A distributed and incremental algorithm for large-scale graph clustering
Graph clustering is one of the key techniques to understand structures that are presented in networks. In addition to clusters, bridges and outliers detection is also a critical task as it plays an important role in the analysis of networks. Recently, several graph clustering methods are developed a...
Saved in:
| Published in: | Future generation computer systems Vol. 134; pp. 334 - 347 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.09.2022
Elsevier |
| Subjects: | |
| ISSN: | 0167-739X, 1872-7115 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Graph clustering is one of the key techniques to understand structures that are presented in networks. In addition to clusters, bridges and outliers detection is also a critical task as it plays an important role in the analysis of networks. Recently, several graph clustering methods are developed and used in multiple application domains such as biological network analysis, recommendation systems and community detection. Most of these algorithms are based on the structural clustering algorithm. Yet, this kind of algorithm is based on the structural similarity. This latter requires to parse all graph’ edges in order to compute the structural similarity. However, the height needs of similarity computing make this algorithm more adequate for small graphs, without significant support to deal with large-scale networks. In this paper, we propose a novel distributed graph clustering algorithm based on structural graph clustering. The experimental results show the efficiency in terms of running time of the proposed algorithm in large networks compared to existing structural graph clustering methods.
•An adaptation of the edge partitioning method in a distributed setting.•A novel scalable clustering method for distributed networks.•An incremental graph clustering algorithm for both large and dynamic graphs.•An experimental study to evaluate the novel scalable clustering method for distributed networks. |
|---|---|
| AbstractList | Graph clustering is one of the key techniques to understand structures that are presented in networks. In addition to clusters, bridges and outliers detection is also a critical task as it plays an important role in the analysis of networks. Recently, several graph clustering methods are developed and used in multiple application domains such as biological network analysis, recommendation systems and community detection. Most of these algorithms are based on the structural clustering algorithm. Yet, this kind of algorithm is based on the structural similarity. This latter requires to parse all graph’ edges in order to compute the structural similarity. However, the height needs of similarity computing make this algorithm more adequate for small graphs, without significant support to deal with large-scale networks. In this paper, we propose a novel distributed graph clustering algorithm based on structural graph clustering. The experimental results show the efficiency in terms of running time of the proposed algorithm in large networks compared to existing structural graph clustering methods.
•An adaptation of the edge partitioning method in a distributed setting.•A novel scalable clustering method for distributed networks.•An incremental graph clustering algorithm for both large and dynamic graphs.•An experimental study to evaluate the novel scalable clustering method for distributed networks. Graph clustering is one of the key techniques to understand structures that are presented in networks. In addition to clusters, bridges and outliers detection is also a critical task as it plays an important role in the analysis of networks. Recently, several graph clustering methods are developed and used in multiple application domains such as biological network analysis, recommendation systems and community detection. Most of these algorithms are based on the structural clustering algorithm. Yet, this kind of algorithm is based on the structural similarity. This latter requires to parse all graph’ edges in order to compute the structural similarity. However, the height needs of similarity computing make this algorithm more adequate for small graphs, without significant support to deal with large-scale networks. In this paper, we propose a novel distributed graph clustering algorithm based on structural graph clustering. The experimental results show the efficiency in terms of running time of the proposed algorithm in large networks compared to existing structural graph clustering methods. |
| Author | Aridhi, Sabeur Mezni, Haithem Inoubli, Wissem Maddouri, Mondher Mephu Nguifo, Engelbert |
| Author_xml | – sequence: 1 givenname: Wissem orcidid: 0000-0001-5121-9043 surname: Inoubli fullname: Inoubli, Wissem email: inoubliwissem@gmail.com organization: LIPAH, University of Tunis El-Manar, Tunis, Tunisia – sequence: 2 givenname: Sabeur surname: Aridhi fullname: Aridhi, Sabeur organization: University of Lorraine, CNRS, LORIA, France – sequence: 3 givenname: Haithem orcidid: 0000-0001-9932-8433 surname: Mezni fullname: Mezni, Haithem organization: SMART Lab (Tunisia), Taibah University, Saudi Arabia – sequence: 4 givenname: Mondher surname: Maddouri fullname: Maddouri, Mondher organization: College Of Business, University of Jeddah, Saudi Arabia – sequence: 5 givenname: Engelbert orcidid: 0000-0001-9119-678X surname: Mephu Nguifo fullname: Mephu Nguifo, Engelbert organization: University Clermont Auvergne, CNRS, Clermont Auvergne INP, LIMOS, 63000 Clermont-Ferrand, France |
| BackLink | https://inria.hal.science/hal-03659549$$DView record in HAL |
| BookMark | eNqFkEFLwzAYhoMouE3_gYdePbQmTbqmHoQx1AkDLwrewrfka5eRtSNJB_57O6oXD3r64OV93g-eKTlvuxYJuWE0Y5TN73ZZ3cfeY5bTPM-oyCjjZ2TCZJmnJWPFOZkMtTItefVxSaYh7CilrORsQlaLxNgQvd30EU0CrUlsqz3usY3gEnBN523c7pO684kD32AaNDhMGg-HbaJdHyJ62zZX5KIGF_D6-87I-9Pj23KVrl-fX5aLdaq5nMc0L7RBJpEjgqhlgUUtqJRCGF1xQCZAiqou2aYCMJKXRVUYI2SluQZBi5rPyO24uwWnDt7uwX-qDqxaLdbqlFE-HyBRHdnQvR-72ncheKyVthGi7drowTrFqDr5Uzs1-lMnf4oKNfgbYPEL_vn2D_YwYjhIOFr0KmiLrUZjPeqoTGf_HvgCXbOPUw |
| CitedBy_id | crossref_primary_10_1007_s13042_025_02578_0 crossref_primary_10_1016_j_ins_2024_120109 crossref_primary_10_1016_j_ins_2024_120363 crossref_primary_10_1109_TKDE_2020_3047631 crossref_primary_10_1016_j_future_2024_107497 |
| Cites_doi | 10.1371/journal.pone.0203670 10.1016/j.future.2018.04.032 10.1145/3225058.3225063 10.14778/2809974.2809980 10.1016/j.ins.2018.02.063 10.1016/j.is.2013.08.005 10.1016/j.bdr.2017.05.003 10.1016/j.jpdc.2014.09.012 10.14778/3157794.3157795 10.1109/TKDE.2016.2618795 10.1145/3364208 10.1016/j.asoc.2017.11.014 10.1109/TPDS.2014.2374607 10.1016/j.knosys.2018.03.022 10.1007/s10618-012-0272-z 10.1016/j.is.2017.05.006 10.1093/bioinformatics/18.4.536 10.14778/3236187.3236208 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: 2022 Elsevier B.V. – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | AAYXX CITATION 1XC VOOES |
| DOI | 10.1016/j.future.2022.04.013 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7115 |
| EndPage | 347 |
| ExternalDocumentID | oai:HAL:hal-03659549v1 10_1016_j_future_2022_04_013 S0167739X22001376 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SES SEW SPC SPCBC SSV SSZ T5K UHS WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD 1XC VOOES |
| ID | FETCH-LOGICAL-c386t-25cde18e3eea4f85e5f408844dc93ae14a849f71b9aad837595dd489c3ca405f3 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000891583000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-739X |
| IngestDate | Wed Nov 05 07:49:34 EST 2025 Sat Nov 29 07:24:00 EST 2025 Tue Nov 18 22:08:51 EST 2025 Fri Feb 23 02:40:16 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Community detection Big graph analysis Structural graph clustering Graph processing Hubs detection Outliers detection |
| Language | English |
| License | licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c386t-25cde18e3eea4f85e5f408844dc93ae14a849f71b9aad837595dd489c3ca405f3 |
| ORCID | 0000-0001-5121-9043 0000-0001-9932-8433 0000-0001-9119-678X 0000-0002-3657-3762 |
| OpenAccessLink | https://inria.hal.science/hal-03659549 |
| PageCount | 14 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03659549v1 crossref_citationtrail_10_1016_j_future_2022_04_013 crossref_primary_10_1016_j_future_2022_04_013 elsevier_sciencedirect_doi_10_1016_j_future_2022_04_013 |
| PublicationCentury | 2000 |
| PublicationDate | September 2022 2022-09-00 2022-09 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Future generation computer systems |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Wen, Qin, Zhang, Chang, Lin (b32) 2017; 11 Bull (b37) 1999 Kozawa, Amagasa, Kitagawa (b18) 2017 Ji, Bu, Li, Wu (b45) 2019 P. Fournier-Viger, G. He, C. Cheng, J. Li, M. Zhou, J.C.-W. Lin, U. Yun, A survey of pattern mining in dynamic graphs, WIREs Data Min. Knowl. Discov. n/a (n/a) e1372. Günnemann, Boden, Seidl (b8) 2012; 25 Weng, Zhou, Li, Peng, Li (b9) 2021 Chen, Li, Dai, Li, Qiao, Mao (b38) 2017 Wu, Gu, Yu (b39) 2019 LaSalle, Karypis (b16) 2015; 76 Brandes, Gaertler, Wagner (b19) 2003 Xu, Yuruk, Feng, Schweiger (b15) 2007 Dhifli, Aridhi, Nguifo (b11) 2017; 69 Zhao, Chen, Xu (b40) 2017 Shiokawa, Takahashi (b33) 2020 Iyer, Panda, Venkataraman, Chowdhury, Akella, Shenker, Stoica (b5) 2018 Chang, Li, Lin, Qin, Zhang (b26) 2016 Aynaud, Guillaume (b17) 2010 Aridhi, d’Orazio, Maddouri, Nguifo (b12) 2015; 48 D’Azevedo, Fahey, Mills (b47) 2005 Inoubli, Aridhi, Mezni, Maddouri, Engelbert (b49) 2018; 86 Aridhi, Montresor, Velegrakis (b43) 2017; 9 Hartigan, Wong (b22) 1979; 28 Cao, Krumm (b2) 2009 Baborska-Narozny, Stirling, Stevenson (b6) 2016 Shiokawa, Fujiwara, Onizuka (b25) 2015; 8 Zhao, Martha, Xu (b36) 2013 Mai, Dieu, Assent, Jacobsen, Kristensen, Birk (b29) 2017 Xu, Olman, Xu (b4) 2002; 18 Goyal, Ferrara (b24) 2018; 151 Inoubli, Aridhi, Mezni, Maddouri, Mephu Nguifo (b34) 2020 Sun, Li, Wang, Liao, Yu (b10) 2020 Ding, He, Zha, Gu, Simon (b20) 2001 Stovall, Kockara, Avci (b31) 2015; 26 White, Smyth (b21) 2005 Sun, Zanetti (b23) 2019; 6 Seo, Kim (b42) 2017 Kim, Shin, Kim, Park, Lee, Woo, Kim, Seo, Yu, Park (b35) 2018; 13 Žalik, Žalik (b7) 2018; 445 Said, Abbasi, Maqbool, Daud, Aljohani (b1) 2018; 63 Abbas, Kalavri, Carbone, Vlassov (b13) 2018; 11 Doerr, Johannsen (b46) 2007 Lim, Ryu, Kwon, Jung, Lee (b27) 2014 Yin, Benson, Leskovec, Gleich (b14) 2017 Chang, Li, Qin, Zhang, Yang (b30) 2017; 29 Schütze, Manning, Raghavan (b48) 2008 Dhillon (b44) 2001 Takahashi, Shiokawa, Kitagawa (b28) 2017 Y. Che, S. Sun, Q. Luo, Parallelizing pruning-based graph structural clustering, in: Proceedings of the 47th International Conference on Parallel Processing, ICPP 2018, Eugene, OR, USA, August 13-16, 2018, 2018, pp. 77:1–77:10. Aridhi (10.1016/j.future.2022.04.013_b43) 2017; 9 Takahashi (10.1016/j.future.2022.04.013_b28) 2017 Sun (10.1016/j.future.2022.04.013_b23) 2019; 6 Aynaud (10.1016/j.future.2022.04.013_b17) 2010 Inoubli (10.1016/j.future.2022.04.013_b49) 2018; 86 10.1016/j.future.2022.04.013_b41 Dhillon (10.1016/j.future.2022.04.013_b44) 2001 Schütze (10.1016/j.future.2022.04.013_b48) 2008 D’Azevedo (10.1016/j.future.2022.04.013_b47) 2005 Lim (10.1016/j.future.2022.04.013_b27) 2014 Günnemann (10.1016/j.future.2022.04.013_b8) 2012; 25 Shiokawa (10.1016/j.future.2022.04.013_b25) 2015; 8 Seo (10.1016/j.future.2022.04.013_b42) 2017 Zhao (10.1016/j.future.2022.04.013_b40) 2017 Brandes (10.1016/j.future.2022.04.013_b19) 2003 Inoubli (10.1016/j.future.2022.04.013_b34) 2020 Ji (10.1016/j.future.2022.04.013_b45) 2019 Chang (10.1016/j.future.2022.04.013_b26) 2016 Doerr (10.1016/j.future.2022.04.013_b46) 2007 Ding (10.1016/j.future.2022.04.013_b20) 2001 Xu (10.1016/j.future.2022.04.013_b15) 2007 Bull (10.1016/j.future.2022.04.013_b37) 1999 Xu (10.1016/j.future.2022.04.013_b4) 2002; 18 Chang (10.1016/j.future.2022.04.013_b30) 2017; 29 Weng (10.1016/j.future.2022.04.013_b9) 2021 Zhao (10.1016/j.future.2022.04.013_b36) 2013 Yin (10.1016/j.future.2022.04.013_b14) 2017 Wu (10.1016/j.future.2022.04.013_b39) 2019 Dhifli (10.1016/j.future.2022.04.013_b11) 2017; 69 LaSalle (10.1016/j.future.2022.04.013_b16) 2015; 76 Kozawa (10.1016/j.future.2022.04.013_b18) 2017 Stovall (10.1016/j.future.2022.04.013_b31) 2015; 26 Abbas (10.1016/j.future.2022.04.013_b13) 2018; 11 Baborska-Narozny (10.1016/j.future.2022.04.013_b6) 2016 Chen (10.1016/j.future.2022.04.013_b38) 2017 White (10.1016/j.future.2022.04.013_b21) 2005 Hartigan (10.1016/j.future.2022.04.013_b22) 1979; 28 Sun (10.1016/j.future.2022.04.013_b10) 2020 10.1016/j.future.2022.04.013_b3 Shiokawa (10.1016/j.future.2022.04.013_b33) 2020 Cao (10.1016/j.future.2022.04.013_b2) 2009 Kim (10.1016/j.future.2022.04.013_b35) 2018; 13 Žalik (10.1016/j.future.2022.04.013_b7) 2018; 445 Iyer (10.1016/j.future.2022.04.013_b5) 2018 Aridhi (10.1016/j.future.2022.04.013_b12) 2015; 48 Mai (10.1016/j.future.2022.04.013_b29) 2017 Said (10.1016/j.future.2022.04.013_b1) 2018; 63 Goyal (10.1016/j.future.2022.04.013_b24) 2018; 151 Wen (10.1016/j.future.2022.04.013_b32) 2017; 11 |
| References_xml | – start-page: 665 year: 2017 end-page: 674 ident: b40 article-title: AnySCAN: AN efficient anytime framework with active learning for large-scale network clustering publication-title: 2017 IEEE International Conference on Data Mining (ICDM) – volume: 11 start-page: 1590 year: 2018 end-page: 1603 ident: b13 article-title: Streaming graph partitioning: an experimental study publication-title: Proc. VLDB Endow. – year: 2020 ident: b34 article-title: Un algorithme distribué pour le clustering de grands graphes publication-title: 20Ème Édition de la Conférence Francophone” Extraction et Gestion des Connaissances – start-page: 274 year: 2005 end-page: 285 ident: b21 article-title: A spectral clustering approach to finding communities in graphs publication-title: Proceedings of the 2005 SIAM International Conference on Data Mining – volume: 48 start-page: 213 year: 2015 end-page: 223 ident: b12 article-title: Density-based data partitioning strategy to approximate large-scale subgraph mining publication-title: Inf. Syst. – volume: 11 start-page: 243 year: 2017 end-page: 255 ident: b32 article-title: Efficient structural graph clustering: an index-based approach publication-title: Proc. VLDB Endow. – start-page: 1203 year: 2007 end-page: 1210 ident: b46 article-title: Adjacency list matchings: an ideal genotype for cycle covers publication-title: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation – year: 2020 ident: b10 article-title: Continuous monitoring of maximum clique over dynamic graphs publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 3 year: 2009 end-page: 12 ident: b2 article-title: From GPS traces to a routable road map publication-title: Proceedings of the 17th ACM International Conference on Advances in Geographic Information Systems – volume: 76 start-page: 66 year: 2015 end-page: 80 ident: b16 article-title: Multi-threaded modularity based graph clustering using the multilevel paradigm publication-title: J. Parallel Distrib. Comput. – start-page: 626 year: 2019 end-page: 641 ident: b39 article-title: DPSCAN: STructural graph clustering based on density peaks publication-title: International Conference on Database Systems for Advanced Applications – start-page: 824 year: 2007 end-page: 833 ident: b15 article-title: Scan: a structural clustering algorithm for networks publication-title: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – start-page: 269 year: 2001 end-page: 274 ident: b44 article-title: Co-clustering documents and words using bipartite spectral graph partitioning publication-title: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – start-page: 10 year: 2018 ident: b5 article-title: Bridging the GAP: towards approximate graph analytics publication-title: Proceedings of the 1st ACM SIGMOD Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA) – start-page: 567 year: 2017 end-page: 576 ident: b18 article-title: GPU-Accelerated graph clustering via parallel label propagation publication-title: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management – start-page: 17 year: 2016 ident: b6 article-title: Exploring the relationship between a’facebook group’and face-to-face interactions in’weak-tie’residential communities publication-title: Proceedings of the 7th 2016 International Conference on Social Media & Society – volume: 9 start-page: 9 year: 2017 end-page: 17 ident: b43 article-title: BLADYG: A Graph processing framework for large dynamic graphs publication-title: Big Data Res. – volume: 6 start-page: 1 year: 2019 end-page: 23 ident: b23 article-title: Distributed graph clustering and sparsification publication-title: ACM Trans. Parallel Comput. (TOPC) – start-page: 555 year: 2017 end-page: 564 ident: b14 article-title: Local higher-order graph clustering publication-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 25 start-page: 243 year: 2012 end-page: 269 ident: b8 article-title: Finding density-based subspace clusters in graphs with feature vectors publication-title: Data Min. Knowl. Discov. – year: 2021 ident: b9 article-title: Efficient distributed approaches to core maintenance on large dynamic graphs publication-title: IEEE Trans. Parallel Distrib. Syst. – year: 2008 ident: b48 article-title: Introduction to Information Retrieval, Vol. 39 – volume: 28 start-page: 100 year: 1979 end-page: 108 ident: b22 article-title: Algorithm AS 136: A k-means clustering algorithm publication-title: J. R. Statist. Soc. Ser. C (Appl. Statist.) – start-page: 513 year: 2010 end-page: 519 ident: b17 article-title: Static community detection algorithms for evolving networks publication-title: 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks – volume: 8 start-page: 1178 year: 2015 end-page: 1189 ident: b25 article-title: SCAN++: Efficient algorithm for finding clusters, hubs and outliers on large-scale graphs publication-title: Proc. VLDB Endow. – volume: 29 start-page: 387 year: 2017 end-page: 401 ident: b30 article-title: pSCAN: Fast and exact structural graph clustering publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 107 year: 2001 end-page: 114 ident: b20 article-title: A min-max cut algorithm for graph partitioning and data clustering publication-title: Data Mining, 2001. ICDM 2001, Proceedings IEEE International Conference on – start-page: 49 year: 1999 ident: b37 article-title: Measuring synchronisation and scheduling overheads in OpenMP publication-title: Proceedings of First European Workshop on OpenMP, Vol. 8 – start-page: 123 year: 2017 end-page: 134 ident: b38 article-title: Incremental structural clustering for dynamic networks publication-title: International Conference on Web Information Systems Engineering – start-page: 38 year: 2020 end-page: 54 ident: b33 article-title: DSCAN: DIstributed structural graph clustering for billion-edge graphs publication-title: International Conference on Database and Expert Systems Applications – volume: 86 start-page: 546 year: 2018 end-page: 564 ident: b49 article-title: An experimental survey on big data frameworks publication-title: Future Gener. Comput. Syst. – start-page: 862 year: 2013 end-page: 869 ident: b36 article-title: PSCAN: A parallel structural clustering algorithm for big networks in MapReduce publication-title: 2013 IEEE 27th International Conference on Advanced Information Networking and Applications (AINA) – start-page: 228 year: 2019 end-page: 237 ident: b45 article-title: Local graph edge partitioning with a two-stage heuristic method publication-title: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS) – start-page: 99 year: 2005 end-page: 106 ident: b47 article-title: Vectorized sparse matrix multiply for compressed row storage format publication-title: International Conference on Computational Science – volume: 63 start-page: 59 year: 2018 end-page: 70 ident: b1 article-title: CC-GA: A Clustering coefficient based genetic algorithm for detecting communities in social networks publication-title: Appl. Soft Comput. – reference: Y. Che, S. Sun, Q. Luo, Parallelizing pruning-based graph structural clustering, in: Proceedings of the 47th International Conference on Parallel Processing, ICPP 2018, Eugene, OR, USA, August 13-16, 2018, 2018, pp. 77:1–77:10. – volume: 151 start-page: 78 year: 2018 end-page: 94 ident: b24 article-title: Graph embedding techniques, applications, and performance: A survey publication-title: Knowl.-Based Syst. – start-page: 292 year: 2014 end-page: 303 ident: b27 article-title: LinkSCAN*: OVerlapping community detection using the link-space transformation publication-title: 2014 IEEE 30th International Conference on Data Engineering (ICDE) – start-page: 6 year: 2017 ident: b28 article-title: SCAN-XP: PArallel structural graph clustering algorithm on intel xeon phi coprocessors publication-title: Proceedings of the 2nd International Workshop on Network Data Analytics – start-page: 253 year: 2016 end-page: 264 ident: b26 article-title: pSCAN: Fast and exact structural graph clustering publication-title: 2016 IEEE 32nd International Conference on Data Engineering (ICDE) – volume: 26 start-page: 3381 year: 2015 end-page: 3393 ident: b31 article-title: GPUSCAN: GPU-Based parallel structural clustering algorithm for networks publication-title: IEEE Trans. Parallel Distrib. Syst. – start-page: 349 year: 2017 end-page: 360 ident: b29 article-title: Scalable and interactive graph clustering algorithm on multicore CPUs publication-title: Data Engineering (ICDE), 2017 IEEE 33rd International Conference on – volume: 13 year: 2018 ident: b35 article-title: CASS: A Distributed network clustering algorithm based on structure similarity for large-scale network publication-title: PLoS One – start-page: 2295 year: 2017 end-page: 2298 ident: b42 article-title: Pm-SCAN: an I/O efficient structural clustering algorithm for large-scale graphs publication-title: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management – volume: 18 start-page: 536 year: 2002 end-page: 545 ident: b4 article-title: Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees publication-title: Bioinformatics – volume: 69 start-page: 155 year: 2017 end-page: 163 ident: b11 article-title: MR-SimLab: SCalable subgraph selection with label similarity for big data publication-title: Inf. Syst. – start-page: 568 year: 2003 end-page: 579 ident: b19 article-title: Experiments on graph clustering algorithms publication-title: European Symposium on Algorithms – reference: P. Fournier-Viger, G. He, C. Cheng, J. Li, M. Zhou, J.C.-W. Lin, U. Yun, A survey of pattern mining in dynamic graphs, WIREs Data Min. Knowl. Discov. n/a (n/a) e1372. – volume: 445 start-page: 38 year: 2018 end-page: 49 ident: b7 article-title: Memetic algorithm using node entropy and partition entropy for community detection in networks publication-title: Inform. Sci. – volume: 13 issue: 10 year: 2018 ident: 10.1016/j.future.2022.04.013_b35 article-title: CASS: A Distributed network clustering algorithm based on structure similarity for large-scale network publication-title: PLoS One doi: 10.1371/journal.pone.0203670 – start-page: 253 year: 2016 ident: 10.1016/j.future.2022.04.013_b26 article-title: pSCAN: Fast and exact structural graph clustering – start-page: 568 year: 2003 ident: 10.1016/j.future.2022.04.013_b19 article-title: Experiments on graph clustering algorithms – year: 2008 ident: 10.1016/j.future.2022.04.013_b48 – start-page: 824 year: 2007 ident: 10.1016/j.future.2022.04.013_b15 article-title: Scan: a structural clustering algorithm for networks – start-page: 513 year: 2010 ident: 10.1016/j.future.2022.04.013_b17 article-title: Static community detection algorithms for evolving networks – start-page: 626 year: 2019 ident: 10.1016/j.future.2022.04.013_b39 article-title: DPSCAN: STructural graph clustering based on density peaks – volume: 86 start-page: 546 year: 2018 ident: 10.1016/j.future.2022.04.013_b49 article-title: An experimental survey on big data frameworks publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.04.032 – ident: 10.1016/j.future.2022.04.013_b41 doi: 10.1145/3225058.3225063 – year: 2021 ident: 10.1016/j.future.2022.04.013_b9 article-title: Efficient distributed approaches to core maintenance on large dynamic graphs publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 8 start-page: 1178 issue: 11 year: 2015 ident: 10.1016/j.future.2022.04.013_b25 article-title: SCAN++: Efficient algorithm for finding clusters, hubs and outliers on large-scale graphs publication-title: Proc. VLDB Endow. doi: 10.14778/2809974.2809980 – start-page: 2295 year: 2017 ident: 10.1016/j.future.2022.04.013_b42 article-title: Pm-SCAN: an I/O efficient structural clustering algorithm for large-scale graphs – volume: 445 start-page: 38 year: 2018 ident: 10.1016/j.future.2022.04.013_b7 article-title: Memetic algorithm using node entropy and partition entropy for community detection in networks publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.02.063 – start-page: 269 year: 2001 ident: 10.1016/j.future.2022.04.013_b44 article-title: Co-clustering documents and words using bipartite spectral graph partitioning – volume: 48 start-page: 213 year: 2015 ident: 10.1016/j.future.2022.04.013_b12 article-title: Density-based data partitioning strategy to approximate large-scale subgraph mining publication-title: Inf. Syst. doi: 10.1016/j.is.2013.08.005 – volume: 9 start-page: 9 year: 2017 ident: 10.1016/j.future.2022.04.013_b43 article-title: BLADYG: A Graph processing framework for large dynamic graphs publication-title: Big Data Res. doi: 10.1016/j.bdr.2017.05.003 – volume: 76 start-page: 66 year: 2015 ident: 10.1016/j.future.2022.04.013_b16 article-title: Multi-threaded modularity based graph clustering using the multilevel paradigm publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2014.09.012 – ident: 10.1016/j.future.2022.04.013_b3 – volume: 11 start-page: 243 issue: 3 year: 2017 ident: 10.1016/j.future.2022.04.013_b32 article-title: Efficient structural graph clustering: an index-based approach publication-title: Proc. VLDB Endow. doi: 10.14778/3157794.3157795 – start-page: 99 year: 2005 ident: 10.1016/j.future.2022.04.013_b47 article-title: Vectorized sparse matrix multiply for compressed row storage format – start-page: 349 year: 2017 ident: 10.1016/j.future.2022.04.013_b29 article-title: Scalable and interactive graph clustering algorithm on multicore CPUs – start-page: 228 year: 2019 ident: 10.1016/j.future.2022.04.013_b45 article-title: Local graph edge partitioning with a two-stage heuristic method – start-page: 567 year: 2017 ident: 10.1016/j.future.2022.04.013_b18 article-title: GPU-Accelerated graph clustering via parallel label propagation – start-page: 49 year: 1999 ident: 10.1016/j.future.2022.04.013_b37 article-title: Measuring synchronisation and scheduling overheads in OpenMP – volume: 29 start-page: 387 issue: 2 year: 2017 ident: 10.1016/j.future.2022.04.013_b30 article-title: pSCAN: Fast and exact structural graph clustering publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2016.2618795 – start-page: 274 year: 2005 ident: 10.1016/j.future.2022.04.013_b21 article-title: A spectral clustering approach to finding communities in graphs – volume: 6 start-page: 1 issue: 3 year: 2019 ident: 10.1016/j.future.2022.04.013_b23 article-title: Distributed graph clustering and sparsification publication-title: ACM Trans. Parallel Comput. (TOPC) doi: 10.1145/3364208 – start-page: 292 year: 2014 ident: 10.1016/j.future.2022.04.013_b27 article-title: LinkSCAN*: OVerlapping community detection using the link-space transformation – volume: 63 start-page: 59 year: 2018 ident: 10.1016/j.future.2022.04.013_b1 article-title: CC-GA: A Clustering coefficient based genetic algorithm for detecting communities in social networks publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.11.014 – volume: 28 start-page: 100 issue: 1 year: 1979 ident: 10.1016/j.future.2022.04.013_b22 article-title: Algorithm AS 136: A k-means clustering algorithm publication-title: J. R. Statist. Soc. Ser. C (Appl. Statist.) – start-page: 17 year: 2016 ident: 10.1016/j.future.2022.04.013_b6 article-title: Exploring the relationship between a’facebook group’and face-to-face interactions in’weak-tie’residential communities – volume: 26 start-page: 3381 issue: 12 year: 2015 ident: 10.1016/j.future.2022.04.013_b31 article-title: GPUSCAN: GPU-Based parallel structural clustering algorithm for networks publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2014.2374607 – start-page: 6 year: 2017 ident: 10.1016/j.future.2022.04.013_b28 article-title: SCAN-XP: PArallel structural graph clustering algorithm on intel xeon phi coprocessors – start-page: 1203 year: 2007 ident: 10.1016/j.future.2022.04.013_b46 article-title: Adjacency list matchings: an ideal genotype for cycle covers – start-page: 3 year: 2009 ident: 10.1016/j.future.2022.04.013_b2 article-title: From GPS traces to a routable road map – start-page: 107 year: 2001 ident: 10.1016/j.future.2022.04.013_b20 article-title: A min-max cut algorithm for graph partitioning and data clustering – volume: 151 start-page: 78 year: 2018 ident: 10.1016/j.future.2022.04.013_b24 article-title: Graph embedding techniques, applications, and performance: A survey publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.03.022 – year: 2020 ident: 10.1016/j.future.2022.04.013_b34 article-title: Un algorithme distribué pour le clustering de grands graphes – start-page: 123 year: 2017 ident: 10.1016/j.future.2022.04.013_b38 article-title: Incremental structural clustering for dynamic networks – volume: 25 start-page: 243 issue: 2 year: 2012 ident: 10.1016/j.future.2022.04.013_b8 article-title: Finding density-based subspace clusters in graphs with feature vectors publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-012-0272-z – year: 2020 ident: 10.1016/j.future.2022.04.013_b10 article-title: Continuous monitoring of maximum clique over dynamic graphs publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 10 year: 2018 ident: 10.1016/j.future.2022.04.013_b5 article-title: Bridging the GAP: towards approximate graph analytics – volume: 69 start-page: 155 year: 2017 ident: 10.1016/j.future.2022.04.013_b11 article-title: MR-SimLab: SCalable subgraph selection with label similarity for big data publication-title: Inf. Syst. doi: 10.1016/j.is.2017.05.006 – volume: 18 start-page: 536 issue: 4 year: 2002 ident: 10.1016/j.future.2022.04.013_b4 article-title: Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.4.536 – start-page: 555 year: 2017 ident: 10.1016/j.future.2022.04.013_b14 article-title: Local higher-order graph clustering – start-page: 665 year: 2017 ident: 10.1016/j.future.2022.04.013_b40 article-title: AnySCAN: AN efficient anytime framework with active learning for large-scale network clustering – start-page: 862 year: 2013 ident: 10.1016/j.future.2022.04.013_b36 article-title: PSCAN: A parallel structural clustering algorithm for big networks in MapReduce – volume: 11 start-page: 1590 issue: 11 year: 2018 ident: 10.1016/j.future.2022.04.013_b13 article-title: Streaming graph partitioning: an experimental study publication-title: Proc. VLDB Endow. doi: 10.14778/3236187.3236208 – start-page: 38 year: 2020 ident: 10.1016/j.future.2022.04.013_b33 article-title: DSCAN: DIstributed structural graph clustering for billion-edge graphs |
| SSID | ssj0001731 |
| Score | 2.3817165 |
| Snippet | Graph clustering is one of the key techniques to understand structures that are presented in networks. In addition to clusters, bridges and outliers detection... |
| SourceID | hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 334 |
| SubjectTerms | Artificial Intelligence Big graph analysis Bioinformatics Community detection Computer Science Distributed, Parallel, and Cluster Computing Graph processing Hubs detection Machine Learning Outliers detection Structural graph clustering |
| Title | A distributed and incremental algorithm for large-scale graph clustering |
| URI | https://dx.doi.org/10.1016/j.future.2022.04.013 https://inria.hal.science/hal-03659549 |
| Volume | 134 |
| WOSCitedRecordID | wos000891583000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001731 issn: 0167-739X databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEBau00MvfZekL0TpzWzwWlpLOi4lxSlJKDQF3xZZ0tYOm3VwbBNyz__u6Gm3oU1z6GWxxa52rfk8Mzua-Qahj1IJA26yLY5RRUYHtci4opNsAra00FIQ40lcj9jJCR-PxddO5ybWwqwb1rb86kpc_FdRwxgI25bO3kPcaVIYgM8gdDiC2OH4T4Iv7aaL72NldCBXUj4KaHkBmh_zxWw5PXf5hY3NA88uQU6m56ire6pZWeqEaNBiA0_HPGLbLZuAGBW6QQQq6OSZH7ZzG9hyqXt2q_98g6iZdg2Ee9_kxKxSTvCxuW5952xpy0PS-cegEu0GgYvYzls9DWnEIUIBL7cxBSsFLUEZM-Ja5m60bohher1Jwjdvgokn4byl3X2g4Wzf063s23s5nlpfzformfZvRi6lHsastrPKz1LZWao-rfq29_HOgBWCd9FOeXgw_pJMes5CY8vwQ2INpksUvP00f_JxHkxjtN55L6dP0ePw2oFLD5dnqGPa5-hJbOmBg4Z_gUYl3kIPBvTgLfTghB4M6MFb6MEOPXiDnpfo--eD00-jLDTbyBThw2U2KJQ2OTfEGElrXpiipmCBKNVKEGlyKjkVNcsnQkrNCSxToTXlQhElwemvySvUbeet2UWYMAp-oh5OcmZov9aSUT1QUikYGArV30MkLk-lAhO9bYjSVH8Tzh7K0lUXnonljvNZXPkqeJPeS6wATndc-QEElW5iCdhH5VFlx8DfK-zG-Dp_fc_HeYMebf4bb1F3uViZd-ihWi9nl4v3AXA_AeY2p9U |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+distributed+and+incremental+algorithm+for+large-scale+graph+clustering&rft.jtitle=Future+generation+computer+systems&rft.au=Inoubli%2C+Wissem&rft.au=Aridhi%2C+Sabeur&rft.au=Mezni%2C+Haithem&rft.au=Maddouri%2C+Mondher&rft.date=2022-09-01&rft.issn=0167-739X&rft.volume=134&rft.spage=334&rft.epage=347&rft_id=info:doi/10.1016%2Fj.future.2022.04.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2022_04_013 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon |