13 start-page: 225 year: 1985 end-page: 231 ident: bib0060 article-title: Improvements in multiprocessor system design publication-title: ACM SIGARCH Computer Architecture News – volume: 6 start-page: 58 year: 2002 end-page: 73 ident: bib0015 article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Transactions on Evolutionary Computation – year: 1999 ident: bib0034 article-title: Computer organization and design: The hardware/software interface (3rd ed.) – volume: 38 start-page: 281 year: 2016 end-page: 295 ident: bib0066 article-title: A novel stability-based adaptive inertia weight for particle swarm optimization publication-title: Applied Soft Computing – year: 1998 ident: 10.1016/j.eswa.2017.11.002_bib0020 – volume: 38 start-page: 281 year: 2016 ident: 10.1016/j.eswa.2017.11.002_bib0066 article-title: A novel stability-based adaptive inertia weight for particle swarm optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.10.004 – volume: 51 start-page: 107 issue: 1 year: 2008 ident: 10.1016/j.eswa.2017.11.002_bib0021 article-title: MapReduce: Simplified data processing on large clusters publication-title: Communications of the ACM doi: 10.1145/1327452.1327492 – year: 2015 ident: 10.1016/j.eswa.2017.11.002_bib0011 article-title: The impact of particles initialization in PSO: Parameter estimation as a case in point – volume: 87 start-page: 327 issue: 1 year: 2010 ident: 10.1016/j.eswa.2017.11.002_bib0049 article-title: A new fuzzy adaptive hybrid particle swarm optimization algorithm for non-linear, non-smooth and non-convex economic dispatch problem publication-title: Applied Energy doi: 10.1016/j.apenergy.2009.05.016 – volume: 6 start-page: 58 issue: 1 year: 2002 ident: 10.1016/j.eswa.2017.11.002_bib0015 article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.985692 – year: 1988 ident: 10.1016/j.eswa.2017.11.002_bib0003 – start-page: 303 year: 1997 ident: 10.1016/j.eswa.2017.11.002_bib0039 article-title: The particle swarm: social adaptation of knowledge – start-page: 219 year: 2011 ident: 10.1016/j.eswa.2017.11.002_bib0057 article-title: A hierarchical SVD-based least squares method for parameter estimation – year: 1990 ident: 10.1016/j.eswa.2017.11.002_bib0006 – ident: 10.1016/j.eswa.2017.11.002_bib0048 – volume: 160 start-page: 781 issue: 2 year: 2004 ident: 10.1016/j.eswa.2017.11.002_bib0002 article-title: PRIMES is in P publication-title: Annals of mathematics doi: 10.4007/annals.2004.160.781 – ident: 10.1016/j.eswa.2017.11.002_bib0029 – volume: 16 start-page: 210 issue: 2 year: 2012 ident: 10.1016/j.eswa.2017.11.002_bib0041 article-title: Cooperatively coevolving particle swarms for large scale optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2011.2112662 – year: 2011 ident: 10.1016/j.eswa.2017.11.002_bib0043 article-title: Spark: In-memory cluster computing for iterative and interactive applications – year: 2002 ident: 10.1016/j.eswa.2017.11.002_bib0032 – year: 2011 ident: 10.1016/j.eswa.2017.11.002_bib0033 – volume: 27 start-page: 3627 issue: 8 year: 2012 ident: 10.1016/j.eswa.2017.11.002_bib0036 article-title: An improved particle swarm optimization (PSO)–based MPPT for PV with reduced steady-state oscillation publication-title: IEEE Transactions on Power Electronics doi: 10.1109/TPEL.2012.2185713 – start-page: 1739 year: 2009 ident: 10.1016/j.eswa.2017.11.002_bib0007 article-title: Limiting the velocity in particle swarm optimization using a geometric series – volume: 8 start-page: 240 issue: 3 year: 2004 ident: 10.1016/j.eswa.2017.11.002_bib0058 article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2004.826071 – start-page: 1661 year: 2010 ident: 10.1016/j.eswa.2017.11.002_bib0068 article-title: Variable velocity limit chaotic particle swarm optimization – volume: 26 start-page: 924 issue: 4 year: 2015 ident: 10.1016/j.eswa.2017.11.002_bib0030 article-title: A GPU approach to subtrajectory clustering using the fréchet distance publication-title: IEEE Transactions on Parallel and Distributed Systems doi: 10.1109/TPDS.2014.2317713 – volume: 29 start-page: 1736 issue: 7 year: 2013 ident: 10.1016/j.eswa.2017.11.002_bib0019 article-title: GPU enhanced parallel computing for large scale data clustering publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2012.07.009 – year: 1999 ident: 10.1016/j.eswa.2017.11.002_bib0034 – volume: 2017 start-page: ID1063045 year: 2017 ident: 10.1016/j.eswa.2017.11.002_bib0073 article-title: An improved particle swarm optimization algorithm using eagle strategy for power loss minimization publication-title: Mathematical Problems in Engineering doi: 10.1155/2017/1063045 – volume: 173 start-page: 1519 year: 2016 ident: 10.1016/j.eswa.2017.11.002_bib0012 article-title: Bare-bones imperialist competitive algorithm for a compensatory neural fuzzy controller publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.025 – volume: 6 start-page: 401 issue: 5 year: 2016 ident: 10.1016/j.eswa.2017.11.002_bib0065 article-title: Adaptive parallel particle swarm optimization algorithm based on dynamic exchange of control parameters publication-title: American Journal of Operations Research doi: 10.4236/ajor.2016.65037 – volume: 4 start-page: 1942 year: 1995 ident: 10.1016/j.eswa.2017.11.002_bib0040 article-title: Particle swarm optimization – volume: 45 start-page: 191 issue: 2 year: 2015 ident: 10.1016/j.eswa.2017.11.002_bib0014 article-title: A competitive swarm optimizer for large scale optimization publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2014.2322602 – volume: 29 start-page: 2262 issue: 8 year: 2013 ident: 10.1016/j.eswa.2017.11.002_bib0059 article-title: Scheduling concurrent applications on a cluster of CPU – GPU nodes publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2013.06.002 – volume: 15 start-page: 757 issue: 5 year: 1966 ident: 10.1016/j.eswa.2017.11.002_bib0008 article-title: Analysis of programs for parallel processing publication-title: IEEE Transactions on Electronic Computers doi: 10.1109/PGEC.1966.264565 – year: 2012 ident: 10.1016/j.eswa.2017.11.002_bib0004 – ident: 10.1016/j.eswa.2017.11.002_bib0047 – volume: 52 start-page: 7782 issue: 12 year: 2014 ident: 10.1016/j.eswa.2017.11.002_bib0076 article-title: PSO-EM: A hyperspectral unmixing algorithm based on normal compositional model publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2014.2319337 – year: 2002 ident: 10.1016/j.eswa.2017.11.002_bib0023 – year: 2017 ident: 10.1016/j.eswa.2017.11.002_bib0056 article-title: Pattern recognition using genetic algorithm – start-page: 1 year: 2012 ident: 10.1016/j.eswa.2017.11.002_bib0067 article-title: A relationship between network topology and search performance of PSO – year: 2009 ident: 10.1016/j.eswa.2017.11.002_bib0024 – start-page: 124 year: 2015 ident: 10.1016/j.eswa.2017.11.002_bib0042 article-title: GPU-based out-of-core MDL clustering algorithm – volume: 42 start-page: 6315 issue: 17 year: 2015 ident: 10.1016/j.eswa.2017.11.002_bib0062 article-title: Hybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.04.032 – volume: 46 start-page: 1180 issue: 9 year: 2016 ident: 10.1016/j.eswa.2017.11.002_bib0013 article-title: United-based imperialist competitive algorithm for compensatory neural fuzzy systems publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMC.2015.2482938 – year: 1989 ident: 10.1016/j.eswa.2017.11.002_bib0027 – volume: 13 start-page: 225 issue: 3 year: 1985 ident: 10.1016/j.eswa.2017.11.002_bib0060 article-title: Improvements in multiprocessor system design publication-title: ACM SIGARCH Computer Architecture News doi: 10.1145/327070.327215 – start-page: 24 year: 1965 ident: 10.1016/j.eswa.2017.11.002_bib0016 article-title: The intrinsic computational difficulty of functions – year: 2016 ident: 10.1016/j.eswa.2017.11.002_bib0053 article-title: Communication diversity in particle swarm optimizers – volume: 25 start-page: 209 year: 2017 ident: 10.1016/j.eswa.2017.11.002_bib0001 article-title: GICA: Imperialist competitive algorithm with globalization mechanism for optimization problems publication-title: Turkish Journal of Electrical Engineering & Computer Sciences doi: 10.3906/elk-1507-226 – volume: 76 start-page: 214 year: 2002 ident: 10.1016/j.eswa.2017.11.002_bib0055 article-title: Particle swarm optimization method for constrained optimization problems publication-title: Intelligent Technologies-Theory and Application: New Trends in Intelligent Technologies – volume: 15 start-page: 832 issue: 6 year: 2011 ident: 10.1016/j.eswa.2017.11.002_bib0075 article-title: Orthogonal learning particle swarm optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2010.2052054 – year: 1930 ident: 10.1016/j.eswa.2017.11.002_bib0026 – volume: 2015 start-page: 1 year: 2015 ident: 10.1016/j.eswa.2017.11.002_bib0079 article-title: A comprehensive survey on particle swarm optimization algorithm and its applications publication-title: Mathematical Problems in Engineering – ident: 10.1016/j.eswa.2017.11.002_bib0046 – volume: 2017 start-page: ID2782679 year: 2017 ident: 10.1016/j.eswa.2017.11.002_bib0064 article-title: A swarm optimization genetic algorithm based on quantum-behaved particle swarm optimization publication-title: Computational Intelligence and Neuroscience doi: 10.1155/2017/2782679 – start-page: 203 year: 2002 ident: 10.1016/j.eswa.2017.11.002_bib0035 article-title: Solving constrained nonlinear optimization problems with particle swarm optimization – year: 2015 ident: 10.1016/j.eswa.2017.11.002_bib0028 article-title: Parallel particle swarm optimization (PPSO) clustering for learning analytics – volume: 40 start-page: 3196 issue: 8 year: 2013 ident: 10.1016/j.eswa.2017.11.002_bib0045 article-title: Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.12.033 – start-page: 1 year: 2015 ident: 10.1016/j.eswa.2017.11.002_bib0051 article-title: Proactive particles in swarm optimization: A self-tuning algorithm based on fuzzy logic – volume: 152 start-page: 41 year: 2015 ident: 10.1016/j.eswa.2017.11.002_bib0078 article-title: Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization publication-title: Progress in Electromagnetics Research doi: 10.2528/PIER15040602 – volume: 25 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.eswa.2017.11.002_bib0010 article-title: Particle swarm optimization for single objective continuous space problems: A review publication-title: Evolutionary Computation doi: 10.1162/EVCO_r_00180 – start-page: 558 year: 2014 ident: 10.1016/j.eswa.2017.11.002_bib0025 article-title: A modified PSO algorithm based on cache replacement algorithm – year: 2006 ident: 10.1016/j.eswa.2017.11.002_bib0063 – ident: 10.1016/j.eswa.2017.11.002_bib0017 – volume: 24 start-page: 428 issue: 3 year: 2013 ident: 10.1016/j.eswa.2017.11.002_bib0074 article-title: An iterative divide-and-merge-based approach for solving large-scale least squares problems publication-title: IEEE Transactions on Parallel and Distributed Systems doi: 10.1109/TPDS.2012.161 – volume: 117 start-page: 98 year: 2013 ident: 10.1016/j.eswa.2017.11.002_bib0005 article-title: A PSO and pattern search based memetic algorithm for SVMs parameters optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.01.027 – start-page: 1451 year: 2010 ident: 10.1016/j.eswa.2017.11.002_bib0022 article-title: Modified parallel particle swarm optimization for global optimization using message passing interface – year: 2012 ident: 10.1016/j.eswa.2017.11.002_bib0061 – year: 2009 ident: 10.1016/j.eswa.2017.11.002_bib0071 – start-page: 54 year: 2014 ident: 10.1016/j.eswa.2017.11.002_bib0069 article-title: The anatomy of Mr. Scan: A dissection of performance of an extreme scale GPU-based clustering algorithm – start-page: 1 year: 2011 ident: 10.1016/j.eswa.2017.11.002_bib0070 article-title: A CUDA-based multi-channel particle swarm algorithm – year: 2007 ident: 10.1016/j.eswa.2017.11.002_bib0009 article-title: GPUs: An emerging platform for general-purpose computation – volume: 10 start-page: 183 issue: 1 year: 2010 ident: 10.1016/j.eswa.2017.11.002_bib0050 article-title: An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2009.07.001 – start-page: 177 year: 2007 ident: 10.1016/j.eswa.2017.11.002_bib0044 article-title: MRPSO: MapReduce particle swarm optimization – year: 2007 ident: 10.1016/j.eswa.2017.11.002_bib0054 – volume: 1864 issue: 1 year: 2017 ident: 10.1016/j.eswa.2017.11.002_sbref0069 article-title: Combinatorial optimization problem solution based on improved genetic algorithm publication-title: AIP Conference Proceedings – year: 2017 ident: 10.1016/j.eswa.2017.11.002_bib0037 article-title: Distribution network reconfiguration using hybrid heuristic-genetic algorithm – ident: 10.1016/j.eswa.2017.11.002_bib0052 – start-page: 185 year: 2003 ident: 10.1016/j.eswa.2017.11.002_bib0072 article-title: Exact algorithms for NP-hard problems: A survey – ident: 10.1016/j.eswa.2017.11.002_bib0018 – ident: 10.1016/j.eswa.2017.11.002_bib0031 – year: 1992 ident: 10.1016/j.eswa.2017.11.002_bib0038 |
| SSID | ssj0017007 |
| Score | 2.3376374 |
| Snippet | •Luminance control is formalized as a constrained search problem.•Both power consumption minimization and sufficient illuminance are considered.•A distributive... We present an intelligent system, based on the particle swarm optimization (PSO) technique, to solve a power consumption minimization problem which is commonly... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 479 |
| SubjectTerms | Computer simulation CUDA Electricity Energy conservation Energy consumption GPU Hadoop Illuminance Industrial plants Lighting Luminance MapReduce Parallel algorithm Parallel processing Particle swarm optimization Power consumption Real time Working conditions Workshops |
| Title | Power consumption minimization by distributive particle swarm optimization for luminance control and its parallel implementations |
| URI | https://dx.doi.org/10.1016/j.eswa.2017.11.002 https://www.proquest.com/docview/2012837947 |
| Volume | 96 |
| WOSCitedRecordID | wos000424176900034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELXKLgcufCMWFuQD4lK5SvNl57hCXcGqKivoot4ix3Fpq25a2qYsR_4VP4-Z2E5DERUcuERVYidR5nU8tt_MI-QVz3WMojgs19JnoQoUS8Z-wnQYqEALkUWiShTu88FAjEbJZav1w-XCbOe8KMTNTbL8r6aGc2BsTJ39B3PXN4UT8BuMDkcwOxz_yvCXqHuGbHJ4qPEHWD7k2uZbYriZY7HcSudqq9tLe4v2-qtcXbcX0KVuixREcF5VUY4dq91tN2DV8PlczzHT0pLQd6t_s5rip1cbWy_aZdI19sxrPtBUmjXbyXTC-uU-TwgVu9lFWYMQmi3KavQo2cdJudcaNcE_sw8W93ZJoytwd8YkdZp1tjrX5tMv65WchV0j6dPRxlsLHrCYG4lF586Tpj8OjVLNb-OEWbKYdTR8W-T38Q6WcvX83ajomACD9-n5Vb-fDnuj4evlF4Z6Zbivb8VbbpFjn0cJ-NPjs3e90UW9g8U9k6rvXtsmbBlu4f5j_xQU7YUHVcwzvE_u2skKPTMIeUBaunhI7jkhEGrHhUfke4U52sAcbWKOZt9oE3PUYY5WmKNNzFHAHK0xRy3mKGCOAuaowxzdw9xjcnXeG755y6y2B1OBiDcs9kMF03_lqXDclYHKxhAsxjB3kVLkmRA6kRD8ah9GoFgGIpfaD6NI6igKFJd-FDwhR8Wi0E-RnCc9T2exCngeBpnGCpcy8rK4m8DNRHhCuu7jpsoWvkf9lXnqGI6zFA2SokFgRpyCQU5Iu-6zNGVfDraOnM1SG7iagDQFvB3sd-oMnFoPssbrWJEqCfmzw5efkzu7P88pOdqsSv2C3FbbzXS9emnx-BP6Lcrc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power+consumption+minimization+by+distributive+particle+swarm+optimization+for+luminance+control+and+its+parallel+implementations&rft.jtitle=Expert+systems+with+applications&rft.au=Liao%2C+Chih-Lun&rft.au=Lee%2C+Shie-Jue&rft.au=Chiou%2C+Yu-Shu&rft.au=Lee%2C+Ching-Ran&rft.date=2018-04-15&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=96&rft.spage=479&rft_id=info:doi/10.1016%2Fj.eswa.2017.11.002&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |