A distributed and incremental algorithm for large-scale graph clustering

Graph clustering is one of the key techniques to understand structures that are presented in networks. In addition to clusters, bridges and outliers detection is also a critical task as it plays an important role in the analysis of networks. Recently, several graph clustering methods are developed a...

Full description

Saved in:
Bibliographic Details
Published in:Future generation computer systems Vol. 134; pp. 334 - 347
Main Authors: Inoubli, Wissem, Aridhi, Sabeur, Mezni, Haithem, Maddouri, Mondher, Mephu Nguifo, Engelbert
Format: Journal Article
Language:English
Published: Elsevier B.V 01.09.2022
Elsevier
Subjects:
ISSN:0167-739X, 1872-7115
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Graph clustering is one of the key techniques to understand structures that are presented in networks. In addition to clusters, bridges and outliers detection is also a critical task as it plays an important role in the analysis of networks. Recently, several graph clustering methods are developed and used in multiple application domains such as biological network analysis, recommendation systems and community detection. Most of these algorithms are based on the structural clustering algorithm. Yet, this kind of algorithm is based on the structural similarity. This latter requires to parse all graph’ edges in order to compute the structural similarity. However, the height needs of similarity computing make this algorithm more adequate for small graphs, without significant support to deal with large-scale networks. In this paper, we propose a novel distributed graph clustering algorithm based on structural graph clustering. The experimental results show the efficiency in terms of running time of the proposed algorithm in large networks compared to existing structural graph clustering methods. •An adaptation of the edge partitioning method in a distributed setting.•A novel scalable clustering method for distributed networks.•An incremental graph clustering algorithm for both large and dynamic graphs.•An experimental study to evaluate the novel scalable clustering method for distributed networks.
AbstractList Graph clustering is one of the key techniques to understand structures that are presented in networks. In addition to clusters, bridges and outliers detection is also a critical task as it plays an important role in the analysis of networks. Recently, several graph clustering methods are developed and used in multiple application domains such as biological network analysis, recommendation systems and community detection. Most of these algorithms are based on the structural clustering algorithm. Yet, this kind of algorithm is based on the structural similarity. This latter requires to parse all graph’ edges in order to compute the structural similarity. However, the height needs of similarity computing make this algorithm more adequate for small graphs, without significant support to deal with large-scale networks. In this paper, we propose a novel distributed graph clustering algorithm based on structural graph clustering. The experimental results show the efficiency in terms of running time of the proposed algorithm in large networks compared to existing structural graph clustering methods. •An adaptation of the edge partitioning method in a distributed setting.•A novel scalable clustering method for distributed networks.•An incremental graph clustering algorithm for both large and dynamic graphs.•An experimental study to evaluate the novel scalable clustering method for distributed networks.
Graph clustering is one of the key techniques to understand structures that are presented in networks. In addition to clusters, bridges and outliers detection is also a critical task as it plays an important role in the analysis of networks. Recently, several graph clustering methods are developed and used in multiple application domains such as biological network analysis, recommendation systems and community detection. Most of these algorithms are based on the structural clustering algorithm. Yet, this kind of algorithm is based on the structural similarity. This latter requires to parse all graph’ edges in order to compute the structural similarity. However, the height needs of similarity computing make this algorithm more adequate for small graphs, without significant support to deal with large-scale networks. In this paper, we propose a novel distributed graph clustering algorithm based on structural graph clustering. The experimental results show the efficiency in terms of running time of the proposed algorithm in large networks compared to existing structural graph clustering methods.
Author Aridhi, Sabeur
Mezni, Haithem
Inoubli, Wissem
Maddouri, Mondher
Mephu Nguifo, Engelbert
Author_xml – sequence: 1
  givenname: Wissem
  orcidid: 0000-0001-5121-9043
  surname: Inoubli
  fullname: Inoubli, Wissem
  email: inoubliwissem@gmail.com
  organization: LIPAH, University of Tunis El-Manar, Tunis, Tunisia
– sequence: 2
  givenname: Sabeur
  surname: Aridhi
  fullname: Aridhi, Sabeur
  organization: University of Lorraine, CNRS, LORIA, France
– sequence: 3
  givenname: Haithem
  orcidid: 0000-0001-9932-8433
  surname: Mezni
  fullname: Mezni, Haithem
  organization: SMART Lab (Tunisia), Taibah University, Saudi Arabia
– sequence: 4
  givenname: Mondher
  surname: Maddouri
  fullname: Maddouri, Mondher
  organization: College Of Business, University of Jeddah, Saudi Arabia
– sequence: 5
  givenname: Engelbert
  orcidid: 0000-0001-9119-678X
  surname: Mephu Nguifo
  fullname: Mephu Nguifo, Engelbert
  organization: University Clermont Auvergne, CNRS, Clermont Auvergne INP, LIMOS, 63000 Clermont-Ferrand, France
BackLink https://inria.hal.science/hal-03659549$$DView record in HAL
BookMark eNqFkEFLwzAYhoMouE3_gYdePbQmTbqmHoQx1AkDLwrewrfka5eRtSNJB_57O6oXD3r64OV93g-eKTlvuxYJuWE0Y5TN73ZZ3cfeY5bTPM-oyCjjZ2TCZJmnJWPFOZkMtTItefVxSaYh7CilrORsQlaLxNgQvd30EU0CrUlsqz3usY3gEnBN523c7pO684kD32AaNDhMGg-HbaJdHyJ62zZX5KIGF_D6-87I-9Pj23KVrl-fX5aLdaq5nMc0L7RBJpEjgqhlgUUtqJRCGF1xQCZAiqou2aYCMJKXRVUYI2SluQZBi5rPyO24uwWnDt7uwX-qDqxaLdbqlFE-HyBRHdnQvR-72ncheKyVthGi7drowTrFqDr5Uzs1-lMnf4oKNfgbYPEL_vn2D_YwYjhIOFr0KmiLrUZjPeqoTGf_HvgCXbOPUw
CitedBy_id crossref_primary_10_1007_s13042_025_02578_0
crossref_primary_10_1016_j_ins_2024_120109
crossref_primary_10_1016_j_ins_2024_120363
crossref_primary_10_1109_TKDE_2020_3047631
crossref_primary_10_1016_j_future_2024_107497
Cites_doi 10.1371/journal.pone.0203670
10.1016/j.future.2018.04.032
10.1145/3225058.3225063
10.14778/2809974.2809980
10.1016/j.ins.2018.02.063
10.1016/j.is.2013.08.005
10.1016/j.bdr.2017.05.003
10.1016/j.jpdc.2014.09.012
10.14778/3157794.3157795
10.1109/TKDE.2016.2618795
10.1145/3364208
10.1016/j.asoc.2017.11.014
10.1109/TPDS.2014.2374607
10.1016/j.knosys.2018.03.022
10.1007/s10618-012-0272-z
10.1016/j.is.2017.05.006
10.1093/bioinformatics/18.4.536
10.14778/3236187.3236208
ContentType Journal Article
Copyright 2022 Elsevier B.V.
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.future.2022.04.013
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 347
ExternalDocumentID oai:HAL:hal-03659549v1
10_1016_j_future_2022_04_013
S0167739X22001376
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
VOOES
ID FETCH-LOGICAL-c386t-25cde18e3eea4f85e5f408844dc93ae14a849f71b9aad837595dd489c3ca405f3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000891583000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Wed Nov 05 07:49:34 EST 2025
Sat Nov 29 07:24:00 EST 2025
Tue Nov 18 22:08:51 EST 2025
Fri Feb 23 02:40:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Community detection
Big graph analysis
Structural graph clustering
Graph processing
Hubs detection
Outliers detection
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c386t-25cde18e3eea4f85e5f408844dc93ae14a849f71b9aad837595dd489c3ca405f3
ORCID 0000-0001-5121-9043
0000-0001-9932-8433
0000-0001-9119-678X
0000-0002-3657-3762
OpenAccessLink https://inria.hal.science/hal-03659549
PageCount 14
ParticipantIDs hal_primary_oai_HAL_hal_03659549v1
crossref_citationtrail_10_1016_j_future_2022_04_013
crossref_primary_10_1016_j_future_2022_04_013
elsevier_sciencedirect_doi_10_1016_j_future_2022_04_013
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
2022-09
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Future generation computer systems
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Wen, Qin, Zhang, Chang, Lin (b32) 2017; 11
Bull (b37) 1999
Kozawa, Amagasa, Kitagawa (b18) 2017
Ji, Bu, Li, Wu (b45) 2019
P. Fournier-Viger, G. He, C. Cheng, J. Li, M. Zhou, J.C.-W. Lin, U. Yun, A survey of pattern mining in dynamic graphs, WIREs Data Min. Knowl. Discov. n/a (n/a) e1372.
Günnemann, Boden, Seidl (b8) 2012; 25
Weng, Zhou, Li, Peng, Li (b9) 2021
Chen, Li, Dai, Li, Qiao, Mao (b38) 2017
Wu, Gu, Yu (b39) 2019
LaSalle, Karypis (b16) 2015; 76
Brandes, Gaertler, Wagner (b19) 2003
Xu, Yuruk, Feng, Schweiger (b15) 2007
Dhifli, Aridhi, Nguifo (b11) 2017; 69
Zhao, Chen, Xu (b40) 2017
Shiokawa, Takahashi (b33) 2020
Iyer, Panda, Venkataraman, Chowdhury, Akella, Shenker, Stoica (b5) 2018
Chang, Li, Lin, Qin, Zhang (b26) 2016
Aynaud, Guillaume (b17) 2010
Aridhi, d’Orazio, Maddouri, Nguifo (b12) 2015; 48
D’Azevedo, Fahey, Mills (b47) 2005
Inoubli, Aridhi, Mezni, Maddouri, Engelbert (b49) 2018; 86
Aridhi, Montresor, Velegrakis (b43) 2017; 9
Hartigan, Wong (b22) 1979; 28
Cao, Krumm (b2) 2009
Baborska-Narozny, Stirling, Stevenson (b6) 2016
Shiokawa, Fujiwara, Onizuka (b25) 2015; 8
Zhao, Martha, Xu (b36) 2013
Mai, Dieu, Assent, Jacobsen, Kristensen, Birk (b29) 2017
Xu, Olman, Xu (b4) 2002; 18
Goyal, Ferrara (b24) 2018; 151
Inoubli, Aridhi, Mezni, Maddouri, Mephu Nguifo (b34) 2020
Sun, Li, Wang, Liao, Yu (b10) 2020
Ding, He, Zha, Gu, Simon (b20) 2001
Stovall, Kockara, Avci (b31) 2015; 26
White, Smyth (b21) 2005
Sun, Zanetti (b23) 2019; 6
Seo, Kim (b42) 2017
Kim, Shin, Kim, Park, Lee, Woo, Kim, Seo, Yu, Park (b35) 2018; 13
Žalik, Žalik (b7) 2018; 445
Said, Abbasi, Maqbool, Daud, Aljohani (b1) 2018; 63
Abbas, Kalavri, Carbone, Vlassov (b13) 2018; 11
Doerr, Johannsen (b46) 2007
Lim, Ryu, Kwon, Jung, Lee (b27) 2014
Yin, Benson, Leskovec, Gleich (b14) 2017
Chang, Li, Qin, Zhang, Yang (b30) 2017; 29
Schütze, Manning, Raghavan (b48) 2008
Dhillon (b44) 2001
Takahashi, Shiokawa, Kitagawa (b28) 2017
Y. Che, S. Sun, Q. Luo, Parallelizing pruning-based graph structural clustering, in: Proceedings of the 47th International Conference on Parallel Processing, ICPP 2018, Eugene, OR, USA, August 13-16, 2018, 2018, pp. 77:1–77:10.
Aridhi (10.1016/j.future.2022.04.013_b43) 2017; 9
Takahashi (10.1016/j.future.2022.04.013_b28) 2017
Sun (10.1016/j.future.2022.04.013_b23) 2019; 6
Aynaud (10.1016/j.future.2022.04.013_b17) 2010
Inoubli (10.1016/j.future.2022.04.013_b49) 2018; 86
10.1016/j.future.2022.04.013_b41
Dhillon (10.1016/j.future.2022.04.013_b44) 2001
Schütze (10.1016/j.future.2022.04.013_b48) 2008
D’Azevedo (10.1016/j.future.2022.04.013_b47) 2005
Lim (10.1016/j.future.2022.04.013_b27) 2014
Günnemann (10.1016/j.future.2022.04.013_b8) 2012; 25
Shiokawa (10.1016/j.future.2022.04.013_b25) 2015; 8
Seo (10.1016/j.future.2022.04.013_b42) 2017
Zhao (10.1016/j.future.2022.04.013_b40) 2017
Brandes (10.1016/j.future.2022.04.013_b19) 2003
Inoubli (10.1016/j.future.2022.04.013_b34) 2020
Ji (10.1016/j.future.2022.04.013_b45) 2019
Chang (10.1016/j.future.2022.04.013_b26) 2016
Doerr (10.1016/j.future.2022.04.013_b46) 2007
Ding (10.1016/j.future.2022.04.013_b20) 2001
Xu (10.1016/j.future.2022.04.013_b15) 2007
Bull (10.1016/j.future.2022.04.013_b37) 1999
Xu (10.1016/j.future.2022.04.013_b4) 2002; 18
Chang (10.1016/j.future.2022.04.013_b30) 2017; 29
Weng (10.1016/j.future.2022.04.013_b9) 2021
Zhao (10.1016/j.future.2022.04.013_b36) 2013
Yin (10.1016/j.future.2022.04.013_b14) 2017
Wu (10.1016/j.future.2022.04.013_b39) 2019
Dhifli (10.1016/j.future.2022.04.013_b11) 2017; 69
LaSalle (10.1016/j.future.2022.04.013_b16) 2015; 76
Kozawa (10.1016/j.future.2022.04.013_b18) 2017
Stovall (10.1016/j.future.2022.04.013_b31) 2015; 26
Abbas (10.1016/j.future.2022.04.013_b13) 2018; 11
Baborska-Narozny (10.1016/j.future.2022.04.013_b6) 2016
Chen (10.1016/j.future.2022.04.013_b38) 2017
White (10.1016/j.future.2022.04.013_b21) 2005
Hartigan (10.1016/j.future.2022.04.013_b22) 1979; 28
Sun (10.1016/j.future.2022.04.013_b10) 2020
10.1016/j.future.2022.04.013_b3
Shiokawa (10.1016/j.future.2022.04.013_b33) 2020
Cao (10.1016/j.future.2022.04.013_b2) 2009
Kim (10.1016/j.future.2022.04.013_b35) 2018; 13
Žalik (10.1016/j.future.2022.04.013_b7) 2018; 445
Iyer (10.1016/j.future.2022.04.013_b5) 2018
Aridhi (10.1016/j.future.2022.04.013_b12) 2015; 48
Mai (10.1016/j.future.2022.04.013_b29) 2017
Said (10.1016/j.future.2022.04.013_b1) 2018; 63
Goyal (10.1016/j.future.2022.04.013_b24) 2018; 151
Wen (10.1016/j.future.2022.04.013_b32) 2017; 11
References_xml – start-page: 665
  year: 2017
  end-page: 674
  ident: b40
  article-title: AnySCAN: AN efficient anytime framework with active learning for large-scale network clustering
  publication-title: 2017 IEEE International Conference on Data Mining (ICDM)
– volume: 11
  start-page: 1590
  year: 2018
  end-page: 1603
  ident: b13
  article-title: Streaming graph partitioning: an experimental study
  publication-title: Proc. VLDB Endow.
– year: 2020
  ident: b34
  article-title: Un algorithme distribué pour le clustering de grands graphes
  publication-title: 20Ème Édition de la Conférence Francophone” Extraction et Gestion des Connaissances
– start-page: 274
  year: 2005
  end-page: 285
  ident: b21
  article-title: A spectral clustering approach to finding communities in graphs
  publication-title: Proceedings of the 2005 SIAM International Conference on Data Mining
– volume: 48
  start-page: 213
  year: 2015
  end-page: 223
  ident: b12
  article-title: Density-based data partitioning strategy to approximate large-scale subgraph mining
  publication-title: Inf. Syst.
– volume: 11
  start-page: 243
  year: 2017
  end-page: 255
  ident: b32
  article-title: Efficient structural graph clustering: an index-based approach
  publication-title: Proc. VLDB Endow.
– start-page: 1203
  year: 2007
  end-page: 1210
  ident: b46
  article-title: Adjacency list matchings: an ideal genotype for cycle covers
  publication-title: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation
– year: 2020
  ident: b10
  article-title: Continuous monitoring of maximum clique over dynamic graphs
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 3
  year: 2009
  end-page: 12
  ident: b2
  article-title: From GPS traces to a routable road map
  publication-title: Proceedings of the 17th ACM International Conference on Advances in Geographic Information Systems
– volume: 76
  start-page: 66
  year: 2015
  end-page: 80
  ident: b16
  article-title: Multi-threaded modularity based graph clustering using the multilevel paradigm
  publication-title: J. Parallel Distrib. Comput.
– start-page: 626
  year: 2019
  end-page: 641
  ident: b39
  article-title: DPSCAN: STructural graph clustering based on density peaks
  publication-title: International Conference on Database Systems for Advanced Applications
– start-page: 824
  year: 2007
  end-page: 833
  ident: b15
  article-title: Scan: a structural clustering algorithm for networks
  publication-title: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 269
  year: 2001
  end-page: 274
  ident: b44
  article-title: Co-clustering documents and words using bipartite spectral graph partitioning
  publication-title: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 10
  year: 2018
  ident: b5
  article-title: Bridging the GAP: towards approximate graph analytics
  publication-title: Proceedings of the 1st ACM SIGMOD Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)
– start-page: 567
  year: 2017
  end-page: 576
  ident: b18
  article-title: GPU-Accelerated graph clustering via parallel label propagation
  publication-title: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management
– start-page: 17
  year: 2016
  ident: b6
  article-title: Exploring the relationship between a’facebook group’and face-to-face interactions in’weak-tie’residential communities
  publication-title: Proceedings of the 7th 2016 International Conference on Social Media & Society
– volume: 9
  start-page: 9
  year: 2017
  end-page: 17
  ident: b43
  article-title: BLADYG: A Graph processing framework for large dynamic graphs
  publication-title: Big Data Res.
– volume: 6
  start-page: 1
  year: 2019
  end-page: 23
  ident: b23
  article-title: Distributed graph clustering and sparsification
  publication-title: ACM Trans. Parallel Comput. (TOPC)
– start-page: 555
  year: 2017
  end-page: 564
  ident: b14
  article-title: Local higher-order graph clustering
  publication-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 25
  start-page: 243
  year: 2012
  end-page: 269
  ident: b8
  article-title: Finding density-based subspace clusters in graphs with feature vectors
  publication-title: Data Min. Knowl. Discov.
– year: 2021
  ident: b9
  article-title: Efficient distributed approaches to core maintenance on large dynamic graphs
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– year: 2008
  ident: b48
  article-title: Introduction to Information Retrieval, Vol. 39
– volume: 28
  start-page: 100
  year: 1979
  end-page: 108
  ident: b22
  article-title: Algorithm AS 136: A k-means clustering algorithm
  publication-title: J. R. Statist. Soc. Ser. C (Appl. Statist.)
– start-page: 513
  year: 2010
  end-page: 519
  ident: b17
  article-title: Static community detection algorithms for evolving networks
  publication-title: 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
– volume: 8
  start-page: 1178
  year: 2015
  end-page: 1189
  ident: b25
  article-title: SCAN++: Efficient algorithm for finding clusters, hubs and outliers on large-scale graphs
  publication-title: Proc. VLDB Endow.
– volume: 29
  start-page: 387
  year: 2017
  end-page: 401
  ident: b30
  article-title: pSCAN: Fast and exact structural graph clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 107
  year: 2001
  end-page: 114
  ident: b20
  article-title: A min-max cut algorithm for graph partitioning and data clustering
  publication-title: Data Mining, 2001. ICDM 2001, Proceedings IEEE International Conference on
– start-page: 49
  year: 1999
  ident: b37
  article-title: Measuring synchronisation and scheduling overheads in OpenMP
  publication-title: Proceedings of First European Workshop on OpenMP, Vol. 8
– start-page: 123
  year: 2017
  end-page: 134
  ident: b38
  article-title: Incremental structural clustering for dynamic networks
  publication-title: International Conference on Web Information Systems Engineering
– start-page: 38
  year: 2020
  end-page: 54
  ident: b33
  article-title: DSCAN: DIstributed structural graph clustering for billion-edge graphs
  publication-title: International Conference on Database and Expert Systems Applications
– volume: 86
  start-page: 546
  year: 2018
  end-page: 564
  ident: b49
  article-title: An experimental survey on big data frameworks
  publication-title: Future Gener. Comput. Syst.
– start-page: 862
  year: 2013
  end-page: 869
  ident: b36
  article-title: PSCAN: A parallel structural clustering algorithm for big networks in MapReduce
  publication-title: 2013 IEEE 27th International Conference on Advanced Information Networking and Applications (AINA)
– start-page: 228
  year: 2019
  end-page: 237
  ident: b45
  article-title: Local graph edge partitioning with a two-stage heuristic method
  publication-title: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)
– start-page: 99
  year: 2005
  end-page: 106
  ident: b47
  article-title: Vectorized sparse matrix multiply for compressed row storage format
  publication-title: International Conference on Computational Science
– volume: 63
  start-page: 59
  year: 2018
  end-page: 70
  ident: b1
  article-title: CC-GA: A Clustering coefficient based genetic algorithm for detecting communities in social networks
  publication-title: Appl. Soft Comput.
– reference: Y. Che, S. Sun, Q. Luo, Parallelizing pruning-based graph structural clustering, in: Proceedings of the 47th International Conference on Parallel Processing, ICPP 2018, Eugene, OR, USA, August 13-16, 2018, 2018, pp. 77:1–77:10.
– volume: 151
  start-page: 78
  year: 2018
  end-page: 94
  ident: b24
  article-title: Graph embedding techniques, applications, and performance: A survey
  publication-title: Knowl.-Based Syst.
– start-page: 292
  year: 2014
  end-page: 303
  ident: b27
  article-title: LinkSCAN*: OVerlapping community detection using the link-space transformation
  publication-title: 2014 IEEE 30th International Conference on Data Engineering (ICDE)
– start-page: 6
  year: 2017
  ident: b28
  article-title: SCAN-XP: PArallel structural graph clustering algorithm on intel xeon phi coprocessors
  publication-title: Proceedings of the 2nd International Workshop on Network Data Analytics
– start-page: 253
  year: 2016
  end-page: 264
  ident: b26
  article-title: pSCAN: Fast and exact structural graph clustering
  publication-title: 2016 IEEE 32nd International Conference on Data Engineering (ICDE)
– volume: 26
  start-page: 3381
  year: 2015
  end-page: 3393
  ident: b31
  article-title: GPUSCAN: GPU-Based parallel structural clustering algorithm for networks
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– start-page: 349
  year: 2017
  end-page: 360
  ident: b29
  article-title: Scalable and interactive graph clustering algorithm on multicore CPUs
  publication-title: Data Engineering (ICDE), 2017 IEEE 33rd International Conference on
– volume: 13
  year: 2018
  ident: b35
  article-title: CASS: A Distributed network clustering algorithm based on structure similarity for large-scale network
  publication-title: PLoS One
– start-page: 2295
  year: 2017
  end-page: 2298
  ident: b42
  article-title: Pm-SCAN: an I/O efficient structural clustering algorithm for large-scale graphs
  publication-title: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management
– volume: 18
  start-page: 536
  year: 2002
  end-page: 545
  ident: b4
  article-title: Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees
  publication-title: Bioinformatics
– volume: 69
  start-page: 155
  year: 2017
  end-page: 163
  ident: b11
  article-title: MR-SimLab: SCalable subgraph selection with label similarity for big data
  publication-title: Inf. Syst.
– start-page: 568
  year: 2003
  end-page: 579
  ident: b19
  article-title: Experiments on graph clustering algorithms
  publication-title: European Symposium on Algorithms
– reference: P. Fournier-Viger, G. He, C. Cheng, J. Li, M. Zhou, J.C.-W. Lin, U. Yun, A survey of pattern mining in dynamic graphs, WIREs Data Min. Knowl. Discov. n/a (n/a) e1372.
– volume: 445
  start-page: 38
  year: 2018
  end-page: 49
  ident: b7
  article-title: Memetic algorithm using node entropy and partition entropy for community detection in networks
  publication-title: Inform. Sci.
– volume: 13
  issue: 10
  year: 2018
  ident: 10.1016/j.future.2022.04.013_b35
  article-title: CASS: A Distributed network clustering algorithm based on structure similarity for large-scale network
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0203670
– start-page: 253
  year: 2016
  ident: 10.1016/j.future.2022.04.013_b26
  article-title: pSCAN: Fast and exact structural graph clustering
– start-page: 568
  year: 2003
  ident: 10.1016/j.future.2022.04.013_b19
  article-title: Experiments on graph clustering algorithms
– year: 2008
  ident: 10.1016/j.future.2022.04.013_b48
– start-page: 824
  year: 2007
  ident: 10.1016/j.future.2022.04.013_b15
  article-title: Scan: a structural clustering algorithm for networks
– start-page: 513
  year: 2010
  ident: 10.1016/j.future.2022.04.013_b17
  article-title: Static community detection algorithms for evolving networks
– start-page: 626
  year: 2019
  ident: 10.1016/j.future.2022.04.013_b39
  article-title: DPSCAN: STructural graph clustering based on density peaks
– volume: 86
  start-page: 546
  year: 2018
  ident: 10.1016/j.future.2022.04.013_b49
  article-title: An experimental survey on big data frameworks
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.04.032
– ident: 10.1016/j.future.2022.04.013_b41
  doi: 10.1145/3225058.3225063
– year: 2021
  ident: 10.1016/j.future.2022.04.013_b9
  article-title: Efficient distributed approaches to core maintenance on large dynamic graphs
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 8
  start-page: 1178
  issue: 11
  year: 2015
  ident: 10.1016/j.future.2022.04.013_b25
  article-title: SCAN++: Efficient algorithm for finding clusters, hubs and outliers on large-scale graphs
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2809974.2809980
– start-page: 2295
  year: 2017
  ident: 10.1016/j.future.2022.04.013_b42
  article-title: Pm-SCAN: an I/O efficient structural clustering algorithm for large-scale graphs
– volume: 445
  start-page: 38
  year: 2018
  ident: 10.1016/j.future.2022.04.013_b7
  article-title: Memetic algorithm using node entropy and partition entropy for community detection in networks
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.02.063
– start-page: 269
  year: 2001
  ident: 10.1016/j.future.2022.04.013_b44
  article-title: Co-clustering documents and words using bipartite spectral graph partitioning
– volume: 48
  start-page: 213
  year: 2015
  ident: 10.1016/j.future.2022.04.013_b12
  article-title: Density-based data partitioning strategy to approximate large-scale subgraph mining
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2013.08.005
– volume: 9
  start-page: 9
  year: 2017
  ident: 10.1016/j.future.2022.04.013_b43
  article-title: BLADYG: A Graph processing framework for large dynamic graphs
  publication-title: Big Data Res.
  doi: 10.1016/j.bdr.2017.05.003
– volume: 76
  start-page: 66
  year: 2015
  ident: 10.1016/j.future.2022.04.013_b16
  article-title: Multi-threaded modularity based graph clustering using the multilevel paradigm
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2014.09.012
– ident: 10.1016/j.future.2022.04.013_b3
– volume: 11
  start-page: 243
  issue: 3
  year: 2017
  ident: 10.1016/j.future.2022.04.013_b32
  article-title: Efficient structural graph clustering: an index-based approach
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3157794.3157795
– start-page: 99
  year: 2005
  ident: 10.1016/j.future.2022.04.013_b47
  article-title: Vectorized sparse matrix multiply for compressed row storage format
– start-page: 349
  year: 2017
  ident: 10.1016/j.future.2022.04.013_b29
  article-title: Scalable and interactive graph clustering algorithm on multicore CPUs
– start-page: 228
  year: 2019
  ident: 10.1016/j.future.2022.04.013_b45
  article-title: Local graph edge partitioning with a two-stage heuristic method
– start-page: 567
  year: 2017
  ident: 10.1016/j.future.2022.04.013_b18
  article-title: GPU-Accelerated graph clustering via parallel label propagation
– start-page: 49
  year: 1999
  ident: 10.1016/j.future.2022.04.013_b37
  article-title: Measuring synchronisation and scheduling overheads in OpenMP
– volume: 29
  start-page: 387
  issue: 2
  year: 2017
  ident: 10.1016/j.future.2022.04.013_b30
  article-title: pSCAN: Fast and exact structural graph clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2016.2618795
– start-page: 274
  year: 2005
  ident: 10.1016/j.future.2022.04.013_b21
  article-title: A spectral clustering approach to finding communities in graphs
– volume: 6
  start-page: 1
  issue: 3
  year: 2019
  ident: 10.1016/j.future.2022.04.013_b23
  article-title: Distributed graph clustering and sparsification
  publication-title: ACM Trans. Parallel Comput. (TOPC)
  doi: 10.1145/3364208
– start-page: 292
  year: 2014
  ident: 10.1016/j.future.2022.04.013_b27
  article-title: LinkSCAN*: OVerlapping community detection using the link-space transformation
– volume: 63
  start-page: 59
  year: 2018
  ident: 10.1016/j.future.2022.04.013_b1
  article-title: CC-GA: A Clustering coefficient based genetic algorithm for detecting communities in social networks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.11.014
– volume: 28
  start-page: 100
  issue: 1
  year: 1979
  ident: 10.1016/j.future.2022.04.013_b22
  article-title: Algorithm AS 136: A k-means clustering algorithm
  publication-title: J. R. Statist. Soc. Ser. C (Appl. Statist.)
– start-page: 17
  year: 2016
  ident: 10.1016/j.future.2022.04.013_b6
  article-title: Exploring the relationship between a’facebook group’and face-to-face interactions in’weak-tie’residential communities
– volume: 26
  start-page: 3381
  issue: 12
  year: 2015
  ident: 10.1016/j.future.2022.04.013_b31
  article-title: GPUSCAN: GPU-Based parallel structural clustering algorithm for networks
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2014.2374607
– start-page: 6
  year: 2017
  ident: 10.1016/j.future.2022.04.013_b28
  article-title: SCAN-XP: PArallel structural graph clustering algorithm on intel xeon phi coprocessors
– start-page: 1203
  year: 2007
  ident: 10.1016/j.future.2022.04.013_b46
  article-title: Adjacency list matchings: an ideal genotype for cycle covers
– start-page: 3
  year: 2009
  ident: 10.1016/j.future.2022.04.013_b2
  article-title: From GPS traces to a routable road map
– start-page: 107
  year: 2001
  ident: 10.1016/j.future.2022.04.013_b20
  article-title: A min-max cut algorithm for graph partitioning and data clustering
– volume: 151
  start-page: 78
  year: 2018
  ident: 10.1016/j.future.2022.04.013_b24
  article-title: Graph embedding techniques, applications, and performance: A survey
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.03.022
– year: 2020
  ident: 10.1016/j.future.2022.04.013_b34
  article-title: Un algorithme distribué pour le clustering de grands graphes
– start-page: 123
  year: 2017
  ident: 10.1016/j.future.2022.04.013_b38
  article-title: Incremental structural clustering for dynamic networks
– volume: 25
  start-page: 243
  issue: 2
  year: 2012
  ident: 10.1016/j.future.2022.04.013_b8
  article-title: Finding density-based subspace clusters in graphs with feature vectors
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-012-0272-z
– year: 2020
  ident: 10.1016/j.future.2022.04.013_b10
  article-title: Continuous monitoring of maximum clique over dynamic graphs
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 10
  year: 2018
  ident: 10.1016/j.future.2022.04.013_b5
  article-title: Bridging the GAP: towards approximate graph analytics
– volume: 69
  start-page: 155
  year: 2017
  ident: 10.1016/j.future.2022.04.013_b11
  article-title: MR-SimLab: SCalable subgraph selection with label similarity for big data
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2017.05.006
– volume: 18
  start-page: 536
  issue: 4
  year: 2002
  ident: 10.1016/j.future.2022.04.013_b4
  article-title: Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.4.536
– start-page: 555
  year: 2017
  ident: 10.1016/j.future.2022.04.013_b14
  article-title: Local higher-order graph clustering
– start-page: 665
  year: 2017
  ident: 10.1016/j.future.2022.04.013_b40
  article-title: AnySCAN: AN efficient anytime framework with active learning for large-scale network clustering
– start-page: 862
  year: 2013
  ident: 10.1016/j.future.2022.04.013_b36
  article-title: PSCAN: A parallel structural clustering algorithm for big networks in MapReduce
– volume: 11
  start-page: 1590
  issue: 11
  year: 2018
  ident: 10.1016/j.future.2022.04.013_b13
  article-title: Streaming graph partitioning: an experimental study
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3236187.3236208
– start-page: 38
  year: 2020
  ident: 10.1016/j.future.2022.04.013_b33
  article-title: DSCAN: DIstributed structural graph clustering for billion-edge graphs
SSID ssj0001731
Score 2.3817165
Snippet Graph clustering is one of the key techniques to understand structures that are presented in networks. In addition to clusters, bridges and outliers detection...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 334
SubjectTerms Artificial Intelligence
Big graph analysis
Bioinformatics
Community detection
Computer Science
Distributed, Parallel, and Cluster Computing
Graph processing
Hubs detection
Machine Learning
Outliers detection
Structural graph clustering
Title A distributed and incremental algorithm for large-scale graph clustering
URI https://dx.doi.org/10.1016/j.future.2022.04.013
https://inria.hal.science/hal-03659549
Volume 134
WOSCitedRecordID wos000891583000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF5cp4de-i5JXyylN6NgaVeW9ihKilOSUGgKvonVPmoHRQ6ObULu-d-dfdptaNMcehH2Iq2knU8zs7Oz3yD0UaU0FSzjiVAZTFAaniVMwpyHai4kHVJFGyvpo-LkpJxM2Nde7ybshVm3RdeVV1fs4r-KGtpA2Gbr7D3EHTuFBvgNQocjiB2O_yT4yiy6uDpWSnpyJeGigIYXoP0xX8yW03ObX9iaPPDkEuSkBpa6eiDalaFOCAYtFPC0zCOm3LLyiBG-GoSngo6e-WE3N4Etm7pnlvrPN4iaSVtAePCNN2oVc4KP1XXnKmdzsz0knn8MKtEsENiI7byTU59G7CMUIOiQghWDlqCMC2JL5m60ro9hOr1J_D9ngokj4byl3V2g4Wzf0a3sm3tZnlq3m_VXMu3fjFxMPQxZbWe166U2vdRDWg9N7eOdrMhZ2Uc71eHB5Es06WnhC1v6Fwl7MG2i4O2n-ZOP82AaovXWezl9ih77aQeuHFyeoZ7qnqMnoaQH9hr-BRpXeAs9GNCDt9CDI3owoAdvoQdb9OANel6i758PTj-NE19sIxGkHC2TLBdSpaUiSnGqy1zlmoIFolQKRjh80rykTBdpwziXJYFhyqWkJRNEcHD6NXmF-t28U7sIUw2WoiA005pSno4a6ADshMzlqKFEiz1EwvDUwjPRm4Iobf034eyhJF514ZhY7ji_CCNfe2_SeYk1wOmOKz-AoOJNDAH7uDqqTRv4e7lZGF-nr-_5OG_Qo8238Rb1l4uVeoceivVydrl47wH3E-BKp_k
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+distributed+and+incremental+algorithm+for+large-scale+graph+clustering&rft.jtitle=Future+generation+computer+systems&rft.au=Inoubli%2C+Wissem&rft.au=Aridhi%2C+Sabeur&rft.au=Mezni%2C+Haithem&rft.au=Maddouri%2C+Mondher&rft.date=2022-09-01&rft.issn=0167-739X&rft.volume=134&rft.spage=334&rft.epage=347&rft_id=info:doi/10.1016%2Fj.future.2022.04.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2022_04_013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon