Multi-objective design optimization strategies for small-scale vertical-axis wind turbines
Extracting energy from wind has been an interesting and serious topic over the last few decades and a lot of work has been done on the subject. This paper discusses in detail possible approaches to optimization of a somewhat less known type of wind turbines, particularly suitable for small consumers...
Uloženo v:
| Vydáno v: | Structural and multidisciplinary optimization Ročník 53; číslo 2; s. 277 - 290 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2016
Springer Nature B.V |
| Témata: | |
| ISSN: | 1615-147X, 1615-1488 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Extracting energy from wind has been an interesting and serious topic over the last few decades and a lot of work has been done on the subject. This paper discusses in detail possible approaches to optimization of a somewhat less known type of wind turbines, particularly suitable for small consumers. In order to perform full aerodynamic and structural shape optimization of a small-scale vertical-axis wind turbine, a Double-multiple streamtube model code, known to provide good results in stationary working regimes, was complemented by a finite element analysis and implemented into a multi-objective particle swarm algorithm. For the purpose of shortening the total time needed for aerodynamic computation, the performed numerical simulations were two-dimensional and experimentally measured static airfoil data were used. The used aerodynamic model was validated against the available experimental data of similar wind turbines. The subsequent structural analyses of the composite turbine blades were performed by applying computed maximal aerodynamic forces together with gravitational and inertial loads. By employing various input and output parameters different multi-objective optimization strategies were analyzed and compared and their applicability was demonstrated. Investigated input parameters included: wind turbine rotor diameter, blade length, chord and airfoil, composite shell thickness, laminate lay-up and ply orientations, while optimization goal functions and constraints comprised rated power, cut-in and optimal wind speed, blade mass, tip deflection, failure index and blade natural frequencies. The fidelity and accuracy of proposed methodologies can be increased by employing more complex numerical models which can easily be implemented into the code. |
|---|---|
| AbstractList | Extracting energy from wind has been an interesting and serious topic over the last few decades and a lot of work has been done on the subject. This paper discusses in detail possible approaches to optimization of a somewhat less known type of wind turbines, particularly suitable for small consumers. In order to perform full aerodynamic and structural shape optimization of a small-scale vertical-axis wind turbine, a Double-multiple streamtube model code, known to provide good results in stationary working regimes, was complemented by a finite element analysis and implemented into a multi-objective particle swarm algorithm. For the purpose of shortening the total time needed for aerodynamic computation, the performed numerical simulations were two-dimensional and experimentally measured static airfoil data were used. The used aerodynamic model was validated against the available experimental data of similar wind turbines. The subsequent structural analyses of the composite turbine blades were performed by applying computed maximal aerodynamic forces together with gravitational and inertial loads. By employing various input and output parameters different multi-objective optimization strategies were analyzed and compared and their applicability was demonstrated. Investigated input parameters included: wind turbine rotor diameter, blade length, chord and airfoil, composite shell thickness, laminate lay-up and ply orientations, while optimization goal functions and constraints comprised rated power, cut-in and optimal wind speed, blade mass, tip deflection, failure index and blade natural frequencies. The fidelity and accuracy of proposed methodologies can be increased by employing more complex numerical models which can easily be implemented into the code. |
| Author | Peković, Ognjen Ivanov, Toni Posteljnik, Zorana Stupar, Slobodan Svorcan, Jelena |
| Author_xml | – sequence: 1 givenname: Zorana surname: Posteljnik fullname: Posteljnik, Zorana organization: Faculty of Mechanical Engineering, University of Belgrade – sequence: 2 givenname: Slobodan surname: Stupar fullname: Stupar, Slobodan organization: Faculty of Mechanical Engineering, University of Belgrade – sequence: 3 givenname: Jelena surname: Svorcan fullname: Svorcan, Jelena email: jsvorcan@mas.bg.ac.rs organization: Faculty of Mechanical Engineering, University of Belgrade – sequence: 4 givenname: Ognjen surname: Peković fullname: Peković, Ognjen organization: Faculty of Mechanical Engineering, University of Belgrade – sequence: 5 givenname: Toni surname: Ivanov fullname: Ivanov, Toni organization: Faculty of Mechanical Engineering, University of Belgrade |
| BookMark | eNp9kEtLAzEQgINUsK3-AG8Bz9Ek-0j2KMUXVLwoiJeQzWZLyjapSbY-fr1ZVxQEvcwD5psZvhmYWGc1AMcEnxKM2VnAmBQcpYBIRitU7oEpKYcu53zyXbPHAzALYY0x5jivpuDptu-iQa5eaxXNTsNGB7Oy0G2j2Zh3GY2zMEQvo14ZHWDrPAwb2XUoKNlpuNM-mlQh-WoCfDG2gbH3tbE6HIL9VnZBH33lOXi4vLhfXKPl3dXN4nyJVMbLiGiRt7ioGo5p2yrZsooXdZnXNMeFopLxqpGYsZzqula5pIxmjMgKc0oUTX02Byfj3q13z70OUaxd7206KSgtacEZLso0RcYp5V0IXrdi681G-jdBsBgUilGhSEEMCsXAsF-MMvFTSRJiun9JOpIhXbEr7X9--hv6ACDgiBw |
| CitedBy_id | crossref_primary_10_1155_2021_6699797 crossref_primary_10_1007_s00158_022_03391_x crossref_primary_10_1007_s00158_020_02766_2 |
| Cites_doi | 10.1016/j.apenergy.2013.02.012 10.1016/j.rser.2006.10.023 10.1007/s11044-011-9271-x 10.1007/s00158-011-0722-z 10.1155/S1023621X95000169 10.1109/4235.996017 10.2172/6548367 10.2514/3.48025 10.1007/s00158-012-0851-z 10.1016/S0167-6105(00)00062-3 10.1002/we.530 10.2514/3.62621 10.1002/nme.1867 10.1109/MHS.1995.494215 10.1260/0309-524X.34.4.389 10.1016/j.renene.2012.07.025 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Berlin Heidelberg 2015 Structural and Multidisciplinary Optimization is a copyright of Springer, (2015). All Rights Reserved. |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2015 – notice: Structural and Multidisciplinary Optimization is a copyright of Springer, (2015). All Rights Reserved. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s00158-015-1329-6 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1615-1488 |
| EndPage | 290 |
| ExternalDocumentID | 10_1007_s00158_015_1329_6 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 199 1N0 2.D 203 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8R Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR _50 ~02 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c386t-254f059d802ffcaf7985b64b2405c2a789da07742ebbc4a272371a90821c24a23 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000372616800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1615-147X |
| IngestDate | Tue Nov 04 22:07:37 EST 2025 Sat Nov 29 02:50:07 EST 2025 Tue Nov 18 21:47:04 EST 2025 Fri Feb 21 02:32:52 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Constraint handling Multi-objective optimization Pareto frontier Double-multiple streamtube model Particle swarm method Vertical-axis wind turbine |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c386t-254f059d802ffcaf7985b64b2405c2a789da07742ebbc4a272371a90821c24a23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2262587056 |
| PQPubID | 2043658 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2262587056 crossref_primary_10_1007_s00158_015_1329_6 crossref_citationtrail_10_1007_s00158_015_1329_6 springer_journals_10_1007_s00158_015_1329_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-02-01 |
| PublicationDateYYYYMMDD | 2016-02-01 |
| PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Structural and multidisciplinary optimization |
| PublicationTitleAbbrev | Struct Multidisc Optim |
| PublicationYear | 2016 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | BottassoCLCampagnoloFCroceAMulti-disciplinary constrained optimization of wind turbinesMultibody Sys Dyn201227215310.1007/s11044-011-9271-x287474806013113 ParaschivoiuIWind turbine design: with emphasis on Darrieus concept2002MontrealPolytechnic International Press Templin RJ (1974) Aerodynamic performance theory for the NRC vertical-axis wind turbine. LTR-LA-160, National Research Council Canada, National Aeronautical Establishment, Ottawa ChowdhurySTongWMessacAZhangJA mixed-discrete particle swarm optimization algorithm with explicit diversity-preservationStruct Multidiscip Optim20134736738810.1007/s00158-012-0851-z30389041274.90505 Gormont RE (1973) A mathematical model of unsteady aerodynamics and radial flow for application to helicopter rotor. USAAMRDL TR 72–67 Strickland JH (1975) The Darrieus turbine: a performance prediction model using multiple streamtubes. SAND75-0431, Sandia National Laboratories, Albuquerque Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan, pp 39–43 Sheldahl RE, Klimas PC (1981) Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines. SAND80-2114, Sandia National Laboratories, Albuquerque AshuriTvan BusselGMierasSDevelopment and validation of a computational model for design analysis of a novel marine turbineWind Energy201316779010.1002/we.530 Raciti CastelliMDal MonteAQuaresiminMBeniniENumerical evaluation of aerodynamic and inertial contributions to Darrieus wind turbine blade deformationRenew Energy20135110111210.1016/j.renene.2012.07.025 Sheldahl RE, Klimas PC, Feltz LV (1980) Aerodynamic performance of a 5-metre-diameter Darrieus turbine with extruded aluminum NACA-0015 blades. SAND80-0179, Sandia National Laboratories, Albuquerque DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017 EdwardsJMDanaoLAHowellRJNovel experimental power curve determination and computational methods for the performance analysis of vertical axis wind turbinesJ Sol Energy Eng2012134031008111 BrahimiMTAlletAParaschivoiuIAerodynamic analysis models for vertical-axis wind turbinesInt J Rotating Mach199521152110.1155/S1023621X95000169 IslamMTingDSKFartajAAerodynamic models for Darrieus-type straight-bladed vertical axis wind turbinesRenew Sust Energ Rev20081241087110910.1016/j.rser.2006.10.023 WilkeDNKokSGroenwoldAAComparison of linear and classical velocity update rules in particle swarm optimizationInt J Numer Methods Eng20077096298410.1002/nme.186723167951194.65085 Akins RE (1989) Measurements of Surface Pressures on an Operating Vertical-Axis Wind Turbine. SAND89-7051, Sandia National Laboratories, Albuquerque KooimanSJTullisSWResponse of a vertical axis wind turbine to time varying wind conditions found within the urban environmentWind Eng20103438940110.1260/0309-524X.34.4.389 ForcierLCJoncasSDevelopment of a structural optimization strategy for the design of next generation large thermoplastic wind turbine bladesStruct Multidiscip Optim20124588990610.1007/s00158-011-0722-z1274.74269 FujisawaNShibuyaSObservations of dynamic stall on Darrieus wind turbine bladesJ Wind Eng Ind Aerodyn20018920121410.1016/S0167-6105(00)00062-3 ParaschivoiuIAerodynamic loads and performance of the Darrieus rotorJ Energy19816640641210.2514/3.62621 Danao LA (2012) The influence of unsteady wind on the performance and aerodynamics of vertical axis wind turbines. Dissertation, University of Sheffield JM Edwards (1329_CR9) 2012; 134 CL Bottasso (1329_CR3) 2012; 27 M Raciti Castelli (1329_CR17) 2013; 51 MT Brahimi (1329_CR4) 1995; 2 1329_CR19 1329_CR18 1329_CR6 LC Forcier (1329_CR10) 2012; 45 1329_CR20 SJ Kooiman (1329_CR14) 2010; 34 1329_CR8 S Chowdhury (1329_CR5) 2013; 47 K Deb (1329_CR7) 2002; 6 1329_CR12 1329_CR21 1329_CR1 T Ashuri (1329_CR2) 2013; 16 M Islam (1329_CR13) 2008; 12 I Paraschivoiu (1329_CR15) 1981; 6 N Fujisawa (1329_CR11) 2001; 89 DN Wilke (1329_CR22) 2007; 70 I Paraschivoiu (1329_CR16) 2002 |
| References_xml | – reference: Danao LA (2012) The influence of unsteady wind on the performance and aerodynamics of vertical axis wind turbines. Dissertation, University of Sheffield – reference: ParaschivoiuIWind turbine design: with emphasis on Darrieus concept2002MontrealPolytechnic International Press – reference: Raciti CastelliMDal MonteAQuaresiminMBeniniENumerical evaluation of aerodynamic and inertial contributions to Darrieus wind turbine blade deformationRenew Energy20135110111210.1016/j.renene.2012.07.025 – reference: AshuriTvan BusselGMierasSDevelopment and validation of a computational model for design analysis of a novel marine turbineWind Energy201316779010.1002/we.530 – reference: BottassoCLCampagnoloFCroceAMulti-disciplinary constrained optimization of wind turbinesMultibody Sys Dyn201227215310.1007/s11044-011-9271-x287474806013113 – reference: Sheldahl RE, Klimas PC, Feltz LV (1980) Aerodynamic performance of a 5-metre-diameter Darrieus turbine with extruded aluminum NACA-0015 blades. SAND80-0179, Sandia National Laboratories, Albuquerque – reference: FujisawaNShibuyaSObservations of dynamic stall on Darrieus wind turbine bladesJ Wind Eng Ind Aerodyn20018920121410.1016/S0167-6105(00)00062-3 – reference: ForcierLCJoncasSDevelopment of a structural optimization strategy for the design of next generation large thermoplastic wind turbine bladesStruct Multidiscip Optim20124588990610.1007/s00158-011-0722-z1274.74269 – reference: BrahimiMTAlletAParaschivoiuIAerodynamic analysis models for vertical-axis wind turbinesInt J Rotating Mach199521152110.1155/S1023621X95000169 – reference: Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan, pp 39–43 – reference: WilkeDNKokSGroenwoldAAComparison of linear and classical velocity update rules in particle swarm optimizationInt J Numer Methods Eng20077096298410.1002/nme.186723167951194.65085 – reference: KooimanSJTullisSWResponse of a vertical axis wind turbine to time varying wind conditions found within the urban environmentWind Eng20103438940110.1260/0309-524X.34.4.389 – reference: Templin RJ (1974) Aerodynamic performance theory for the NRC vertical-axis wind turbine. LTR-LA-160, National Research Council Canada, National Aeronautical Establishment, Ottawa – reference: IslamMTingDSKFartajAAerodynamic models for Darrieus-type straight-bladed vertical axis wind turbinesRenew Sust Energ Rev20081241087110910.1016/j.rser.2006.10.023 – reference: Strickland JH (1975) The Darrieus turbine: a performance prediction model using multiple streamtubes. SAND75-0431, Sandia National Laboratories, Albuquerque – reference: Sheldahl RE, Klimas PC (1981) Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines. SAND80-2114, Sandia National Laboratories, Albuquerque – reference: DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017 – reference: ChowdhurySTongWMessacAZhangJA mixed-discrete particle swarm optimization algorithm with explicit diversity-preservationStruct Multidiscip Optim20134736738810.1007/s00158-012-0851-z30389041274.90505 – reference: Gormont RE (1973) A mathematical model of unsteady aerodynamics and radial flow for application to helicopter rotor. USAAMRDL TR 72–67 – reference: EdwardsJMDanaoLAHowellRJNovel experimental power curve determination and computational methods for the performance analysis of vertical axis wind turbinesJ Sol Energy Eng2012134031008111 – reference: ParaschivoiuIAerodynamic loads and performance of the Darrieus rotorJ Energy19816640641210.2514/3.62621 – reference: Akins RE (1989) Measurements of Surface Pressures on an Operating Vertical-Axis Wind Turbine. SAND89-7051, Sandia National Laboratories, Albuquerque – ident: 1329_CR6 doi: 10.1016/j.apenergy.2013.02.012 – volume: 12 start-page: 1087 issue: 4 year: 2008 ident: 1329_CR13 publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2006.10.023 – volume-title: Wind turbine design: with emphasis on Darrieus concept year: 2002 ident: 1329_CR16 – volume: 27 start-page: 21 year: 2012 ident: 1329_CR3 publication-title: Multibody Sys Dyn doi: 10.1007/s11044-011-9271-x – volume: 45 start-page: 889 year: 2012 ident: 1329_CR10 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-011-0722-z – volume: 2 start-page: 15 issue: 1 year: 1995 ident: 1329_CR4 publication-title: Int J Rotating Mach doi: 10.1155/S1023621X95000169 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 1329_CR7 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – ident: 1329_CR18 doi: 10.2172/6548367 – ident: 1329_CR20 – ident: 1329_CR19 doi: 10.2514/3.48025 – ident: 1329_CR1 – volume: 134 start-page: 1 issue: 031008 year: 2012 ident: 1329_CR9 publication-title: J Sol Energy Eng – ident: 1329_CR21 – volume: 47 start-page: 367 year: 2013 ident: 1329_CR5 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-012-0851-z – volume: 89 start-page: 201 year: 2001 ident: 1329_CR11 publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/S0167-6105(00)00062-3 – volume: 16 start-page: 77 year: 2013 ident: 1329_CR2 publication-title: Wind Energy doi: 10.1002/we.530 – volume: 6 start-page: 406 issue: 6 year: 1981 ident: 1329_CR15 publication-title: J Energy doi: 10.2514/3.62621 – volume: 70 start-page: 962 year: 2007 ident: 1329_CR22 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1867 – ident: 1329_CR8 doi: 10.1109/MHS.1995.494215 – ident: 1329_CR12 – volume: 34 start-page: 389 year: 2010 ident: 1329_CR14 publication-title: Wind Eng doi: 10.1260/0309-524X.34.4.389 – volume: 51 start-page: 101 year: 2013 ident: 1329_CR17 publication-title: Renew Energy doi: 10.1016/j.renene.2012.07.025 |
| SSID | ssj0008049 |
| Score | 2.160614 |
| Snippet | Extracting energy from wind has been an interesting and serious topic over the last few decades and a lot of work has been done on the subject. This paper... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 277 |
| SubjectTerms | Aerodynamic forces Aerodynamics Algorithms Composite structures Computational Mathematics and Numerical Analysis Computer simulation Design optimization Engineering Engineering Design Finite element method Industrial Application Lay-up Mathematical models Multiple objective analysis Parameters Resonant frequencies Shape optimization Shells (structural forms) Theoretical and Applied Mechanics Turbine blades Vertical axis wind turbines Wind speed Wind turbines |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66etCDb3F1lRw8KcEmfaUnEVE8LYIKi5eSRwMr-3JbHz_fSZruquBevJSWtKH0S2e-ZCbfIHSacRZq8BREMmpIpEVChIHJihY0TIRW2nDhik2k3S7v9bJ7v-BW-rTKxiY6Q63Hyq6RXwBNYDEMrji5nLwSWzXKRld9CY1ltGJVEqhL3XuYWWJe019LagiN0l4T1QyciCiNbRoXtIQ2A-SnX5qTzV_xUed2bjf_-8JbaMMTTnxVj5BttFSMdtD6NxnCXfTsduGSsXyprR_WLq0Dj8GcDP0-TVxWjagEBp6Ly6EYDEgJCBfYlXSGMyI--yX-gFk-BkcmbUL9Hnq6vXm8viO-5gJRIU8qAvNFA4xL84AZowC2jMcyiSTAGSsmUp5pEQBlZIWUKhIsZWFKha2bThWD63AftUbjUXGAsFAqzqii3AQmYkKKyMYgjSkSlRpmZBsFzRfPlRckt3UxBvlMStmBlMMhtyDlSRudzR6Z1Goci27uNMDk_scs8zkqbXTeQDtv_rOzw8WdHaE1YFI-nbuDWtX0rThGq-q96pfTEzcqvwC34ekT priority: 102 providerName: ProQuest |
| Title | Multi-objective design optimization strategies for small-scale vertical-axis wind turbines |
| URI | https://link.springer.com/article/10.1007/s00158-015-1329-6 https://www.proquest.com/docview/2262587056 |
| Volume | 53 |
| WOSCitedRecordID | wos000372616800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database (subscription) customDbUrl: eissn: 1615-1488 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0008049 issn: 1615-147X databaseCode: M7S dateStart: 19970201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1615-1488 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0008049 issn: 1615-147X databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1615-1488 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008049 issn: 1615-147X databaseCode: RSV dateStart: 20000301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF609aAH32K1lj14UhaSzWtzVGnxVIpVKV7CPrJQ6UOa-Pj5zm4eVVFBLyFhN0vY2cx8w8x8g9BpzKinwFIQQV1NfMVDwjU4K4q7XsiVVJpx22wi6vfZaBQPyjrurMp2r0KSVlPXxW7GvJvEq4CY5ugkXEXNwJDNGBd9eF-rX1ZgXoNkiOtHoyqU-d0Sn43REmF-CYpaW9Pb-tdXbqPNElrii-Is7KCVdLaLNj4QDu6hB1tvS-bisdBzWNkEDjwHxTEtKzJxllf0ERgQLc6mfDIhGcgyxbZ5M9wR_jbO8Cv48xhMljCp8_vorte9vbomZXcFIj0W5gQ8Qw3YSjGHai1BQDELROgLEFwgKY9YrLgD4JCmQkif04h6kctNh3RXUnj2DlBjNp-lhwhzKYPYlS7TjvYpF9w30Uat01BGmmrRQk61zYksqcdNB4xJUpMm221L4JKYbUvCFjqrX3kqeDd-m9yuZJeUv2CWAK6kAWijAIbPK1kth39c7OhPs4_ROkCoMo-7jRr54jk9QWvyJR9niw5qXnb7g5uOySgdduw5fQdCC-D- |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS-RAFH5oO6Ae3EaxXeugF6WYpLJVDiKuKGojotDMJVNLClp6UdNuf8rf6Kss3Y4w3jzMJSRUUlRSX733Vd4GsBFz5mnUFFQy11Bfi5AKg5sVLVwvFFppw0VebCJqNHizGV-OwFsVC2PdKiuZmAtq3VP2H_kvpAksQHAF4e7dPbVVo6x1tSqhUcDiLH19xi1btnN6iPO7ydjx0fXBCS2rClDl8bBPcUdkkFNo7jBjFA4s5oEMfYkDDhQTEY-1cJAUsVRK5QsWMS9yha0M7iqG1x72OwpjvueHQQ3G9o8al1cD2c8Lwm1pFHX9qFnZUZ08bakbWMcxbPGsz8nfmnBIbz9ZZHNFdzz9v32iGZgqKTXZK9bALIyk3TmY_JBo8Sf8zuOMaU_eFvKd6NxxhfRQYHbKSFSS9au0GQSZPMk6ot2mGWI4JXnRajyj4qWVkedWVxNU1dKGDMzDzbe83ALUur1uughEKBXErnK5cYzPhBS-tbIak4YqMszIOjjVDCeqTLluK3-0k0Gy6BwUCR4SC4okrMPW4JG7It_IVzevVEBIStGTJUMU1GG7gtKw-Z-dLX3d2TqMn1xfnCfnp42zZZhA3lg6r69Arf_wmK7CD_XUb2UPa-WaIPDnuzH2DmlIRUM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB60iujBXaxWnYMnZWgy2SZHUYuilOJG8RJmyUClTUsTl5_vmyytigriJSTMZAjzJu99j7d8CB2GjDoKLAUR1NbEVdwnXIOzorjt-FxJpRnPySaCdpt1u2Gn5DlNq2z3KiRZ1DSYLk1J1hwp3ZwUvhlTb5KwPGKI0ok_i-ZccGRMTtfN7cNEFbMC_xpUQ2w36FZhze-W-GyYpmjzS4A0tzutlX9_8SpaLiEnPinOyBqaiZN1tPShEeEGeszrcMlQPBX6D6s8sQMPQaEMykpNnGZVWwkMSBenA97vkxRkHOOc1BnuCH_rpfgV_HwMpkyYlPpNdN86vzu9ICXrApEO8zMCHqMGzKWYRbWWILiQecJ3BQjUk5QHLFTcAtBIYyGky2lAncDmhjndlhSenS1US4ZJvI0wl9ILbWkzbWmXcsFdE4XUOvZloKkWdWRVWx7JsiW5YcboR5Nmyvm2RXCJzLZFfh0dTV4ZFf04fpvcqOQYlb9mGgHepB5oKQ-Gjyu5TYd_XGznT7MP0ELnrBVdX7avdtEioKwy1buBatn4Od5D8_Il66Xj_fzAvgPlZeo0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+design+optimization+strategies+for+small-scale+vertical-axis+wind+turbines&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Posteljnik%2C+Zorana&rft.au=Stupar%2C+Slobodan&rft.au=Svorcan%2C+Jelena&rft.au=Pekovi%C4%87%2C+Ognjen&rft.date=2016-02-01&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=53&rft.issue=2&rft.spage=277&rft.epage=290&rft_id=info:doi/10.1007%2Fs00158-015-1329-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00158_015_1329_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon |