An Improved Binary Quantum-based Avian Navigation Optimizer Algorithm to Select Effective Feature Subset from Medical Data: A COVID-19 Case Study

Feature Subset Selection (FSS) is an NP-hard problem to remove redundant and irrelevant features particularly from medical data, and it can be effectively addressed by metaheuristic algorithms. However, existing binary versions of metaheuristic algorithms have issues with convergence and lack an eff...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of bionics engineering Ročník 21; číslo 1; s. 426 - 446
Hlavní autori: Fatahi, Ali, Nadimi-Shahraki, Mohammad H., Zamani, Hoda
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Singapore Springer Nature Singapore 01.01.2024
Springer Nature B.V
Predmet:
ISSN:1672-6529, 2543-2141
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Feature Subset Selection (FSS) is an NP-hard problem to remove redundant and irrelevant features particularly from medical data, and it can be effectively addressed by metaheuristic algorithms. However, existing binary versions of metaheuristic algorithms have issues with convergence and lack an effective binarization method, resulting in suboptimal solutions that hinder diagnosis and prediction accuracy. This paper aims to propose an Improved Binary Quantum-based Avian Navigation Optimizer Algorithm (IBQANA) for FSS in medical data preprocessing to address the suboptimal solutions arising from binary versions of metaheuristic algorithms. The proposed IBQANA’s contributions include the Hybrid Binary Operator (HBO) and the Distance-based Binary Search Strategy (DBSS). HBO is designed to convert continuous values into binary solutions, even for values outside the [0, 1] range, ensuring accurate binary mapping. On the other hand, DBSS is a two-phase search strategy that enhances the performance of inferior search agents and accelerates convergence. By combining exploration and exploitation phases based on an adaptive probability function, DBSS effectively avoids local optima. The effectiveness of applying HBO is compared with five transfer function families and thresholding on 12 medical datasets, with feature numbers ranging from 8 to 10,509. IBQANA's effectiveness is evaluated regarding the accuracy, fitness, and selected features and compared with seven binary metaheuristic algorithms. Furthermore, IBQANA is utilized to detect COVID-19. The results reveal that the proposed IBQANA outperforms all comparative algorithms on COVID-19 and 11 other medical datasets. The proposed method presents a promising solution to the FSS problem in medical data preprocessing.
AbstractList Feature Subset Selection (FSS) is an NP-hard problem to remove redundant and irrelevant features particularly from medical data, and it can be effectively addressed by metaheuristic algorithms. However, existing binary versions of metaheuristic algorithms have issues with convergence and lack an effective binarization method, resulting in suboptimal solutions that hinder diagnosis and prediction accuracy. This paper aims to propose an Improved Binary Quantum-based Avian Navigation Optimizer Algorithm (IBQANA) for FSS in medical data preprocessing to address the suboptimal solutions arising from binary versions of metaheuristic algorithms. The proposed IBQANA’s contributions include the Hybrid Binary Operator (HBO) and the Distance-based Binary Search Strategy (DBSS). HBO is designed to convert continuous values into binary solutions, even for values outside the [0, 1] range, ensuring accurate binary mapping. On the other hand, DBSS is a two-phase search strategy that enhances the performance of inferior search agents and accelerates convergence. By combining exploration and exploitation phases based on an adaptive probability function, DBSS effectively avoids local optima. The effectiveness of applying HBO is compared with five transfer function families and thresholding on 12 medical datasets, with feature numbers ranging from 8 to 10,509. IBQANA's effectiveness is evaluated regarding the accuracy, fitness, and selected features and compared with seven binary metaheuristic algorithms. Furthermore, IBQANA is utilized to detect COVID-19. The results reveal that the proposed IBQANA outperforms all comparative algorithms on COVID-19 and 11 other medical datasets. The proposed method presents a promising solution to the FSS problem in medical data preprocessing.
Author Fatahi, Ali
Nadimi-Shahraki, Mohammad H.
Zamani, Hoda
Author_xml – sequence: 1
  givenname: Ali
  surname: Fatahi
  fullname: Fatahi, Ali
  organization: Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Big Data Research Center, Najafabad Branch, Islamic Azad University
– sequence: 2
  givenname: Mohammad H.
  orcidid: 0000-0002-0135-1115
  surname: Nadimi-Shahraki
  fullname: Nadimi-Shahraki, Mohammad H.
  email: nadimi@iaun.ac.ir, nadimi@ieee.org
  organization: Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Big Data Research Center, Najafabad Branch, Islamic Azad University
– sequence: 3
  givenname: Hoda
  surname: Zamani
  fullname: Zamani, Hoda
  organization: Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Big Data Research Center, Najafabad Branch, Islamic Azad University
BookMark eNp9kcuKFDEUhoOMYM_oC7g64DqaW1Wq3JU9M9ow2kir25CqOmkz1KVNUg3tW_jGxmlBcDGrA4f_O5f_vyQX0zwhIS85e80Z02-iEkIWlAlJGVNS0tMTshKFklRwxS_Iipda0LIQ9TNyGeM9Y0UtKrkiv5oJNuMhzEfs4Z2fbDjB58VOaRlpa2NuNkdvJ_hkj35vk58n2B6SH_1PDNAM-zn49H2ENMMOB-wS3DiXiz8i3KJNS0DYLW3EBC7MI3zE3nd2gGub7FtoYL39trmmvIZ13gW7tPSn5-Sps0PEF3_rFfl6e_Nl_YHebd9v1s0d7WRVJiqd1LaWlUJ0stetQ1132AmmVNUj160qlavLruVVbV3NpaiKSqNTbSE0F1pekVfnufn5HwvGZO7nJUx5pZGiKIRiismsqs6qLswxBnSm8-nBhxSsHwxn5k8A5hyAyQGYhwDMKaPiP_QQ_JgNfhySZyhm8bTH8O-qR6jfSEmbAg
CitedBy_id crossref_primary_10_1016_j_eswa_2025_126404
crossref_primary_10_1007_s10586_024_04455_x
crossref_primary_10_1007_s10586_024_04666_2
crossref_primary_10_1007_s13042_024_02130_6
crossref_primary_10_1038_s41598_025_90660_6
crossref_primary_10_1007_s00500_025_10445_x
crossref_primary_10_1038_s41598_024_57098_8
crossref_primary_10_1007_s42235_024_00580_w
crossref_primary_10_1038_s41598_024_59034_2
crossref_primary_10_1007_s10586_024_04750_7
crossref_primary_10_1007_s10586_024_04328_3
crossref_primary_10_1007_s10586_024_04368_9
crossref_primary_10_1007_s10586_024_04441_3
crossref_primary_10_1016_j_chaos_2024_115636
crossref_primary_10_1038_s41598_024_57518_9
crossref_primary_10_1007_s10586_024_04488_2
crossref_primary_10_1007_s11831_023_10037_8
crossref_primary_10_1016_j_swevo_2024_101795
crossref_primary_10_1007_s10586_024_04361_2
crossref_primary_10_1007_s10586_024_04447_x
crossref_primary_10_1007_s10586_024_04408_4
crossref_primary_10_1142_S0217732325500191
crossref_primary_10_1007_s10462_024_10793_4
crossref_primary_10_1007_s10462_024_11096_4
crossref_primary_10_1007_s10462_024_10857_5
crossref_primary_10_1007_s11128_025_04787_6
crossref_primary_10_1109_ACCESS_2024_3445269
crossref_primary_10_1007_s13042_024_02216_1
crossref_primary_10_1109_ACCESS_2025_3547057
crossref_primary_10_1007_s42484_024_00201_z
crossref_primary_10_1186_s40537_024_00931_8
crossref_primary_10_1007_s10462_024_10729_y
crossref_primary_10_3390_a17050172
crossref_primary_10_1038_s41598_024_56919_0
crossref_primary_10_1007_s10586_024_04879_5
Cites_doi 10.3390/math10152770
10.1109/SIBGRAPI.2012.47
10.1007/978-981-15-3290-0_19
10.1016/j.cie.2021.107250
10.1111/exsy.12666
10.1016/j.eswa.2022.118642
10.1016/j.cma.2022.114616
10.1007/s11831-023-09928-7
10.1016/j.cor.2005.11.017
10.1515/mt-2020-0053
10.1016/j.asoc.2019.03.002
10.1109/CEC.2013.6557555
10.3389/fpubh.2020.00357
10.1016/j.neucom.2015.06.083
10.1016/j.cma.2022.114570
10.3390/pr9091551
10.1016/j.swevo.2023.101304
10.1111/coin.12397
10.1007/s00521-017-2988-6
10.3934/naco.2020017
10.1016/j.asoc.2022.108630
10.1155/2022/3714475
10.1016/j.asoc.2019.105576
10.1016/j.swevo.2012.09.002
10.1016/j.neucom.2022.06.075
10.1016/j.eswa.2023.120367
10.3390/electronics11050831
10.3390/bios12100821
10.3390/math11040862
10.3390/math10152742
10.48550/arXiv.2003.11055
10.1023/A:1012487302797
10.1016/j.advengsoft.2013.12.007
10.1016/j.future.2017.05.044
10.1016/j.knosys.2015.07.006
10.1016/j.swevo.2018.01.001
10.1109/CEC.2010.5586536
10.1023/A:1008202821328
10.6029/smartcr.2014.03.007
10.1007/s00366-020-01268-5
10.1016/j.advengsoft.2016.01.008
10.1016/j.knosys.2019.105277
10.1016/j.eswa.2022.116895
10.1111/exsy.12553
10.1007/s10898-007-9149-x
10.1214/aoms/1177731944
10.1016/j.knosys.2018.05.009
10.1007/b107408
10.3390/e23121637
10.1109/TSMC.1987.4309029
10.1016/j.eswa.2021.116368
10.1016/j.future.2019.02.028
10.1007/s00521-015-1920-1
10.1016/j.patrec.2007.05.011
10.1016/j.future.2023.01.006
10.1109/4235.585893
10.1111/exsy.12992
10.1016/j.procs.2015.09.064
10.1109/ACCESS.2020.3010287
10.1371/journal.pone.0274850
10.1007/s42235-021-0050-y
10.3390/app12063209
10.1109/MCI.2006.329691
10.1109/SSD.2009.4956825
10.1007/s11047-009-9175-3
10.1109/ICAPR.2009.36
10.1007/s12559-022-10099-z
10.3390/electronics8101130
10.1016/j.engappai.2021.104314
10.1109/MIPRO.2015.7160458
10.1016/j.eswa.2020.113377
10.1007/s00521-014-1629-6
10.1038/scientificamerican0792-66
10.1016/j.bspc.2023.104614
10.1371/journal.pone.0278491
10.1016/j.jpdc.2009.09.009
10.1007/s11042-022-11949-6
10.1109/ChinaGrid.2011.17
10.1109/ACCESS.2020.3025164
10.1016/j.enconman.2020.113491
10.3390/app13010564
10.3390/pr9122276
10.1007/s10586-022-03649-5
10.3390/bdcc6040104
10.1109/CEC.2012.6256452
10.1016/j.eswa.2021.115351
10.1016/j.compbiomed.2021.104984
10.1016/j.knosys.2022.108789
10.1016/j.engappai.2014.03.007
10.1016/S0004-3702(97)00043-X
10.1109/CEC.2006.1688716
ContentType Journal Article
Copyright Jilin University 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Jilin University 2023.
Copyright_xml – notice: Jilin University 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Jilin University 2023.
DBID AAYXX
CITATION
7X7
7XB
8FE
8FG
8FH
8FI
ABJCF
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s42235-023-00433-y
DatabaseName CrossRef
Proquest Health and Medical Complete
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Biological Sciences
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Biology
EISSN 2543-2141
EndPage 446
ExternalDocumentID 10_1007_s42235_023_00433_y
GroupedDBID --K
--M
-EM
-SC
-S~
.~1
0R~
1B1
1~.
1~5
2B.
2C.
4.4
406
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
8UJ
92E
92I
92Q
93N
AACDK
AACTN
AAEDT
AAEDW
AAHNG
AAIAL
AAIKJ
AAJBT
AAKOC
AALRI
AAOAW
AASML
AATNV
AAUYE
AAXDM
AAXKI
AAXUO
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABTMW
ABWVN
ABXDB
ACAOD
ACDAQ
ACDTI
ACGFS
ACHSB
ACNNM
ACOKC
ACPIV
ACRLP
ACRPL
ACZOJ
ADBBV
ADEZE
ADKNI
ADMUD
ADNMO
ADRFC
ADTZH
ADURQ
ADYFF
AEBSH
AECPX
AEFQL
AEIPS
AEKER
AEMSY
AENEX
AESKC
AFBBN
AFKWA
AFQWF
AFUIB
AGDGC
AGHFR
AGJBK
AGMZJ
AGQEE
AGRTI
AGUBO
AGYEJ
AHJVU
AIAKS
AIEXJ
AIGIU
AIKHN
AILAN
AITGF
AITUG
AJOXV
AJZVZ
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMXSW
AMYLF
ANKPU
AXJTR
AXYYD
BGNMA
BKOJK
BLXMC
CAJEC
CCEZO
CEKLB
CHBEP
CS3
CW9
DPUIP
DU5
EBLON
EBS
EFJIC
EJD
EO9
EP2
EP3
FA0
FDB
FIGPU
FINBP
FIRID
FNLPD
FNPLU
FSGXE
FYGXN
GBLVA
GGCAI
GJIRD
HG6
HZ~
IAO
IHR
IKXTQ
ITC
IWAJR
J-C
J1W
JJJVA
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MO0
N9A
NPVJJ
NQJWS
NU0
O-L
O9-
O9J
OAUVE
OZT
P-8
P-9
P2P
PC.
PT4
Q--
Q38
RIG
RLLFE
ROL
RSV
SDC
SDF
SDG
SES
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPC
SRMVM
SSLCW
SST
SSZ
STPWE
T5K
TCJ
TGP
U1G
U5M
UOJIU
UTJUX
VEKWB
VFIZW
WFFXF
ZMTXR
7X7
8FI
9DU
AATTM
AAYWO
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACLOT
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AFPUW
AHPBZ
AHWEU
AIGII
AIIUN
AIXLP
AKBMS
AKYEP
ATHPR
AYFIA
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
EFKBS
EFLBG
FYUFA
HCIFZ
HMCUK
M7P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
UKHRP
~HD
7XB
8FE
8FG
8FH
AZQEC
DWQXO
GNUQQ
L6V
LK8
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c386t-3f37a9384eef3d7bfe79cec20448de17b464f96cb189af91328587ef4b5271273
IEDL.DBID M7S
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001071598500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1672-6529
IngestDate Sat Oct 25 06:49:31 EDT 2025
Tue Nov 18 20:51:05 EST 2025
Sat Nov 29 02:07:54 EST 2025
Fri Feb 21 02:40:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Feature subset selection
Bioinspired
Binary metaheuristic algorithms
Medical datasets
Optimization
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-3f37a9384eef3d7bfe79cec20448de17b464f96cb189af91328587ef4b5271273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0135-1115
PQID 3255240403
PQPubID 7435083
PageCount 21
ParticipantIDs proquest_journals_3255240403
crossref_citationtrail_10_1007_s42235_023_00433_y
crossref_primary_10_1007_s42235_023_00433_y
springer_journals_10_1007_s42235_023_00433_y
PublicationCentury 2000
PublicationDate 20240100
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 1
  year: 2024
  text: 20240100
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of bionics engineering
PublicationTitleAbbrev J Bionic Eng
PublicationYear 2024
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJournal of Global Optimization20073934594712346178
KhalidAMHamzaHMMirjaliliSHosnyKMBCOVIDOA: a novel binary coronavirus disease optimization algorithm for feature selectionKnowledge-Based Systems2022248108789354646669014647
FarisHMafarjaMMHeidariAAAljarahIAlamA-ZMirjaliliSFujitaHAn efficient binary salp swarm algorithm with crossover scheme for feature selection problemsKnowledge-Based Systems20181544367
GuyonIElisseeffAAn introduction to variable and feature selectionJournal of Machine Leaning Research200337–811571182
MirjaliliSFarisHAljarahIEvolutionary machine learning techniques2019Springer12
MirjaliliSWangG-GCoelhoLdSBinary optimization using hybrid particle swarm optimization and gravitational search algorithmNeural Computing and Applications201425614231435
PiriJMohapatraPAcharyaBGharehchopoghFSGerogiannisVCKanavosAManikaSFeature selection using artificial gorilla troop optimization for biomedical data: a case analysis with COVID-19 dataMathematics202210152742
YıldızBSPholdeeNBureeratSErdaşMUYıldızARSaitSMComparision of the political optimization algorithm, the Archimedes optimization algorithm and the levy flight algorithm for design optimization in industryMaterials Testing20216343563592021MTest..63..356Y
HuangJCaiYXuXA hybrid genetic algorithm for feature selection wrapper based on mutual informationPattern Recognition Letters20072813182518442007PaReL..28.1825H
AslanMGunduzMKiranMSJayaX: jaya algorithm with xor operator for binary optimizationApplied Soft Computing201982105576
Tanabe, R., Fukunaga, A. (2013) Success-history based parameter adaptation for differential evolution. IEEE congress on evolutionary computation, Cancun, Mexico, 71–78.
XuZHeidariAAKuangFKhalilAMafarjaMZhangSChenHPanZEnhanced Gaussian bare-bones grasshopper optimization: Mitigating the performance concerns for feature selectionExpert Systems with Applications2023212118642
KumarVMinzSFeature selection: a literature reviewSmartCR201443211229
Purohit, A., Chaudhari, NS., Tiwari, A. (2010) Construction of classifier with feature selection based on genetic programming. IEEE Congress on Evolutionary Computation, Barcelona, Spain, 1–5.
TuJChenHWangMGandomiAHThe colony predation algorithmJournal of Bionic Engineering2021183674710
RashediENezamabadi-PourHSaryazdiSBGSA: Binary gravitational search algorithmNatural Computing2010937277452685088
HemdanEE-DShoumanMAKararMECovidx-net: a framework of deep learning classifiers to diagnose covid-19 in x-ray imagesArXiv preprint ArXiv202010.48550/arXiv.2003.11055
SayedGIHassanienAEAzarATFeature selection via a novel chaotic crow search algorithmNeural Computing and Applications2019311171188
TurkogluBUymazSAKayaEBinary artificial algae algorithm for feature selectionApplied Soft Computing2022120108630
YildizBSPholdeeNBureeratSYildizARSaitSMRobust design of a robot gripper mechanism using new hybrid grasshopper optimization algorithmExpert Systems2021383e12666
NamaSSahaAKChakrabortySGandomiAHAbualigahLBoosting particle swarm optimization by backtracking search algorithm for optimization problemsSwarm and Evolutionary Computation202379101304
Nadimi-ShahrakiMHZamaniHDMDE: Diversity-maintained multi-trial vector differential evolution algorithm for non-decomposition large-scale global optimizationExpert Systems with Applications2022198116895
GuptaSDeepKA novel random walk grey wolf optimizerSwarm and Evolutionary Computation20194410111210.1016/j.swevo.2018.01.001
AkinolaOAgushakaOEzugwuABinary dwarf mongoose optimizer for solving high-dimensional feature selection problemsPLoS ONE202217101261:CAS:528:DC%2BB38Xis1Wku7jK10.1371/journal.pone.0274850
Al-QanessMAHelmiAMDahouAElazizMAThe applications of metaheuristics for human activity recognition and fall detection using wearable sensors: A comprehensive analysisBiosensors20221210821362909589599938
AwadAEl-HefnawyNAbdel-kaderHEnhanced particle swarm optimization for task scheduling in cloud computing environmentsProcedia Computer Science201565920929
AgushakaJOEzugwuAEAbualigahLDwarf mongoose optimization algorithmComputer Methods in Applied Mechanics and Engineering20223911145702022CMAME.391k4570A4372742
MirjaliliSDragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problemsNeural Computing and Applications201627410531073
ChakrabortySSahaAKChhabraAImproving whale optimization algorithm with elite strategy and its application to engineering-design and cloud task scheduling problemsCognitive Computation202310.1007/s12559-022-10099-z
GongTTuson2007AL. Differential Evolution for Binary Encoding. Berlin251262
Nadimi-ShahrakiMHFatahiAZamaniHMirjaliliSAbualigahLAn improved moth-flame optimization algorithm with adaptation mechanism to solve numerical and mechanical engineering problemsEntropy2021231216372021Entrp..23.1637N4356092349459438700729
Li, K., Xu, G., Zhao, G., Dong, Y., Wang, D. (2011) Cloud task scheduling based on load balancing ant colony optimization. Sixth Annual ChinaGrid Conference, Liaoning, China, 3–9.
Marandi, A., Afshinmanesh, F., Shahabadi, M., Bahrami, F. (2006) Boolean particle swarm optimization and its application to the design of a dual-band dual-polarized planar antenna. IEEE International Conference on Evolutionary Computation, Vancouver, BC, Canada, 2006, 3212–3218.
MohammadzadehHGharehchopoghFSA novel hybrid whale optimization algorithm with flower pollination algorithm for feature selection: Case study Email spam detectionComputational Intelligence20213711762094221974
Deriche, M. (2009) Feature selection using ant colony optimization. 6th International Multi-Conference on Systems, Signals and Devices, Djerba, Tunisia, 1–4.
Koller, D., Sahami, M. (1996) Toward optimal feature selection. Proceedings of the Thirteenth International Conference on International Conference on Machine Learning. Bari, Italy, 1996: 284–292.
WangSJiaHAbualigahLLiuQZhengRAn improved hybrid aquila optimizer and harris hawks algorithm for solving industrial engineering optimization problemsProcesses20219915511:CAS:528:DC%2BB3MXis1SnurzI
StornRPriceKDifferential evolution–a simple and efficient heuristic for global optimization over continuous spacesJournal of Global Optimization19971143413591479553
GuptaSAbderazekHYıldızBSYildizARMirjaliliSSaitSMComparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problemsExpert Systems with Applications2021183115351
HelmiAMAl-qanessMADahouAAbd ElazizMHuman activity recognition using marine predators algorithm with deep learningFuture Generation Computer Systems2023142340350
Cervante, L., Xue, B., Zhang, M., Shang, L. (2012) Binary particle swarm optimisation for feature selection: A filter based approach. IEEE Congress on Evolutionary Computation, Brisbane, QLD, Australia, 1–8.
Nadimi-ShahrakiMHAsghari VarzanehZZamaniHMirjaliliSBinary starling murmuration optimizer algorithm to select effective features from medical dataApplied Sciences20231315641:CAS:528:DC%2BB3sXmsVCnsQ%3D%3D
OmaraFAArafaMMGenetic algorithms for task scheduling problemJournal of Parallel and Distributed Computing2010701132210.1016/j.jpdc.2009.09.009
Nadimi-ShahrakiMHFatahiAZamaniHMirjaliliSOlivaDHybridizing of whale and moth-flame optimization algorithms to solve diverse scales of optimal power flow problemElectronics2022115831
ChowdhuryMERahmanTKhandakarAMazharRKadirMAMahbubZBIslamKRKhanMSIqbalAAl EmadiNCan AI help in screening viral and COVID-19 pneumonia?IEEE Access2020813266513267610.1109/ACCESS.2020.3010287
LiuYHeidariAACaiZLiangGChenHPanZAlsufyaniABourouisSSimulated annealing-based dynamic step shuffled frog leaping algorithm: optimal performance design and feature selectionNeurocomputing2022503325362
Nadimi-ShahrakiMHZamaniHAsghari VarzanehZMirjaliliSA Systematic review of the whale optimization algorithm: theoretical foundation, improvements, and hybridizationsArchives of Computational Methods in Engineering202310.1007/s11831-023-09928-73735974010220350
SnyderSEHusariGSnyderSEThor: A deep learning approach for face mask detection to prevent the COVID-19 pandemicSoutheast Con 2021, Atlanta2021USAGA
TooJAbdullahARMohd SaadNA new quadratic binary Harris hawk optimization for feature selectionElectronics20198101130
Nadimi-ShahrakiMHFatahiAZamaniHMirjaliliSBinary approaches of quantum-based avian navigation optimizer to select effective features from high-dimensional medical dataMathematics202210152770
YıldızBSPholdeeNPanagantNBureeratSYildizARSaitSMA novel chaotic Henry gas solubility optimization algorithm for solving real-world engineering problemsEngineering with Computers202238287188310.1007/s00366-020-01268-5
MirjaliliSLewisAThe whale optimization algorithmAdvances in Engineering Software2016955167
FaramarziAHeidarinejadMMirjaliliSGandomiAHMarine predators algorithm: a nature-inspired metaheuristicExpert Systems with Applications2020152113377
TahaACosgraveBMckeeverSUsing feature selection with machine learning for generation of insurance insightsApplied Sciences202212632091:CAS:528:DC%2BB38XnvF2jtbk%3D
SharmaSSahaAKRoySMirjaliliSNamaSA mixed sine cosine butterfly optimization algorithm for global optimization and its applicationCluster Computing20222564573460010.1007/s10586-022-03649-5
Mirjalili, S., Zhang, H., Mirjalili, S., Chalup, S., Noman, N. (2020) A novel U-shaped transfer function for binary particle swarm optimisation. Soft Computing for Problem Solving 2019, Singapore, 241–259.
HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFuture Generation Computer Systems201997849872
DorigoMBirattariMStutzleTAnt colony optimizationIEEE Computational Intelligence Magazine2006142839
Nadimi-ShahrakiMHFatahiAZamaniHMirjaliliSAbualigahLAbd ElazizMMigration-based moth-flame optimization algorithmProcesses20219122276
PelusiDMascellaRTalliniLNayakJNaikBDengYAn improved moth-flame optimization algorithm with hybrid searc
ME Chowdhury (433_CR97) 2020; 8
S Wang (433_CR51) 2021; 9
AA Heidari (433_CR29) 2019; 97
SE Snyder (433_CR98) 2021
O Akinola (433_CR15) 2022; 17
S Mirjalili (433_CR26) 2014; 69
BS Yıldız (433_CR42) 2022; 38
FA Omara (433_CR32) 2010; 70
MH Nadimi-Shahraki (433_CR43) 2023; 11
C-J Liao (433_CR73) 2007; 34
J Too (433_CR71) 2019; 8
B Turkoglu (433_CR82) 2022; 120
GI Sayed (433_CR78) 2019; 31
H Faris (433_CR59) 2018; 154
433_CR103
M Abdel-Basset (433_CR50) 2021; 227
AR Jordehi (433_CR77) 2019; 78
D Karaboga (433_CR25) 2007; 39
433_CR30
I Guyon (433_CR12) 2002; 46
BS Yildiz (433_CR39) 2021; 38
MH Nadimi-Shahraki (433_CR89) 2023; 13
A Awad (433_CR31) 2015; 65
A Rakotomamonjy (433_CR13) 2003; 3
S Gupta (433_CR40) 2021; 183
J Piri (433_CR83) 2022; 10
433_CR21
S Chakraborty (433_CR63) 2023
AM Helmi (433_CR86) 2023; 142
E Rashedi (433_CR54) 2010; 9
H Zamani (433_CR47) 2022; 392
C-W Chen (433_CR5) 2020; 37
MH Nadimi-Shahraki (433_CR20) 2021; 9
A Taha (433_CR6) 2022; 12
J Huang (433_CR10) 2007; 28
S Tabakhi (433_CR18) 2014; 32
MH Nadimi-Shahraki (433_CR35) 2021; 23
433_CR17
H Zamani (433_CR49) 2021; 104
O Maimon (433_CR1) 2005
433_CR14
S Mirjalili (433_CR69) 2013; 9
S Mirjalili (433_CR2) 2019
S Mirjalili (433_CR58) 2016; 27
BS Yıldız (433_CR36) 2021; 63
P Bansal (433_CR64) 2022; 81
MA Kahya (433_CR72) 2021; 11
433_CR93
BS Yıldız (433_CR41) 2022; 39
433_CR96
MH Nadimi-Shahraki (433_CR80) 2023
433_CR90
D Pelusi (433_CR91) 2020; 191
R Babukarthik (433_CR99) 2020; 8
S Kumar Sahoo (433_CR101) 2023; 227
R Storn (433_CR23) 1997; 11
AM Khalid (433_CR66) 2022; 248
S Gupta (433_CR92) 2019; 44
R Kohavi (433_CR9) 1997; 97
MH Nadimi-Shahraki (433_CR33) 2022; 11
I Foroutan (433_CR19) 1987; 17
M Farhat (433_CR34) 2022; 2022
L Abualigah (433_CR84) 2022; 192
DH Wolpert (433_CR61) 1997; 1
C Iwendi (433_CR104) 2020; 8
E Emary (433_CR57) 2016; 172
L Abualigah (433_CR46) 2021; 157
A Faramarzi (433_CR44) 2020; 152
433_CR79
S Sharma (433_CR37) 2022; 25
433_CR74
M Aslan (433_CR75) 2019; 82
W Ren (433_CR88) 2023; 83
S Mirjalili (433_CR70) 2014; 25
E-SM El-Kenawy (433_CR52) 2023; 18
433_CR8
JO Agushaka (433_CR48) 2022; 391
433_CR7
433_CR4
S Mirjalili (433_CR27) 2015; 89
433_CR3
MA Al-Qaness (433_CR87) 2022; 12
EE-D Hemdan (433_CR102) 2020
Y He (433_CR60) 2018; 78
MH Nadimi-Shahraki (433_CR68) 2022; 10
R Rao (433_CR76) 2016; 7
V Kumar (433_CR16) 2014; 4
MH Nadimi-Shahraki (433_CR38) 2022; 198
M Dorigo (433_CR24) 2006; 1
M Friedman (433_CR94) 1940; 11
A Shaddeli (433_CR85) 2022; 6
S Chakraborty (433_CR100) 2021; 139
I Guyon (433_CR11) 2003; 3
S Nama (433_CR62) 2023; 79
Y Liu (433_CR65) 2022; 503
433_CR53
433_CR56
H Mohammadzadeh (433_CR81) 2021; 37
S Mirjalili (433_CR28) 2016; 95
Z Xu (433_CR67) 2023; 212
JH Holland (433_CR22) 1992; 267
J Tu (433_CR45) 2021; 18
S Kutsuna (433_CR95) 2021; 4
T Gong (433_CR55) 2007
References_xml – reference: Nadimi-ShahrakiMHZamaniHDMDE: Diversity-maintained multi-trial vector differential evolution algorithm for non-decomposition large-scale global optimizationExpert Systems with Applications2022198116895
– reference: HeYXieHWongT-LWangXA novel binary artificial bee colony algorithm for the set-union knapsack problemFuture Generation Computer Systems2018787786
– reference: Nadimi-ShahrakiMHFatahiAZamaniHMirjaliliSAbualigahLAn improved moth-flame optimization algorithm with adaptation mechanism to solve numerical and mechanical engineering problemsEntropy2021231216372021Entrp..23.1637N4356092349459438700729
– reference: SharmaSSahaAKRoySMirjaliliSNamaSA mixed sine cosine butterfly optimization algorithm for global optimization and its applicationCluster Computing20222564573460010.1007/s10586-022-03649-5
– reference: Deriche, M. (2009) Feature selection using ant colony optimization. 6th International Multi-Conference on Systems, Signals and Devices, Djerba, Tunisia, 1–4.
– reference: Jović, A., Brkić, K., Bogunović, N. (2015) A review of feature selection methods with applications. 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 1200–1205
– reference: Kennedy, J., Eberhart, R. (1948) Particle swarm optimization. Proceedings of ICNN'95-international conference on neural networks, 1995, 1942–1948.
– reference: Nadimi-ShahrakiMHZamaniHFatahiAMirjaliliSMFO-SFR: An enhanced moth-flame optimization algorithm using an effective stagnation finding and replacing strategyMathematics2023114862
– reference: AgushakaJOEzugwuAEAbualigahLDwarf mongoose optimization algorithmComputer Methods in Applied Mechanics and Engineering20223911145702022CMAME.391k4570A4372742
– reference: AbualigahLYousriDAbd ElazizMEweesAAAl-QanessMAGandomiAHAquila optimizer: a novel meta-heuristic optimization algorithmComputers & Industrial Engineering2021157107250
– reference: DorigoMBirattariMStutzleTAnt colony optimizationIEEE Computational Intelligence Magazine2006142839
– reference: StornRPriceKDifferential evolution–a simple and efficient heuristic for global optimization over continuous spacesJournal of Global Optimization19971143413591479553
– reference: Abdel-BassetMEl-ShahatDChakraborttyRKRyanMParameter estimation of photovoltaic models using an improved marine predators algorithmEnergy Conversion and Management2021227113491
– reference: GuptaSAbderazekHYıldızBSYildizARMirjaliliSSaitSMComparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problemsExpert Systems with Applications2021183115351
– reference: TuJChenHWangMGandomiAHThe colony predation algorithmJournal of Bionic Engineering2021183674710
– reference: Purohit, A., Chaudhari, NS., Tiwari, A. (2010) Construction of classifier with feature selection based on genetic programming. IEEE Congress on Evolutionary Computation, Barcelona, Spain, 1–5.
– reference: KumarVMinzSFeature selection: a literature reviewSmartCR201443211229
– reference: FarhatMKamelSAtallahAMKhanBDeveloping a marine predator algorithm for optimal power flow analysis considering uncertainty of renewable energy sourcesInternational Transactions on Electrical Energy Systems20222022371447510.1155/2022/3714475
– reference: ChenC-WTsaiY-HChangF-RLinW-CEnsemble feature selection in medical datasets: combining filter, wrapper, and embedded feature selection resultsExpert Systems.2020375e1255310.1111/exsy.12553
– reference: YıldızBSPholdeeNPanagantNBureeratSYildizARSaitSMA novel chaotic Henry gas solubility optimization algorithm for solving real-world engineering problemsEngineering with Computers202238287188310.1007/s00366-020-01268-5
– reference: SayedGIHassanienAEAzarATFeature selection via a novel chaotic crow search algorithmNeural Computing and Applications2019311171188
– reference: PelusiDMascellaRTalliniLNayakJNaikBDengYAn improved moth-flame optimization algorithm with hybrid search phaseKnowledge-Based Systems2020191105277
– reference: AbualigahLDiabatAChaotic binary group search optimizer for feature selectionExpert Systems with Applications2022192116368
– reference: WangSJiaHAbualigahLLiuQZhengRAn improved hybrid aquila optimizer and harris hawks algorithm for solving industrial engineering optimization problemsProcesses20219915511:CAS:528:DC%2BB3MXis1SnurzI
– reference: RaoRJaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problemsInternational Journal of Industrial Engineering Computations2016711934
– reference: Kumar SahooSHousseinEHPremkumarMKumar SahaAEmamMMSelf-adaptive moth flame optimizer combined with crossover operator and Fibonacci search strategy for COVID-19 CT image segmentationExpert Systems with Applications202322712036710.1016/j.eswa.2023.1203673719300010163947
– reference: Duangsoithong, R., Windeatt, T. (2009) Relevant and redundant feature analysis with ensemble classification. Seventh International Conference on Advances in Pattern Recognition, Kolkata, India 247–250
– reference: GongTTuson2007AL. Differential Evolution for Binary Encoding. Berlin251262
– reference: Nadimi-ShahrakiMHFatahiAZamaniHMirjaliliSBinary approaches of quantum-based avian navigation optimizer to select effective features from high-dimensional medical dataMathematics202210152770
– reference: TheWorldometers: COVID-19 Coronavirus Pandemic. Retrieved 24 Sep 2022 from https://www.worldometers.info/coronavirus/
– reference: MirjaliliSMoth-flame optimization algorithm: A novel nature-inspired heuristic paradigmKnowledge-Based Systems201589228249
– reference: HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFuture Generation Computer Systems201997849872
– reference: RakotomamonjyAVariable selection using SVM-based criteriaJournal of Machine Learning Research200337–8135713702020764
– reference: NamaSSahaAKChakrabortySGandomiAHAbualigahLBoosting particle swarm optimization by backtracking search algorithm for optimization problemsSwarm and Evolutionary Computation202379101304
– reference: Nadimi-ShahrakiMHFatahiAZamaniHMirjaliliSAbualigahLAbd ElazizMMigration-based moth-flame optimization algorithmProcesses20219122276
– reference: MirjaliliSFarisHAljarahIEvolutionary machine learning techniques2019Springer12
– reference: Koller, D., Sahami, M. (1996) Toward optimal feature selection. Proceedings of the Thirteenth International Conference on International Conference on Machine Learning. Bari, Italy, 1996: 284–292.
– reference: TurkogluBUymazSAKayaEBinary artificial algae algorithm for feature selectionApplied Soft Computing2022120108630
– reference: ChakrabortySSahaAKNamaSDebnathSCOVID-19 X-ray image segmentation by modified whale optimization algorithm with population reductionComputers in Biology and Medicine20211391049841:CAS:528:DC%2BB3MXisVehsrvO10.1016/j.compbiomed.2021.104984347399728556692
– reference: JordehiARBinary particle swarm optimisation with quadratic transfer function: A new binary optimisation algorithm for optimal scheduling of appliances in smart homesApplied Soft Computing201978465480
– reference: OmaraFAArafaMMGenetic algorithms for task scheduling problemJournal of Parallel and Distributed Computing2010701132210.1016/j.jpdc.2009.09.009
– reference: PiriJMohapatraPAcharyaBGharehchopoghFSGerogiannisVCKanavosAManikaSFeature selection using artificial gorilla troop optimization for biomedical data: a case analysis with COVID-19 dataMathematics202210152742
– reference: Marandi, A., Afshinmanesh, F., Shahabadi, M., Bahrami, F. (2006) Boolean particle swarm optimization and its application to the design of a dual-band dual-polarized planar antenna. IEEE International Conference on Evolutionary Computation, Vancouver, BC, Canada, 2006, 3212–3218.
– reference: Kennedy, J., Eberhart, RC. (1997) A discrete binary version of the particle swarm algorithm. IEEE International Conference on Systems, Man, and Cybernetics. Computational cybernetics and simulation, Orlando, FL, USA, 1997, 4104–4108.
– reference: AwadAEl-HefnawyNAbdel-kaderHEnhanced particle swarm optimization for task scheduling in cloud computing environmentsProcedia Computer Science201565920929
– reference: GuyonIElisseeffAAn introduction to variable and feature selectionJournal of Machine Leaning Research200337–811571182
– reference: GuptaSDeepKA novel random walk grey wolf optimizerSwarm and Evolutionary Computation20194410111210.1016/j.swevo.2018.01.001
– reference: BabukarthikRAdigaVAKSambasivamGChandramohanDAmudhavelJPrediction of COVID-19 using genetic deep learning convolutional neural network (GDCNN)IEEE Access202081776471776661:STN:280:DC%2BB2cfjvFSisA%3D%3D10.1109/ACCESS.2020.302516434786292
– reference: Kelly, M., Longjohn, R., Nottingham, K. The UCI machine learning repository. Retrieved April 1, 2022, from https://archive.ics.uci.edu
– reference: Tanabe, R., Fukunaga, A. (2013) Success-history based parameter adaptation for differential evolution. IEEE congress on evolutionary computation, Cancun, Mexico, 71–78.
– reference: HemdanEE-DShoumanMAKararMECovidx-net: a framework of deep learning classifiers to diagnose covid-19 in x-ray imagesArXiv preprint ArXiv202010.48550/arXiv.2003.11055
– reference: GuyonIWestonJBarnhillSVapnikVGene selection for cancer classification using support vector machinesMachINE Learning200246138942210.1023/A:1012487302797
– reference: YildizBSPholdeeNBureeratSYildizARSaitSMRobust design of a robot gripper mechanism using new hybrid grasshopper optimization algorithmExpert Systems2021383e12666
– reference: FaramarziAHeidarinejadMMirjaliliSGandomiAHMarine predators algorithm: a nature-inspired metaheuristicExpert Systems with Applications2020152113377
– reference: RenWBashkandiAHJahanshahiJAAlHamadAQMJavaheriDMohammadiMBrain tumor diagnosis using a step-by-step methodology based on courtship learning-based water strider algorithmBiomedical Signal Processing and Control202383104614
– reference: Nadimi-ShahrakiMHFatahiAZamaniHMirjaliliSOlivaDHybridizing of whale and moth-flame optimization algorithms to solve diverse scales of optimal power flow problemElectronics2022115831
– reference: ChowdhuryMERahmanTKhandakarAMazharRKadirMAMahbubZBIslamKRKhanMSIqbalAAl EmadiNCan AI help in screening viral and COVID-19 pneumonia?IEEE Access2020813266513267610.1109/ACCESS.2020.3010287
– reference: TahaACosgraveBMckeeverSUsing feature selection with machine learning for generation of insurance insightsApplied Sciences202212632091:CAS:528:DC%2BB38XnvF2jtbk%3D
– reference: LiuYHeidariAACaiZLiangGChenHPanZAlsufyaniABourouisSSimulated annealing-based dynamic step shuffled frog leaping algorithm: optimal performance design and feature selectionNeurocomputing2022503325362
– reference: YıldızBSKumarSPholdeeNBureeratSSaitSMYildizARA new chaotic Lévy flight distribution optimization algorithm for solving constrained engineering problemsExpert Systems2022398e12992
– reference: Nadimi-ShahrakiMHAsghari VarzanehZZamaniHMirjaliliSBinary starling murmuration optimizer algorithm to select effective features from medical dataApplied Sciences20231315641:CAS:528:DC%2BB3sXmsVCnsQ%3D%3D
– reference: MirjaliliSLewisAS-shaped versus V-shaped transfer functions for binary particle swarm optimizationSwarm and Evolutionary Computation20139114
– reference: KahyaMAAltamirSAAlgamalZYImproving whale optimization algorithm for feature selection with a time-varying transfer functionNumerical Algebra, Control & Optimization2021111874236695
– reference: SnyderSEHusariGSnyderSEThor: A deep learning approach for face mask detection to prevent the COVID-19 pandemicSoutheast Con 2021, Atlanta2021USAGA
– reference: ShaddeliASoleimanian GharehchopoghFMasdariMSoloukVAn improved african vulture optimization algorithm for feature selection problems and its application of sentiment analysis on movie reviewsBig Data and Cognitive Computing202264104
– reference: IwendiCBashirAKPeshkarASujathaRChatterjeeJMPasupuletiSMishraRPillaiSJoOCOVID-19 patient health prediction using boosted random forest algorithmFrontiers in Public Health20208357327197677350612
– reference: FriedmanMA comparison of alternative tests of significance for the problem of m rankingsThe Annals of Mathematical Statistics194011186922085
– reference: El-KenawyE-SMMirjaliliSKhodadadiNAbdelhamidAAEidMMEl-SaidMIbrahimAFeature selection in wind speed forecasting systems based on meta-heuristic optimizationPLoS ONE2023182e02784911:CAS:528:DC%2BB3sXjt1egsL0%3D367497449904490
– reference: WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Transactions on Evolutionary Computation1997116782
– reference: ForoutanISklanskyJFeature selection for automatic classification of non-gaussian dataIEEE Transactions on Systems, Man, and Cybernetics1987172187198
– reference: EmaryEZawbaaHMHassanienAEBinary grey wolf optimization approaches for feature selectionNeurocomputing2016172371381
– reference: Nakamura, RYM., Pereira, LAM., Costa, KA., Rodrigues, D., Papa, JP., Yang, XS. (2012) BBA: A Binary Bat Algorithm for Feature Selection. 25th SIBGRAPI Conference on Graphics, Patterns and Images, Ouro Preto, Brazil, 2012, 291–297.
– reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdvances in Engineering Software2014694661
– reference: AkinolaOAgushakaOEzugwuABinary dwarf mongoose optimizer for solving high-dimensional feature selection problemsPLoS ONE202217101261:CAS:528:DC%2BB38Xis1Wku7jK10.1371/journal.pone.0274850
– reference: AslanMGunduzMKiranMSJayaX: jaya algorithm with xor operator for binary optimizationApplied Soft Computing201982105576
– reference: MirjaliliSDragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problemsNeural Computing and Applications201627410531073
– reference: ChakrabortySSahaAKChhabraAImproving whale optimization algorithm with elite strategy and its application to engineering-design and cloud task scheduling problemsCognitive Computation202310.1007/s12559-022-10099-z
– reference: HelmiAMAl-qanessMADahouAAbd ElazizMHuman activity recognition using marine predators algorithm with deep learningFuture Generation Computer Systems2023142340350
– reference: KhalidAMHamzaHMMirjaliliSHosnyKMBCOVIDOA: a novel binary coronavirus disease optimization algorithm for feature selectionKnowledge-Based Systems2022248108789354646669014647
– reference: MirjaliliSLewisAThe whale optimization algorithmAdvances in Engineering Software2016955167
– reference: N.C. Virus, Dataset, Kaggle. Retrieved 25 September 2020 from https://www.kaggle.com/datasets/sudalairajkumar/novel-corona-virus-2019-dataset
– reference: ZamaniHNadimi-ShahrakiMHGandomiAHQANA: Quantum-based avian navigation optimizer algorithmEngineering Applications of Artificial Intelligence2021104104314
– reference: Nadimi-ShahrakiMHZamaniHAsghari VarzanehZMirjaliliSA Systematic review of the whale optimization algorithm: theoretical foundation, improvements, and hybridizationsArchives of Computational Methods in Engineering202310.1007/s11831-023-09928-73735974010220350
– reference: KohaviRJohnGHWrappers for feature subset selectionArtificial Intelligence199797127332410.1016/S0004-3702(97)00043-X
– reference: Cervante, L., Xue, B., Zhang, M., Shang, L. (2012) Binary particle swarm optimisation for feature selection: A filter based approach. IEEE Congress on Evolutionary Computation, Brisbane, QLD, Australia, 1–8.
– reference: TabakhiSMoradiPAkhlaghianFAn unsupervised feature selection algorithm based on ant colony optimizationEngineering Applications of Artificial Intelligence201432112123
– reference: MirjaliliSWangG-GCoelhoLdSBinary optimization using hybrid particle swarm optimization and gravitational search algorithmNeural Computing and Applications201425614231435
– reference: Li, K., Xu, G., Zhao, G., Dong, Y., Wang, D. (2011) Cloud task scheduling based on load balancing ant colony optimization. Sixth Annual ChinaGrid Conference, Liaoning, China, 3–9.
– reference: TooJAbdullahARMohd SaadNA new quadratic binary Harris hawk optimization for feature selectionElectronics20198101130
– reference: Mirjalili, S., Zhang, H., Mirjalili, S., Chalup, S., Noman, N. (2020) A novel U-shaped transfer function for binary particle swarm optimisation. Soft Computing for Problem Solving 2019, Singapore, 241–259.
– reference: Al-QanessMAHelmiAMDahouAElazizMAThe applications of metaheuristics for human activity recognition and fall detection using wearable sensors: A comprehensive analysisBiosensors20221210821362909589599938
– reference: FarisHMafarjaMMHeidariAAAljarahIAlamA-ZMirjaliliSFujitaHAn efficient binary salp swarm algorithm with crossover scheme for feature selection problemsKnowledge-Based Systems20181544367
– reference: XuZHeidariAAKuangFKhalilAMafarjaMZhangSChenHPanZEnhanced Gaussian bare-bones grasshopper optimization: Mitigating the performance concerns for feature selectionExpert Systems with Applications2023212118642
– reference: ZamaniHNadimi-ShahrakiMHGandomiAHStarling murmuration optimizer: A novel bio-inspired algorithm for global and engineering optimizationComputer Methods in Applied Mechanics and Engineering20223921146162022CMAME.392k4616Z4379773
– reference: MohammadzadehHGharehchopoghFSA novel hybrid whale optimization algorithm with flower pollination algorithm for feature selection: Case study Email spam detectionComputational Intelligence20213711762094221974
– reference: LiaoC-JTsengC-TLuarnPA discrete version of particle swarm optimization for flowshop scheduling problemsComputers & Operations Research2007341030993111
– reference: YıldızBSPholdeeNBureeratSErdaşMUYıldızARSaitSMComparision of the political optimization algorithm, the Archimedes optimization algorithm and the levy flight algorithm for design optimization in industryMaterials Testing20216343563592021MTest..63..356Y
– reference: MaimonORokachLData mining and knowledge discovery handbook2005Springer1
– reference: HuangJCaiYXuXA hybrid genetic algorithm for feature selection wrapper based on mutual informationPattern Recognition Letters20072813182518442007PaReL..28.1825H
– reference: HollandJHGenetic algorithmsScientific American1992267166731992SciAm.267A..66H
– reference: RashediENezamabadi-PourHSaryazdiSBGSA: Binary gravitational search algorithmNatural Computing2010937277452685088
– reference: BansalPGehlotKSinghalAGuptaAAutomatic detection of osteosarcoma based on integrated features and feature selection using binary arithmetic optimization algorithmMultimedia Tools and Applications202281688078834351536208818505
– reference: KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJournal of Global Optimization20073934594712346178
– reference: KutsunaSClinical manifestations of coronavirus disease 2019Japan Medical Association2021427680
– volume: 10
  start-page: 2770
  issue: 15
  year: 2022
  ident: 433_CR68
  publication-title: Mathematics
  doi: 10.3390/math10152770
– ident: 433_CR56
  doi: 10.1109/SIBGRAPI.2012.47
– ident: 433_CR79
  doi: 10.1007/978-981-15-3290-0_19
– volume: 157
  start-page: 107250
  year: 2021
  ident: 433_CR46
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107250
– volume: 38
  start-page: e12666
  issue: 3
  year: 2021
  ident: 433_CR39
  publication-title: Expert Systems
  doi: 10.1111/exsy.12666
– volume: 212
  start-page: 118642
  year: 2023
  ident: 433_CR67
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.118642
– volume: 392
  start-page: 114616
  year: 2022
  ident: 433_CR47
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2022.114616
– year: 2023
  ident: 433_CR80
  publication-title: Archives of Computational Methods in Engineering
  doi: 10.1007/s11831-023-09928-7
– volume: 34
  start-page: 3099
  issue: 10
  year: 2007
  ident: 433_CR73
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2005.11.017
– volume: 63
  start-page: 356
  issue: 4
  year: 2021
  ident: 433_CR36
  publication-title: Materials Testing
  doi: 10.1515/mt-2020-0053
– volume: 78
  start-page: 465
  year: 2019
  ident: 433_CR77
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.03.002
– ident: 433_CR90
  doi: 10.1109/CEC.2013.6557555
– volume: 8
  start-page: 357
  year: 2020
  ident: 433_CR104
  publication-title: Frontiers in Public Health
  doi: 10.3389/fpubh.2020.00357
– volume: 172
  start-page: 371
  year: 2016
  ident: 433_CR57
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– volume: 391
  start-page: 114570
  year: 2022
  ident: 433_CR48
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2022.114570
– volume: 9
  start-page: 1551
  issue: 9
  year: 2021
  ident: 433_CR51
  publication-title: Processes
  doi: 10.3390/pr9091551
– ident: 433_CR103
– start-page: 12
  volume-title: Evolutionary machine learning techniques
  year: 2019
  ident: 433_CR2
– volume: 79
  start-page: 101304
  year: 2023
  ident: 433_CR62
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2023.101304
– volume: 37
  start-page: 176
  issue: 1
  year: 2021
  ident: 433_CR81
  publication-title: Computational Intelligence
  doi: 10.1111/coin.12397
– volume: 31
  start-page: 171
  issue: 1
  year: 2019
  ident: 433_CR78
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-017-2988-6
– volume: 11
  start-page: 87
  issue: 1
  year: 2021
  ident: 433_CR72
  publication-title: Numerical Algebra, Control & Optimization
  doi: 10.3934/naco.2020017
– volume: 120
  start-page: 108630
  year: 2022
  ident: 433_CR82
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2022.108630
– volume: 2022
  start-page: 3714475
  year: 2022
  ident: 433_CR34
  publication-title: International Transactions on Electrical Energy Systems
  doi: 10.1155/2022/3714475
– volume: 82
  start-page: 105576
  year: 2019
  ident: 433_CR75
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.105576
– volume: 9
  start-page: 1
  year: 2013
  ident: 433_CR69
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2012.09.002
– ident: 433_CR96
– volume: 503
  start-page: 325
  year: 2022
  ident: 433_CR65
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.06.075
– ident: 433_CR53
– volume: 227
  start-page: 120367
  year: 2023
  ident: 433_CR101
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.120367
– volume: 11
  start-page: 831
  issue: 5
  year: 2022
  ident: 433_CR33
  publication-title: Electronics
  doi: 10.3390/electronics11050831
– volume: 12
  start-page: 821
  issue: 10
  year: 2022
  ident: 433_CR87
  publication-title: Biosensors
  doi: 10.3390/bios12100821
– volume: 11
  start-page: 862
  issue: 4
  year: 2023
  ident: 433_CR43
  publication-title: Mathematics
  doi: 10.3390/math11040862
– volume: 10
  start-page: 2742
  issue: 15
  year: 2022
  ident: 433_CR83
  publication-title: Mathematics
  doi: 10.3390/math10152742
– year: 2020
  ident: 433_CR102
  publication-title: ArXiv preprint ArXiv
  doi: 10.48550/arXiv.2003.11055
– volume: 46
  start-page: 389
  issue: 1
  year: 2002
  ident: 433_CR12
  publication-title: MachINE Learning
  doi: 10.1023/A:1012487302797
– volume: 69
  start-page: 46
  year: 2014
  ident: 433_CR26
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: 433_CR93
– start-page: 251
  volume-title: Tuson
  year: 2007
  ident: 433_CR55
– volume: 78
  start-page: 77
  year: 2018
  ident: 433_CR60
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2017.05.044
– volume: 89
  start-page: 228
  year: 2015
  ident: 433_CR27
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.07.006
– volume: 44
  start-page: 101
  year: 2019
  ident: 433_CR92
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2018.01.001
– ident: 433_CR14
  doi: 10.1109/CEC.2010.5586536
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 433_CR23
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– volume: 4
  start-page: 211
  issue: 3
  year: 2014
  ident: 433_CR16
  publication-title: SmartCR
  doi: 10.6029/smartcr.2014.03.007
– volume: 38
  start-page: 871
  issue: 2
  year: 2022
  ident: 433_CR42
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-020-01268-5
– volume: 95
  start-page: 51
  year: 2016
  ident: 433_CR28
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 191
  start-page: 105277
  year: 2020
  ident: 433_CR91
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.105277
– volume: 198
  start-page: 116895
  year: 2022
  ident: 433_CR38
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.116895
– volume: 37
  start-page: e12553
  issue: 5
  year: 2020
  ident: 433_CR5
  publication-title: Expert Systems.
  doi: 10.1111/exsy.12553
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 433_CR25
  publication-title: Journal of Global Optimization
  doi: 10.1007/s10898-007-9149-x
– ident: 433_CR17
– volume: 11
  start-page: 86
  issue: 1
  year: 1940
  ident: 433_CR94
  publication-title: The Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177731944
– volume: 154
  start-page: 43
  year: 2018
  ident: 433_CR59
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.05.009
– start-page: 1
  volume-title: Data mining and knowledge discovery handbook
  year: 2005
  ident: 433_CR1
  doi: 10.1007/b107408
– volume: 23
  start-page: 1637
  issue: 12
  year: 2021
  ident: 433_CR35
  publication-title: Entropy
  doi: 10.3390/e23121637
– volume: 17
  start-page: 187
  issue: 2
  year: 1987
  ident: 433_CR19
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMC.1987.4309029
– volume: 192
  start-page: 116368
  year: 2022
  ident: 433_CR84
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.116368
– volume: 97
  start-page: 849
  year: 2019
  ident: 433_CR29
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.02.028
– volume: 27
  start-page: 1053
  issue: 4
  year: 2016
  ident: 433_CR58
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-1920-1
– volume: 28
  start-page: 1825
  issue: 13
  year: 2007
  ident: 433_CR10
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2007.05.011
– volume: 142
  start-page: 340
  year: 2023
  ident: 433_CR86
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2023.01.006
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 433_CR61
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585893
– volume: 39
  start-page: e12992
  issue: 8
  year: 2022
  ident: 433_CR41
  publication-title: Expert Systems
  doi: 10.1111/exsy.12992
– volume-title: Southeast Con 2021, Atlanta
  year: 2021
  ident: 433_CR98
– volume: 65
  start-page: 920
  year: 2015
  ident: 433_CR31
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2015.09.064
– volume: 8
  start-page: 132665
  year: 2020
  ident: 433_CR97
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3010287
– volume: 17
  start-page: 1
  issue: 10
  year: 2022
  ident: 433_CR15
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0274850
– volume: 18
  start-page: 674
  issue: 3
  year: 2021
  ident: 433_CR45
  publication-title: Journal of Bionic Engineering
  doi: 10.1007/s42235-021-0050-y
– volume: 12
  start-page: 3209
  issue: 6
  year: 2022
  ident: 433_CR6
  publication-title: Applied Sciences
  doi: 10.3390/app12063209
– volume: 1
  start-page: 28
  issue: 4
  year: 2006
  ident: 433_CR24
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2006.329691
– ident: 433_CR7
  doi: 10.1109/SSD.2009.4956825
– volume: 9
  start-page: 727
  issue: 3
  year: 2010
  ident: 433_CR54
  publication-title: Natural Computing
  doi: 10.1007/s11047-009-9175-3
– ident: 433_CR3
  doi: 10.1109/ICAPR.2009.36
– year: 2023
  ident: 433_CR63
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-022-10099-z
– volume: 8
  start-page: 1130
  issue: 10
  year: 2019
  ident: 433_CR71
  publication-title: Electronics
  doi: 10.3390/electronics8101130
– volume: 104
  start-page: 104314
  year: 2021
  ident: 433_CR49
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2021.104314
– ident: 433_CR4
  doi: 10.1109/MIPRO.2015.7160458
– volume: 152
  start-page: 113377
  year: 2020
  ident: 433_CR44
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113377
– volume: 25
  start-page: 1423
  issue: 6
  year: 2014
  ident: 433_CR70
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-014-1629-6
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  ident: 433_CR22
  publication-title: Scientific American
  doi: 10.1038/scientificamerican0792-66
– ident: 433_CR21
– volume: 83
  start-page: 104614
  year: 2023
  ident: 433_CR88
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2023.104614
– volume: 3
  start-page: 1157
  issue: 7–8
  year: 2003
  ident: 433_CR11
  publication-title: Journal of Machine Leaning Research
– volume: 18
  start-page: e0278491
  issue: 2
  year: 2023
  ident: 433_CR52
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0278491
– volume: 70
  start-page: 13
  issue: 1
  year: 2010
  ident: 433_CR32
  publication-title: Journal of Parallel and Distributed Computing
  doi: 10.1016/j.jpdc.2009.09.009
– volume: 81
  start-page: 8807
  issue: 6
  year: 2022
  ident: 433_CR64
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-022-11949-6
– ident: 433_CR30
  doi: 10.1109/ChinaGrid.2011.17
– volume: 8
  start-page: 177647
  year: 2020
  ident: 433_CR99
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3025164
– volume: 4
  start-page: 76
  issue: 2
  year: 2021
  ident: 433_CR95
  publication-title: Japan Medical Association
– volume: 227
  start-page: 113491
  year: 2021
  ident: 433_CR50
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2020.113491
– volume: 13
  start-page: 564
  issue: 1
  year: 2023
  ident: 433_CR89
  publication-title: Applied Sciences
  doi: 10.3390/app13010564
– volume: 9
  start-page: 2276
  issue: 12
  year: 2021
  ident: 433_CR20
  publication-title: Processes
  doi: 10.3390/pr9122276
– volume: 25
  start-page: 4573
  issue: 6
  year: 2022
  ident: 433_CR37
  publication-title: Cluster Computing
  doi: 10.1007/s10586-022-03649-5
– volume: 6
  start-page: 104
  issue: 4
  year: 2022
  ident: 433_CR85
  publication-title: Big Data and Cognitive Computing
  doi: 10.3390/bdcc6040104
– volume: 3
  start-page: 1357
  issue: 7–8
  year: 2003
  ident: 433_CR13
  publication-title: Journal of Machine Learning Research
– volume: 7
  start-page: 19
  issue: 1
  year: 2016
  ident: 433_CR76
  publication-title: International Journal of Industrial Engineering Computations
– ident: 433_CR8
  doi: 10.1109/CEC.2012.6256452
– volume: 183
  start-page: 115351
  year: 2021
  ident: 433_CR40
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115351
– volume: 139
  start-page: 104984
  year: 2021
  ident: 433_CR100
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2021.104984
– volume: 248
  start-page: 108789
  year: 2022
  ident: 433_CR66
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2022.108789
– volume: 32
  start-page: 112
  year: 2014
  ident: 433_CR18
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2014.03.007
– volume: 97
  start-page: 273
  issue: 1
  year: 1997
  ident: 433_CR9
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(97)00043-X
– ident: 433_CR74
  doi: 10.1109/CEC.2006.1688716
SSID ssj0059283
Score 2.495269
Snippet Feature Subset Selection (FSS) is an NP-hard problem to remove redundant and irrelevant features particularly from medical data, and it can be effectively...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 426
SubjectTerms Algorithms
Artificial Intelligence
Biochemical Engineering
Bioinformatics
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
Convergence
COVID-19
Datasets
Effectiveness
Engineering
Heuristic methods
Navigation
Operators (mathematics)
Preprocessing
Research Article
Search methods
Transfer functions
SummonAdditionalLinks – databaseName: Springer LINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdggMQOwMoQhQ29AwcQWGrib25ZtwkuHTCYdoucxIZKa4rStFL3X_AfYztONxAgwTnOS-T37ef3ewg915oJXTKCR1JTTCtpsZRlghm3XFSKe4j1MGxCTCby_Fy9j01hi_62e1-SDJZ60-xGnSfz3cSOrkfdwuub6JZzd9Kr48fTs97-MpUG8M2EixRzlqrYKvN7Gj-7o6sY85eyaPA2x_f_7z8foHsxuoSsE4cddMPUA3Snmze5HqDta-iDA7QT9XoBLyL49MuH6HtWQ3fQYCo4CM268GHptn85w97jVZCtnETBRK8COMe8hhNndWbTS9NAdvFl3kzbrzNo53AaJuxAB4_sbCr4aHPZGPC2yrTgG1sg1ongULf6DWQwPjl7d4gTBWP3LfCXHNe76PPx0afxWxzHNuCSSN5iYonQikhqjCWVKKwRqjRlOnKZYGUSUVBOreJlkUilrXLpsGRSGEsLlorEhVOP0FY9r81jBEmhlRGcV7IgbltpQZi2TLi0yzrHO-JDlPTcy8uIae5Ha1zkGzTmwI3ccSMP3MjXQ_Rq8863DtHjr6v3eqHIo3YvcuLyMBcJ0REZote9EFw9_jO1J_-2_Cm6m7oYqjvx2UNbbbM0--h2uWqni-ZZkPofQ8H59g
  priority: 102
  providerName: Springer Nature
Title An Improved Binary Quantum-based Avian Navigation Optimizer Algorithm to Select Effective Feature Subset from Medical Data: A COVID-19 Case Study
URI https://link.springer.com/article/10.1007/s42235-023-00433-y
https://www.proquest.com/docview/3255240403
Volume 21
WOSCitedRecordID wos001071598500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2543-2141
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0059283
  issn: 1672-6529
  databaseCode: M7P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2543-2141
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0059283
  issn: 1672-6529
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2543-2141
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0059283
  issn: 1672-6529
  databaseCode: 7X7
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2543-2141
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0059283
  issn: 1672-6529
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 2543-2141
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059283
  issn: 1672-6529
  databaseCode: RSV
  dateStart: 20040301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xDSReBhtMlI3qHngAgUUTJ_7BC8q6TfDSlRWmvkVOYsOkNR1tWqn8F_zH2I67CiT2wotfkjiWvvPd-c73HcBLpVKuypSSnlAJSSphiBBlRFJmGK8kcxTrvtkEHwzEeCyHIeA2D9cq1zrRK-pqWroY-TtqfV9rfZIe_XDzg7iuUS67GlpobMGOY0mI_dW90VoTpzL2NJwR4zFhaSxD0YwvnUusXXS1yXaVjsOLrP40TBtv868Eqbc7Z4_-d8WPYTd4nJi1IrIH93S9Dw_aHpSrfdgLu3uOrwIF9esn8CursQ036AqPfckufl5YEBYT4uxehdnSyhUO1NJTdExrPLe6Z3L1U88wu_5ml9F8n2AzxZHvs4MtSbLVrOh8zsVMo9NYukFX3oIhW4QnqlHvMcP--eWnExJJ7Nt_obvquHoKX89Ov_Q_ktC8gZRUsIZQQ7mSVCRaG1rxwmguS13GPXserHTEi4QlRrKyiIRURtpDsUgF1yYp0phH1qk6gO16WutngFGhpOaMVaKgFrakoKkyKbeHL2PNb491IFojl5eB2dw12LjObzmZPdq5RTv3aOerDry5_eam5fW48-2jNcR52OPzfINvB96uhWTz-N-zPb97tkN4GFvPqY3zHMF2M1voF3C_XDZX81kXtviYd2Hn-HQwvOg6eR_6cWTHi9Hlb_LDAzo
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGAMELsMFEYcB5AAkE1pqbL0gIhZZp1UYHYkN9C05iw6Q1HW1aFP4Ff4TfyLGTtAKJve2B5ySO4nw-F_uc7yPksVIRV1kU0K5QIQ1zYagQmUcjZhjPJbMU605sgg-HYjSS79fIr7YXxpZVtjbRGep8ktk98p0AY1_0PmE3eH32jVrVKHu62kpo1LDY19V3TNlmrwZ9_L9PfH_37VFvjzaqAjQLBCtpYAKuZCBCrU2Q89RoLjOd-V1MVHLt8TRkoZEsSz0hlZGYrYlIcG3CNPK5h94ex71ELqMd57aEjI-WCV4kfUf76THuUxb5smnSca16Ifph2wuNs2I5w2j1pyNcRbd_Hcg6P7d783-boVvkRhNRQ1wvgQ2ypotNcrXW2Kw2yUZjvWbwtKHYfnab_IwLqLdTdA5vXEsyfJgjyOZjav16DvEC1w0M1cJRkEwKOETbOj75oacQn37Bzy6_jqGcwEenIwQ1CTR6DrAx9XyqwVpkXYJt34HmNAz6qlQvIYbe4adBn3oSevgusKWc1R1yfCGTtEXWi0mh7xLwUiU1ZywXaYAwCdMgUibimFwaDC-6rEO8FilJ1jC3WwGR02TJOe3QlSC6EoeupOqQ58tnzmreknPv3m4hlTQ2bJas8NQhL1pQri7_e7R754_2iFzbO3p3kBwMhvv3yXUfo8R6T2ubrJfTuX5ArmSL8mQ2fehWF5DPFw3W32mOWyY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgXAQPwAqIwoDzwAMIrDXxnbfQUjGBuqHBtLfISeyt0ppOaVqp_Av-MbaTdAMBEuI5jh3lHJ-Lj7_vIPRCayZ0zggeSE0xLaTFUuYRZtxyUSjuKdZDswkxmcjjY3VwCcUfbrt3JckG0-BZmsp697ywuxvgG3VezSOL3RqegQuvr6Jr1DcN8vn64VFni5mKAxFnxEWMOYtVC5v5_Rw_u6aLePOXEmnwPOO7___N99CdNuqEpFGTbXTFlD10o-lDue6h25dYCXtou93vC3jZklK_uo--JyU0BxCmgHcBxAufl04syxn2nrCAZOU0DSZ6FUg75iXsO2s0m34zFSRnJ_NqWp_OoJ7DYei8Aw1tsrO14KPQZWXA2zBTgwe8QFs_gpGu9VtIYLh_tDfCkYKhWwv85cf1A_R1_P7L8ANu2zngnEheY2KJ0IpIaowlhcisESo3eTxwGWJhIpFRTq3ieRZJpa1yabJkUhhLMxaLyIVZD9FWOS_NIwRRppURnBcyI-630owwbZlw6Zh1DnnA-yjqJJnmLde5b7lxlm5YmoM0UieNNEgjXffR68075w3Tx19H73QKkra7fpESl5-5CIkOSB-96RTi4vGfZ3v8b8Ofo5sHo3H6aW_y8Qm6FbswqzkU2kFbdbU0T9H1fFVPF9WzsBl-AJjWBc0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Binary+Quantum-based+Avian+Navigation+Optimizer+Algorithm+to+Select+Effective+Feature+Subset+from+Medical+Data%3A+A+COVID-19+Case+Study&rft.jtitle=Journal+of+bionics+engineering&rft.au=Fatahi%2C+Ali&rft.au=Nadimi-Shahraki%2C+Mohammad+H&rft.au=Zamani%2C+Hoda&rft.date=2024-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1672-6529&rft.eissn=2543-2141&rft.volume=21&rft.issue=1&rft.spage=426&rft.epage=446&rft_id=info:doi/10.1007%2Fs42235-023-00433-y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1672-6529&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1672-6529&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1672-6529&client=summon