The Effect of the Schwarz Rearrangement on the Periodic Principal Eigenvalue of a Nonsymmetric Operator

This paper is concerned with the periodic principal eigenvalue $k_\lambda(\mu)$ associated with the operator $-\frac{d^2}{dx^2}-2\lambda\frac{d}{dx}-\mu(x)-\lambda^2$, where $\lambda\in\mathbb{R}$ and $\mu$ is continuous and periodic in $x\in\mathbb{R}$. Our main result is that $k_\lambda(\mu^*)\leq...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:SIAM journal on mathematical analysis Ročník 41; číslo 6; s. 2388 - 2406
Hlavný autor: Nadin, Grégoire
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia, PA Society for Industrial and Applied Mathematics 01.01.2010
Predmet:
ISSN:0036-1410, 1095-7154
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper is concerned with the periodic principal eigenvalue $k_\lambda(\mu)$ associated with the operator $-\frac{d^2}{dx^2}-2\lambda\frac{d}{dx}-\mu(x)-\lambda^2$, where $\lambda\in\mathbb{R}$ and $\mu$ is continuous and periodic in $x\in\mathbb{R}$. Our main result is that $k_\lambda(\mu^*)\leq k_\lambda(\mu)$, where $\mu^*$ is the Schwarz rearrangement of the function $\mu$. From a population dynamics point of view, using reaction-diffusion modeling, this result means that the fragmentation of the habitat of an invading population slows down the invasion. We prove that this property does not hold in higher dimension if $\mu^*$ is the Steiner symmetrization of $\mu$. For heterogeneous diffusion and advection, we prove that increasing the period of the coefficients decreases $k_\lambda$, and we compute the limit of $k_\lambda$ when the period of the coefficients goes to 0. Last, we prove that in dimension 1, rearranging the diffusion term decreases $k_\lambda$. These results rely on some new formula for the periodic principal eigenvalue of a nonsymmetric operator.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0036-1410
1095-7154
DOI:10.1137/080743597