Local forest structure variability increases resilience to wildfire in dry western U.S. coniferous forests

A ‘resilient’ forest endures disturbance and is likely to persist. Resilience to wildfire may arise from feedback between fire behaviour and forest structure in dry forest systems. Frequent fire creates fine‐scale variability in forest structure, which may then interrupt fuel continuity and prevent...

Full description

Saved in:
Bibliographic Details
Published in:Ecology letters Vol. 23; no. 3; pp. 483 - 494
Main Authors: Koontz, Michael J., North, Malcolm P., Werner, Chhaya M., Fick, Stephen E., Latimer, Andrew M., Swenson, Nathan
Format: Journal Article
Language:English
Published: England Blackwell Publishing Ltd 01.03.2020
Subjects:
ISSN:1461-023X, 1461-0248, 1461-0248
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A ‘resilient’ forest endures disturbance and is likely to persist. Resilience to wildfire may arise from feedback between fire behaviour and forest structure in dry forest systems. Frequent fire creates fine‐scale variability in forest structure, which may then interrupt fuel continuity and prevent future fires from killing overstorey trees. Testing the generality and scale of this phenomenon is challenging for vast, long‐lived forest ecosystems. We quantify forest structural variability and fire severity across >30 years and >1000 wildfires in California's Sierra Nevada. We find that greater variability in forest structure increases resilience by reducing rates of fire‐induced tree mortality and that the scale of this effect is local, manifesting at the smallest spatial extent of forest structure tested (90 × 90 m). Resilience of these forests is likely compromised by structural homogenisation from a century of fire suppression, but could be restored with management that increases forest structural variability. Structurally variable forests may be more likely to persist in the face of wildfire disturbance, but demonstrating this phenomenon at an ecosystem‐scale is challenging. We linked local forest structural heterogeneity to wildfire severity for over 1000 fires across a 34‐year period in the Sierra Nevada mountain range and found that greater heterogeneity strongly reduced the probability of complete tree mortality. The local‐scale effect of forest structure on fire effects feeds back to maintain landscape heterogeneity, promoting forest resilience on an ecosystem‐scale.
AbstractList A ‘resilient’ forest endures disturbance and is likely to persist. Resilience to wildfire may arise from feedback between fire behaviour and forest structure in dry forest systems. Frequent fire creates fine‐scale variability in forest structure, which may then interrupt fuel continuity and prevent future fires from killing overstorey trees. Testing the generality and scale of this phenomenon is challenging for vast, long‐lived forest ecosystems. We quantify forest structural variability and fire severity across >30 years and >1000 wildfires in California's Sierra Nevada. We find that greater variability in forest structure increases resilience by reducing rates of fire‐induced tree mortality and that the scale of this effect is local, manifesting at the smallest spatial extent of forest structure tested (90 × 90 m). Resilience of these forests is likely compromised by structural homogenisation from a century of fire suppression, but could be restored with management that increases forest structural variability.
A 'resilient' forest endures disturbance and is likely to persist. Resilience to wildfire may arise from feedback between fire behaviour and forest structure in dry forest systems. Frequent fire creates fine-scale variability in forest structure, which may then interrupt fuel continuity and prevent future fires from killing overstorey trees. Testing the generality and scale of this phenomenon is challenging for vast, long-lived forest ecosystems. We quantify forest structural variability and fire severity across >30 years and >1000 wildfires in California's Sierra Nevada. We find that greater variability in forest structure increases resilience by reducing rates of fire-induced tree mortality and that the scale of this effect is local, manifesting at the smallest spatial extent of forest structure tested (90 × 90 m). Resilience of these forests is likely compromised by structural homogenisation from a century of fire suppression, but could be restored with management that increases forest structural variability.A 'resilient' forest endures disturbance and is likely to persist. Resilience to wildfire may arise from feedback between fire behaviour and forest structure in dry forest systems. Frequent fire creates fine-scale variability in forest structure, which may then interrupt fuel continuity and prevent future fires from killing overstorey trees. Testing the generality and scale of this phenomenon is challenging for vast, long-lived forest ecosystems. We quantify forest structural variability and fire severity across >30 years and >1000 wildfires in California's Sierra Nevada. We find that greater variability in forest structure increases resilience by reducing rates of fire-induced tree mortality and that the scale of this effect is local, manifesting at the smallest spatial extent of forest structure tested (90 × 90 m). Resilience of these forests is likely compromised by structural homogenisation from a century of fire suppression, but could be restored with management that increases forest structural variability.
A ‘resilient’ forest endures disturbance and is likely to persist. Resilience to wildfire may arise from feedback between fire behaviour and forest structure in dry forest systems. Frequent fire creates fine‐scale variability in forest structure, which may then interrupt fuel continuity and prevent future fires from killing overstorey trees. Testing the generality and scale of this phenomenon is challenging for vast, long‐lived forest ecosystems. We quantify forest structural variability and fire severity across >30 years and >1000 wildfires in California's Sierra Nevada. We find that greater variability in forest structure increases resilience by reducing rates of fire‐induced tree mortality and that the scale of this effect is local, manifesting at the smallest spatial extent of forest structure tested (90 × 90 m). Resilience of these forests is likely compromised by structural homogenisation from a century of fire suppression, but could be restored with management that increases forest structural variability. Structurally variable forests may be more likely to persist in the face of wildfire disturbance, but demonstrating this phenomenon at an ecosystem‐scale is challenging. We linked local forest structural heterogeneity to wildfire severity for over 1000 fires across a 34‐year period in the Sierra Nevada mountain range and found that greater heterogeneity strongly reduced the probability of complete tree mortality. The local‐scale effect of forest structure on fire effects feeds back to maintain landscape heterogeneity, promoting forest resilience on an ecosystem‐scale.
A ‘resilient’ forest endures disturbance and is likely to persist. Resilience to wildfire may arise from feedback between fire behaviour and forest structure in dry forest systems. Frequent fire creates fine‐scale variability in forest structure, which may then interrupt fuel continuity and prevent future fires from killing overstorey trees. Testing the generality and scale of this phenomenon is challenging for vast, long‐lived forest ecosystems. We quantify forest structural variability and fire severity across >30 years and >1000 wildfires in California's Sierra Nevada. We find that greater variability in forest structure increases resilience by reducing rates of fire‐induced tree mortality and that the scale of this effect is local, manifesting at the smallest spatial extent of forest structure tested (90 × 90 m). Resilience of these forests is likely compromised by structural homogenisation from a century of fire suppression, but could be restored with management that increases forest structural variability.
Author Werner, Chhaya M.
North, Malcolm P.
Latimer, Andrew M.
Koontz, Michael J.
Swenson, Nathan
Fick, Stephen E.
Author_xml – sequence: 1
  givenname: Michael J.
  orcidid: 0000-0002-8276-210X
  surname: Koontz
  fullname: Koontz, Michael J.
  email: michael.koontz@colorado.edu
  organization: University of Colorado‐Boulder
– sequence: 2
  givenname: Malcolm P.
  surname: North
  fullname: North, Malcolm P.
  organization: USDA Forest Service
– sequence: 3
  givenname: Chhaya M.
  surname: Werner
  fullname: Werner, Chhaya M.
  organization: German Centre for Integrative Biodiversity Research
– sequence: 4
  givenname: Stephen E.
  orcidid: 0000-0002-3548-6966
  surname: Fick
  fullname: Fick, Stephen E.
  organization: University of Colorado
– sequence: 5
  givenname: Andrew M.
  orcidid: 0000-0001-8098-0448
  surname: Latimer
  fullname: Latimer, Andrew M.
  organization: University of California
– sequence: 6
  givenname: Nathan
  surname: Swenson
  fullname: Swenson, Nathan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31922344$$D View this record in MEDLINE/PubMed
BookMark eNqF0ctqGzEUBmBRUprrIi8QBN20Czu6zkjLEtwLGLpIAtkNGukIZMZSIs0k-O0jx04WgTbaSIjv_LqcY3QQUwSEzimZ0zouYYA55UK0n9ARFQ2dESbUwdua3x2i41JWhFCmW_oFHXKqGasFR2i1TNYM2KcMZcRlzJMdpwz40eRg-jCEcYNDtBlMgYIrqlsQLeAx4acwOB8qDhG7vMFPNQJyxLfz6zm2KQYPOU1lH15O0WdvhgJn-_kE3f5c3Fz9ni3__vpz9WM5s1w17czLRrrWg3WWeGiZE7TtnW577iShTe9Fr6zQkihvGya1oVQTTolyxCvrGD9B33a59zk9TPXkbh2KhWEwEep1OiYl1VQoLT-mnG-P0GpLv76jqzTlWB9SlaSqEYSRqi72aurX4Lr7HNYmb7rXD6_g-w7YnErJ4N8IJd22mV1tZvfSzGov31kbRjOGFMdswvC_itoa2Pw7ulssF7uKZxF3r6k
CitedBy_id crossref_primary_10_1007_s40823_022_00075_6
crossref_primary_10_1016_j_foreco_2024_122297
crossref_primary_10_1093_biosci_biaa134
crossref_primary_10_1111_rec_70154
crossref_primary_10_1016_j_foreco_2022_120270
crossref_primary_10_1016_j_rse_2024_114518
crossref_primary_10_1002_eap_2433
crossref_primary_10_1016_j_foreco_2021_119361
crossref_primary_10_1093_biosci_biaf023
crossref_primary_10_1007_s44391_025_00034_8
crossref_primary_10_1016_j_foreco_2020_118595
crossref_primary_10_1002_ecy_3968
crossref_primary_10_1007_s41651_024_00185_1
crossref_primary_10_1016_j_foreco_2022_120107
crossref_primary_10_1016_j_foreco_2020_118864
crossref_primary_10_1016_j_foreco_2021_119678
crossref_primary_10_1016_j_scitotenv_2023_164832
crossref_primary_10_3390_su17177907
crossref_primary_10_1016_j_foreco_2022_120620
crossref_primary_10_1016_j_foreco_2023_121478
crossref_primary_10_1016_j_agrformet_2025_110688
crossref_primary_10_3390_f11080834
crossref_primary_10_1186_s42408_025_00360_9
crossref_primary_10_3389_ffgc_2025_1498430
crossref_primary_10_1016_j_foreco_2025_122761
crossref_primary_10_1016_j_foreco_2024_122388
crossref_primary_10_1007_s11676_024_01806_7
crossref_primary_10_1093_forestry_cpac046
crossref_primary_10_1126_sciadv_adt2041
crossref_primary_10_1093_biosci_biaa061
crossref_primary_10_1093_jofore_fvab026
crossref_primary_10_1016_j_tree_2024_03_003
crossref_primary_10_1111_gcb_16939
crossref_primary_10_1139_cjfr_2020_0480
crossref_primary_10_1016_j_foreco_2020_118220
crossref_primary_10_1002_ecs2_4184
crossref_primary_10_1111_acv_12976
crossref_primary_10_1002_ecy_4188
crossref_primary_10_1111_2041_210X_14416
crossref_primary_10_1111_jvs_13207
crossref_primary_10_1002_ecs2_4061
crossref_primary_10_1016_j_biocon_2025_111241
crossref_primary_10_1111_acv_12697
crossref_primary_10_1894_0038_4909_69_2_3
crossref_primary_10_1111_1365_2435_14263
crossref_primary_10_1016_j_foreco_2022_120572
crossref_primary_10_1002_ecs2_3177
crossref_primary_10_1371_journal_pone_0311940
crossref_primary_10_1002_eap_2383
crossref_primary_10_1111_gcb_70400
crossref_primary_10_1002_eap_3075
crossref_primary_10_1038_s41586_021_04325_1
crossref_primary_10_1007_s10980_024_01901_4
crossref_primary_10_1002_ece3_7084
crossref_primary_10_1111_csp2_497
crossref_primary_10_1186_s42408_025_00389_w
crossref_primary_10_1007_s10980_023_01737_4
crossref_primary_10_1093_forestry_cpaf025
crossref_primary_10_1111_1365_2745_13764
crossref_primary_10_1186_s42408_022_00157_0
crossref_primary_10_3390_geosciences14050112
crossref_primary_10_1016_j_foreco_2021_119611
crossref_primary_10_1016_j_ssci_2022_105797
crossref_primary_10_1111_rec_13863
crossref_primary_10_1016_j_foreco_2021_120004
crossref_primary_10_1016_j_jenvman_2025_126974
crossref_primary_10_1002_ecs2_4655
crossref_primary_10_1016_j_agrformet_2024_110105
crossref_primary_10_1016_j_foreco_2023_121531
crossref_primary_10_1016_j_foreco_2025_123010
crossref_primary_10_1186_s42408_024_00324_5
crossref_primary_10_1016_j_foreco_2025_122540
crossref_primary_10_1186_s42408_025_00377_0
crossref_primary_10_1002_eap_2682
crossref_primary_10_1111_brv_13041
crossref_primary_10_3389_ffgc_2024_1402124
crossref_primary_10_1002_eap_2400
crossref_primary_10_1016_j_rse_2025_114802
crossref_primary_10_1016_j_foreco_2024_122404
crossref_primary_10_1088_1748_9326_ac939b
crossref_primary_10_1016_j_foreco_2020_117987
crossref_primary_10_1017_aae_2022_41
crossref_primary_10_1002_fee_2499
crossref_primary_10_1111_1365_2745_13999
crossref_primary_10_7717_peerj_10158
crossref_primary_10_1111_aec_13514
crossref_primary_10_1111_1365_2745_13830
crossref_primary_10_1016_j_foreco_2021_118973
crossref_primary_10_1007_s10021_020_00544_1
crossref_primary_10_1016_j_foreco_2021_118979
crossref_primary_10_1007_s10980_023_01710_1
crossref_primary_10_1139_cjfr_2020_0337
crossref_primary_10_3389_fenvs_2022_949442
crossref_primary_10_1016_j_foreco_2023_121102
crossref_primary_10_1002_ecy_3270
crossref_primary_10_1016_j_foreco_2024_122010
Cites_doi 10.2307/3545542
10.3390/rs6031827
10.2737/PSW-GTR-220
10.1016/j.foreco.2017.08.051
10.1016/j.foreco.2016.09.010
10.1111/geb.12365
10.1007/s10980-012-9741-4
10.1007/s10980-015-0268-3
10.1016/j.rse.2017.12.038
10.1890/08-1210.1
10.5751/ES-02380-130210
10.1890/08-2324.1
10.1016/j.foreco.2011.11.038
10.1109/TSMC.1973.4309314
10.1186/s42408-019-0032-1
10.1080/00031305.2018.1549100
10.1016/j.foreco.2015.09.001
10.1111/2041-210X.13177
10.1016/j.foreco.2014.06.005
10.4996/fireecology.0502086
10.1016/j.foreco.2019.01.010
10.1016/j.foreco.2012.02.013
10.1093/biosci/biz030
10.1016/j.rse.2008.11.009
10.1126/science.aac6759
10.1126/science.aaa9933
10.1525/california/9780520246058.001.0001
10.1111/j.1654-1103.2002.tb02087.x
10.1073/pnas.1607171113
10.1007/978-94-007-0301-8_2
10.1073/pnas.1815107116
10.1146/annurev.ecolsys.35.021103.105711
10.3389/fevo.2019.00239
10.4996/fireecology.0301003
10.1016/j.rse.2016.04.008
10.1071/WF13066
10.1111/1365-2745.12337
10.1890/13-0343.1
10.1073/pnas.1617464114
10.1139/x77-004
10.2737/RMRS-GTR-120
10.1038/ncomms1731
10.1007/s10980-018-0665-5
10.1890/130017
10.1088/1748-9326/aab791
10.3390/f9010045
10.1073/pnas.0500008102
10.1890/07-1755.1
10.1111/gcb.12129
10.18637/jss.v080.i01
10.1146/annurev.es.04.110173.000245
10.1890/15-0225
10.1073/pnas.0508985102
10.4996/fireecology.1301058
10.1111/1365-2745.12575
10.1111/ele.12717
10.1023/B:CLIM.0000024667.89579.ed
10.2737/PSW-GTR-256
10.1109/LGRS.2005.857030
10.2737/RMRS-RP-29
10.1111/1365-2745.12342
10.1890/ES11-00271.1
10.1029/2005RG000183
10.1016/j.rse.2006.12.006
10.3390/land6020043
10.1111/j.1600-0587.2012.07364.x
10.1111/1365-2664.12511
10.1007/s10980-013-9923-8
10.1890/13-1077.1
10.1890/13-0677.1
10.1111/j.1461-0248.2008.01186.x
10.1002/ecy.2571
10.1016/j.foreco.2009.08.017
10.1073/pnas.1417043112
10.1029/2012JG002128
10.1111/ele.12889
10.2307/1939341
10.1371/journal.pone.0062111
10.1890/0012-9615(1997)067[0411:EOFSAP]2.0.CO;2
10.1071/WF07049
10.1007/BF00135079
10.1186/s42408-019-0035-y
10.1002/ecs2.1632
10.1002/ecs2.1609
10.1007/s11222-016-9696-4
10.1111/j.1654-1103.2010.01220.x
10.3390/rs4020456
10.4996/fireecology.1201013
10.1038/nclimate1693
10.1139/cjfr-2016-0185
10.1146/annurev.ecolsys.31.1.343
10.1073/pnas.0403822101
10.1111/gcb.13160
10.1109/TGRS.1986.289543
10.1016/j.rse.2017.06.031
10.4996/fireecology.0803041
10.1002/joc.3413
10.1002/ecs2.2182
ContentType Journal Article
Copyright 2020 John Wiley & Sons Ltd/CNRS
2020 John Wiley & Sons Ltd/CNRS.
Copyright © 2020 John Wiley & Sons Ltd/CNRS
Copyright_xml – notice: 2020 John Wiley & Sons Ltd/CNRS
– notice: 2020 John Wiley & Sons Ltd/CNRS.
– notice: Copyright © 2020 John Wiley & Sons Ltd/CNRS
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7X8
7S9
L.6
DOI 10.1111/ele.13447
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Ecology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Entomology Abstracts
MEDLINE - Academic

AGRICOLA
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1461-0248
EndPage 494
ExternalDocumentID 31922344
10_1111_ele_13447
ELE13447
Genre letter
Letter
Correspondence
GeographicLocations California
Western states
GeographicLocations_xml – name: California
– name: Western states
GrantInformation_xml – fundername: Cooperative Institute for Research in Environmental Sciences
– fundername: NSF Graduate Research Fellowship
  funderid: DGE 1321845 Amend. 3
– fundername: CU‐Boulder's Grand Challenge Initiative
– fundername: NSF Graduate Research Fellowship
  grantid: DGE 1321845 Amend. 3
– fundername: CU-Boulder's Grand Challenge Initiative
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
N~3
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7X8
7S9
L.6
ID FETCH-LOGICAL-c3867-f565d7fecdc0fe72d417bd97b3d5016bf4b8c49508fc6259a11903108d0f8cd23
IEDL.DBID DRFUL
ISICitedReferencesCount 100
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506464100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1461-023X
1461-0248
IngestDate Fri Jul 11 18:27:28 EDT 2025
Fri Jul 11 07:25:51 EDT 2025
Fri Jul 25 19:30:29 EDT 2025
Wed Feb 19 02:31:46 EST 2025
Sat Nov 29 03:47:30 EST 2025
Tue Nov 18 21:08:38 EST 2025
Wed Jan 22 16:39:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords forest structure
severity
disturbance
forest
wildfire
Sierra Nevada
resilience
texture analysis
Language English
License 2020 John Wiley & Sons Ltd/CNRS.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3867-f565d7fecdc0fe72d417bd97b3d5016bf4b8c49508fc6259a11903108d0f8cd23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Correspondence-1
ORCID 0000-0002-8276-210X
0000-0002-3548-6966
0000-0001-8098-0448
PMID 31922344
PQID 2351864020
PQPubID 32390
PageCount 12
ParticipantIDs proquest_miscellaneous_2551914895
proquest_miscellaneous_2336259985
proquest_journals_2351864020
pubmed_primary_31922344
crossref_primary_10_1111_ele_13447
crossref_citationtrail_10_1111_ele_13447
wiley_primary_10_1111_ele_13447_ELE13447
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
2020-Mar
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Paris
PublicationTitle Ecology letters
PublicationTitleAlternate Ecol Lett
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2017; 80
2013; 3
1990; 59
2018; 206
2019; 10
2002; 13
2019; 15
2004; 3
2016; 31
2014; 24
1973
2009; 113
2013; 8
2007; 109
2016; 381
2010; 21
2018; 9
2010; 20
2005; 102
2014; 15
2019; 436
2007; 3
2018; 33
2009; 19
2017; 202
2014; 12
2016; 46
2009; 18
2019; 7
1996; 17
2011; 2
2012; 35
2018; 21
2019; 100
2016; 12
2016; 7
2009; 79
2015; 358
1986; GE‐24
2015; 112
1973; SMC‐3
2016; 26
2012; 117
2016; 22
2018; 13
2017; 6
2004; 64
2013; 28
2013; 23
1995; 76
2016; 104
2015; 349
2017; 114
2016; 185
2013; 19
2014; 328
2017; 406
2001
2019; 69
2016; 113
2019; 116
2015b; 103
2014; 6
2004; 101
2017; 20
2019; 73
2012; 267
2011
2018b
2018a
2017; 27
1997; 67
2009
2016; 53
2006
2008; 13
2006; 3
2004
2008; 11
2009; 258
2015; 24
1994; 9
2012; 274
2012; 3
2013; 33
2017; 13
2000; 31
2019
2018
2017
2015a; 103
2009; 5
2013
2012; 4
2007; 45
1977; 7
2012; 8
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_107_1
Walker B. (e_1_2_9_106_1) 2004
e_1_2_9_14_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_111_1
USGS (e_1_2_9_100_1) 2018
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
Sikkink P.G. (e_1_2_9_85_1) 2013
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
USGS (e_1_2_9_101_1) 2018
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_105_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_81_1
R Core Team (e_1_2_9_72_1) 2018
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
Agee J.K. (e_1_2_9_4_1) 1996; 17
e_1_2_9_70_1
e_1_2_9_104_1
McWethy D.B. (e_1_2_9_58_1) 2019
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
Hoffman M.D. (e_1_2_9_37_1) 2014; 15
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 103
  start-page: 5
  year: 2015a
  end-page: 15
  article-title: Forest resilience and tipping points at different spatio‐temporal scales: approaches and challenges
  publication-title: J. Ecol.
– year: 2018a
– volume: 9
  start-page: 59
  year: 1994
  end-page: 77
  article-title: Landscape dynamics in crown fire ecosystems
  publication-title: Landscape Ecol
– volume: 112
  start-page: 2378
  year: 2015
  end-page: 2383
  article-title: Warning signals for eruptive events in spreading fires
  publication-title: Proc. Natl Acad. Sci.
– volume: 12
  start-page: 5
  year: 2014
  end-page: 14
  article-title: Macrosystems ecology: Understanding ecological patterns and processes at continental scales
  publication-title: Front. Ecol. Environ.
– start-page: 1
  year: 2019
  end-page: 8
  article-title: Rethinking resilience to wildfire
  publication-title: Nat Sustain
– volume: 23
  start-page: 1735
  year: 2013
  end-page: 1742
  article-title: Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems
  publication-title: Ecol. Appl.
– volume: 113
  start-page: 645
  year: 2009
  end-page: 656
  article-title: Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA
  publication-title: Remote Sens. Environ.
– volume: 114
  start-page: 4582
  year: 2017
  end-page: 4590
  article-title: Adapt to more wildfire in western North American forests as climate changes
  publication-title: Proc. Natl Acad. Sci.
– volume: 206
  start-page: 287
  year: 2018
  end-page: 299
  article-title: A comparison and validation of satellite‐derived fire severity mapping techniques in fire prone north Australian savannas: Extreme fires and tree stem mortality
  publication-title: Remote Sens. Environ.
– volume: 102
  start-page: 2826
  year: 2005
  end-page: 2831
  article-title: Ecosystem recovery after climatic extremes enhanced by genotypic diversity
  publication-title: Proc. Natl Acad. Sci.
– volume: 31
  start-page: 619
  year: 2016
  end-page: 636
  article-title: Fire legacies impact conifer regeneration across environmental gradients in the U.S
  publication-title: Northern Rockies. Landscape Ecol
– start-page: 27
  year: 2011
  end-page: 49
– volume: 12
  start-page: 13
  year: 2016
  end-page: 25
  article-title: Does prescribed fire promote resistance to drought in low elevation forests of the Sierra Nevada, California, USA?
  publication-title: Fire Ecology
– volume: 19
  start-page: 305
  year: 2009
  end-page: 320
  article-title: Fire treatment effects on vegetation structure, fuels, and potential fire severity in western U.S
  publication-title: Forests. Ecological Applications
– volume: 8
  year: 2013
  article-title: Scientific foundations for an IUCN red list of ecosystems
  publication-title: PLoS ONE
– volume: 436
  start-page: 45
  year: 2019
  end-page: 55
  article-title: Strategically placed landscape fuel treatments decrease fire severity and promote recovery in the northern Sierra Nevada
  publication-title: For. Ecol. Manage.
– volume: 10
  start-page: 767
  year: 2019
  end-page: 778
  article-title: Incorporating fine‐scale environmental heterogeneity into broad‐extent models
  publication-title: Methods Ecol. Evol.
– volume: 24
  start-page: 1037
  year: 2014
  end-page: 1056
  article-title: Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA
  publication-title: Ecol. Appl.
– volume: 67
  start-page: 411
  year: 1997
  article-title: Effects of fire size and pattern on early succession in Yellowstone National Park
  publication-title: Ecol. Monogr.
– volume: 328
  start-page: 326
  year: 2014
  end-page: 334
  article-title: Severity of an uncharacteristically large wildfire, the Rim Fire, in forests with relatively restored frequent fire regimes
  publication-title: For. Ecol. Manage.
– volume: 381
  start-page: 74
  year: 2016
  end-page: 83
  article-title: Variability in vegetation and surface fuels across mixed‐conifer‐dominated landscapes with over 40 years of natural fire
  publication-title: For. Ecol. Manage.
– volume: 76
  start-page: 747
  year: 1995
  end-page: 762
  article-title: The relative importance of fuels and weather on fire behavior in subalpine forests
  publication-title: Ecology
– start-page: 9
  year: 2004
  article-title: Resilience, adaptability, and transformability in social‐ecological systems
  publication-title: Ecol. Soc.
– volume: 17
  start-page: 52
  year: 1996
  end-page: 68
  article-title: The influence of forest structure on fire behavior
  publication-title: Forest Vegetation Management Conference
– volume: 9
  year: 2018
  article-title: Fire regimes approaching historic norms reduce wildfire‐facilitated conversion from forest to non‐forest
  publication-title: Ecosphere
– volume: 21
  start-page: 1099
  year: 2010
  end-page: 1109
  article-title: In situ survival of forest bryophytes in small‐scale refugia after an intense forest fire
  publication-title: J. Veg. Sci.
– volume: 267
  start-page: 74
  year: 2012
  end-page: 92
  article-title: Tree spatial patterns in fire‐frequent forests of western North America, including mechanisms of pattern formation and implications for designing fuel reduction and restoration treatments
  publication-title: For. Ecol. Manage.
– year: 2019
– volume: 26
  start-page: 686
  year: 2016
  end-page: 699
  article-title: Post‐fire vegetation and fuel development influences fire severity patterns in reburns
  publication-title: Ecol. Appl.
– volume: 79
  start-page: 557
  year: 2009
  end-page: 574
  article-title: How does spatial heterogeneity influence resilience to climatic changes? Ecological dynamics in southeast Madagascar
  publication-title: Ecol. Monogr.
– volume: 11
  start-page: 717
  year: 2008
  end-page: 726
  article-title: Coexistence through spatio‐temporal heterogeneity and species sorting in grassland plant communities
  publication-title: Ecol. Lett.
– volume: 73
  start-page: 307
  year: 2019
  end-page: 309
  article-title: R‐squared for Bayesian regression models
  publication-title: The American Statistician
– volume: 19
  start-page: 1470
  year: 2013
  end-page: 1481
  article-title: Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe
  publication-title: Glob. Change Biol.
– volume: 53
  start-page: 120
  year: 2016
  end-page: 129
  article-title: Searching for resilience: Addressing the impacts of changing disturbance regimes on forest ecosystem services
  publication-title: J. Appl. Ecol.
– volume: 349
  start-page: 814
  year: 2015
  end-page: 818
  article-title: Forest health and global change
  publication-title: Science
– volume: 15
  start-page: 1
  year: 2019
  end-page: 17
  article-title: Tree regeneration following wildfires in the western US: a review
  publication-title: Fire Ecology
– volume: 7
  start-page: 23
  year: 1977
  end-page: 34
  article-title: Conditions for the start and spread of crown fire
  publication-title: Can. J. For. Res.
– year: 1973
– start-page: 1
  year: 1973
  end-page: 23
  article-title: Resilience and stability of ecological systems
  publication-title: Annu. Rev. Ecol. Syst.
– volume: 20
  start-page: 362
  year: 2010
  end-page: 380
  article-title: Fire regimes, forest change, and self‐organization in an old‐growth mixed‐conifer forest, Yosemite National Park, USA
  publication-title: Ecol. Appl.
– volume: 69
  start-page: 379
  year: 2019
  end-page: 388
  article-title: Integrating subjective and objective dimensions of resilience in fire‐prone landscapes
  publication-title: Bioscience
– volume: 80
  start-page: 1
  year: 2017
  end-page: 28
  article-title: : An package for bayesian multilevel models using
  publication-title: J. Stat. Softw.
– volume: 202
  start-page: 18
  year: 2017
  end-page: 27
  article-title: Google earth engine: Planetary‐scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 43
  year: 2017
  article-title: Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior
  publication-title: Land
– volume: 20
  start-page: 147
  year: 2017
  end-page: 157
  article-title: Historical foundations and future directions in macrosystems ecology
  publication-title: Ecol. Lett.
– volume: SMC‐3
  start-page: 610
  year: 1973
  end-page: 621
  article-title: Textural features for image classification
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 64
  start-page: 169
  year: 2004
  end-page: 191
  article-title: The impact of climate change on wildfire severity: A regional forecast for Northern California
  publication-title: Clim. Change.
– volume: 185
  start-page: 46
  year: 2016
  end-page: 56
  article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product
  publication-title: Remote Sens. Environ.
– volume: 5
  start-page: 86
  year: 2009
  end-page: 103
  article-title: Changes in fire severity across gradients of climate, fire size, and topography: a landscape ecological perspective
  publication-title: Fire Ecol.
– volume: 117
  start-page: 1
  year: 2012
  end-page: 23
  article-title: Global burned area and biomass burning emissions from small fires
  publication-title: J. Geophys. Res. Biogeosciences
– volume: 274
  start-page: 17
  year: 2012
  end-page: 28
  article-title: Fuel treatment effectiveness in California yellow pine and mixed conifer forests
  publication-title: For. Ecol. Manage.
– volume: 28
  start-page: 1801
  year: 2013
  end-page: 1813
  article-title: Early forest dynamics in stand‐replacing fire patches in the northern Sierra Nevada, California, USA
  publication-title: Landscape Ecol.
– year: 2013
– year: 2009
– volume: 45
  start-page: 21
  year: 2007
  article-title: The shuttle radar topography mission
  publication-title: Rev. Geophys.
– volume: GE‐24
  start-page: 139
  year: 1986
  end-page: 149
  article-title: Coniferous forest classification and inventory using Landsat and digital terrain data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 13
  start-page: 603
  year: 2002
  end-page: 606
  article-title: Equations for potential annual direct incident radiation and heat load
  publication-title: J. Veg. Sci.
– volume: 349
  start-page: 823
  year: 2015
  end-page: 826
  article-title: Temperate forest health in an era of emerging megadisturbance
  publication-title: Science
– year: 2001
– volume: 7
  year: 2016
  article-title: Topographic and fire weather controls of fire refugia in forested ecosystems of northwestern North America
  publication-title: Ecosphere
– volume: 33
  start-page: 1159
  year: 2018
  end-page: 1176
  article-title: The changing landscape of wildfire: Burn pattern trends and implications for California's yellow pine and mixed conifer forests
  publication-title: Landscape Ecol.
– volume: 258
  start-page: 2399
  year: 2009
  end-page: 2406
  article-title: A predictive model of burn severity based on 20‐year satellite‐inferred burn severity data in a large southwestern US wilderness area
  publication-title: For. Ecol. Manage.
– volume: 7
  start-page: 239
  year: 2019
  article-title: Climate, environment, and disturbance history govern resilience of Western North American Forests
  publication-title: Front. Ecol. Evol.
– year: 2018
– volume: 21
  start-page: 243
  year: 2018
  end-page: 252
  article-title: Evidence for declining forest resilience to wildfires under climate change
  publication-title: Ecol. Lett.
– volume: 3
  start-page: 68
  year: 2006
  end-page: 72
  article-title: A Landsat surface reflectance dataset for North America, 19902000
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 406
  start-page: 28
  year: 2017
  end-page: 36
  article-title: Changing spatial patterns of stand‐replacing fire in California conifer forests
  publication-title: For. Ecol. Manage.
– volume: 27
  start-page: 1413
  year: 2017
  end-page: 1432
  article-title: Practical Bayesian model evaluation using leave‐one‐out cross‐validation and WAIC
  publication-title: Statistics and Computing
– volume: 18
  start-page: 116
  year: 2009
  article-title: Fire intensity, fire severity and burn severity: A brief review and suggested usage
  publication-title: Int. J. Wildl. Fire
– volume: 13
  start-page: 58
  year: 2017
  end-page: 90
  article-title: Corroborating evidence of a pre‐Euro‐American low‐ to moderate‐severity fire regime in yellow pineMixed conifer forests of the Sierra Nevada, California, USA
  publication-title: Fire Ecology
– year: 2018b
– volume: 31
  start-page: 343
  year: 2000
  end-page: 366
  article-title: Mechanisms of maintenance of species diversity
  publication-title: Annu. Rev. Ecol. Syst.
– volume: 59
  start-page: 253
  year: 1990
  article-title: Multiple scales of patchiness and patch structure: A hierarchical framework for the study of heterogeneity
  publication-title: Oikos
– volume: 358
  start-page: 62
  year: 2015
  end-page: 79
  article-title: Mixed severity fire effects within the Rim fire: Relative importance of local climate, fire weather, topography, and forest structure
  publication-title: For. Ecol. Manage.
– volume: 15
  start-page: 31
  year: 2014
  article-title: The No‐U‐Turn Sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo
  publication-title: Journal of Machine Learning Research
– volume: 3
  start-page: 726
  year: 2012
  article-title: Power laws reveal phase transitions in landscape controls of fire regimes
  publication-title: Nat. Commun.
– volume: 2
  start-page: 1
  year: 2011
  end-page: 33
  article-title: Both topography and climate affected forest and woodland burn severity in two regions of the western U.S., 1984 to 2006
  publication-title: Ecosphere
– volume: 3
  start-page: 557
  year: 2004
  end-page: 581
  article-title: Regime shifts, resilience, and biodiversity in ecosystem management
  publication-title: Annu. Rev. Ecol. Evol. Syst.
– year: 2004
– volume: 33
  start-page: 121
  year: 2013
  end-page: 131
  article-title: Development of gridded surface meteorological data for ecological applications and modelling
  publication-title: Int. J. Climatol.
– volume: 46
  start-page: 1375
  year: 2016
  end-page: 1385
  article-title: Prior wildfires influence burn severity of subsequent large fires
  publication-title: Can. J. For. Res.
– volume: 109
  start-page: 66
  year: 2007
  end-page: 80
  article-title: Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR)
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 41
  year: 2012
  end-page: 57
  article-title: Trends in wildfire severity: 1984 to 2010 in the Sierra Nevada, Modoc Plateau, and Southern Cascades, California, U.S.A
  publication-title: Fire Ecol.
– volume: 3
  start-page: 3
  year: 2007
  end-page: 21
  article-title: A project for monitoring trends in burn severity
  publication-title: Fire Ecology
– volume: 113
  start-page: 11770
  year: 2016
  end-page: 11775
  article-title: Impact of anthropogenic climate change on wildfire across western U.S. Forests
  publication-title: Proc. Natl Acad. Sci.
– volume: 9
  start-page: 45
  year: 2018
  article-title: Mixed‐severity fire fosters heterogeneous spatial patterns of conifer regeneration in a dry conifer forest
  publication-title: Forests
– volume: 24
  start-page: 571
  year: 2014
  end-page: 590
  article-title: Fuel treatments and landform modify landscape patterns of burn severity in an extreme fire event
  publication-title: Ecol. Appl.
– volume: 13
  start-page: 1
  year: 2008
  end-page: 12
  article-title: Wildfire and spatial patterns in forests in Northwestern Mexico: The United States wishes it had similar fire problems
  publication-title: Ecol. Soc.
– volume: 28
  start-page: 1081
  year: 2013
  end-page: 1097
  article-title: Consequences of spatial heterogeneity for ecosystem services in changing forest landscapes: Priorities for future research
  publication-title: Landscape Ecol.
– volume: 104
  start-page: 1063
  year: 2016
  end-page: 1075
  article-title: Functional diversity enhances silver fir growth resilience to an extreme drought
  publication-title: J. Ecol.
– volume: 4
  start-page: 456
  year: 2012
  end-page: 483
  article-title: How robust are burn severity indices when applied in a new region? Evaluation of alternate field‐based and remote‐sensing methods
  publication-title: Remote Sens.
– volume: 13
  start-page: 044037
  year: 2018
  article-title: High‐severity fire: Evaluating its key drivers and mapping its probability across western U.S
  publication-title: Forests. Environmental Research Letters
– volume: 102
  start-page: 17912
  year: 2005
  end-page: 17917
  article-title: Wildfires, complexity, and highly optimized tolerance
  publication-title: Proc. Natl Acad. Sci.
– volume: 35
  start-page: 673
  year: 2012
  end-page: 683
  article-title: What's on the horizon for macroecology?
  publication-title: Ecography
– volume: 15
  start-page: 16
  year: 2019
  article-title: Fuel dynamics after reintroduced fire in an old‐growth Sierra Nevada mixed‐conifer forest
  publication-title: Fire Ecology
– volume: 24
  start-page: 1329
  year: 2015
  end-page: 1339
  article-title: A global, remote sensing‐based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling: Global habitat heterogeneity
  publication-title: Glob. Ecol. Biogeogr.
– volume: 22
  start-page: 2329
  year: 2016
  end-page: 2352
  article-title: The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States
  publication-title: Glob. Change Biol.
– volume: 24
  start-page: 484
  year: 2015
  article-title: Relating fuel loads to overstorey structure and composition in a fire‐excluded Sierra Nevada mixed conifer forest
  publication-title: Int. J. Wildl. Fire
– volume: 101
  start-page: 15130
  year: 2004
  end-page: 15135
  article-title: Cross‐scale interactions, nonlinearities, and forecasting catastrophic events
  publication-title: Proc. Natl Acad. Sci.
– volume: 103
  start-page: 1
  year: 2015b
  end-page: 4
  article-title: Forest resilience, tipping points and global change processes
  publication-title: J. Ecol.
– volume: 6
  start-page: 1827
  year: 2014
  end-page: 1844
  article-title: A new metric for quantifying burn severity: The Relativized Burn Ratio
  publication-title: Remote Sens.
– year: 2006
– volume: 3
  start-page: 292
  year: 2013
  end-page: 297
  article-title: Temperature as a potent driver of regional forest drought stress and tree mortality
  publication-title: Nat. Clim. Chang.
– year: 2017
– volume: 100
  year: 2019
  article-title: Post‐fire forest regeneration shows limited climate tracking and potential for drought‐induced type conversion
  publication-title: Ecology
– volume: 116
  start-page: 6193
  issue: 13
  year: 2019
  end-page: 6198
  article-title: Wildfires and climate change push low‐elevation forests across a critical climate threshold for tree regeneration
  publication-title: Proc. Natl Acad Sci.
– volume: 7
  year: 2016
  article-title: Predicting conifer establishment post wildfire in mixed conifer forests of the North American Mediterranean‐climate zone
  publication-title: Ecosphere
– ident: e_1_2_9_46_1
  doi: 10.2307/3545542
– ident: e_1_2_9_66_1
  doi: 10.3390/rs6031827
– ident: e_1_2_9_65_1
  doi: 10.2737/PSW-GTR-220
– ident: e_1_2_9_89_1
  doi: 10.1016/j.foreco.2017.08.051
– ident: e_1_2_9_14_1
  doi: 10.1016/j.foreco.2016.09.010
– ident: e_1_2_9_78_1
– ident: e_1_2_9_95_1
  doi: 10.1111/geb.12365
– ident: e_1_2_9_99_1
  doi: 10.1007/s10980-012-9741-4
– ident: e_1_2_9_44_1
  doi: 10.1007/s10980-015-0268-3
– ident: e_1_2_9_19_1
  doi: 10.1016/j.rse.2017.12.038
– volume: 15
  start-page: 31
  year: 2014
  ident: e_1_2_9_37_1
  article-title: The No‐U‐Turn Sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_9_104_1
  doi: 10.1890/08-1210.1
– ident: e_1_2_9_87_1
  doi: 10.5751/ES-02380-130210
– ident: e_1_2_9_82_1
  doi: 10.1890/08-2324.1
– ident: e_1_2_9_48_1
  doi: 10.1016/j.foreco.2011.11.038
– start-page: 9
  year: 2004
  ident: e_1_2_9_106_1
  article-title: Resilience, adaptability, and transformability in social‐ecological systems
  publication-title: Ecol. Soc.
– volume-title: Landsat 4-7 Surface Reflectance (LEDAPS) product guide version 1.0
  year: 2018
  ident: e_1_2_9_100_1
– ident: e_1_2_9_32_1
  doi: 10.1109/TSMC.1973.4309314
– ident: e_1_2_9_90_1
  doi: 10.1186/s42408-019-0032-1
– ident: e_1_2_9_27_1
  doi: 10.1080/00031305.2018.1549100
– ident: e_1_2_9_41_1
  doi: 10.1016/j.foreco.2015.09.001
– ident: e_1_2_9_30_1
  doi: 10.1111/2041-210X.13177
– ident: e_1_2_9_50_1
  doi: 10.1016/j.foreco.2014.06.005
– ident: e_1_2_9_31_1
  doi: 10.4996/fireecology.0502086
– ident: e_1_2_9_96_1
  doi: 10.1016/j.foreco.2019.01.010
– ident: e_1_2_9_80_1
  doi: 10.1016/j.foreco.2012.02.013
– ident: e_1_2_9_36_1
  doi: 10.1093/biosci/biz030
– ident: e_1_2_9_63_1
  doi: 10.1016/j.rse.2008.11.009
– ident: e_1_2_9_94_1
  doi: 10.1126/science.aac6759
– ident: e_1_2_9_59_1
  doi: 10.1126/science.aaa9933
– ident: e_1_2_9_93_1
  doi: 10.1525/california/9780520246058.001.0001
– ident: e_1_2_9_55_1
  doi: 10.1111/j.1654-1103.2002.tb02087.x
– ident: e_1_2_9_3_1
  doi: 10.1073/pnas.1607171113
– ident: e_1_2_9_56_1
  doi: 10.1007/978-94-007-0301-8_2
– ident: e_1_2_9_112_1
– ident: e_1_2_9_17_1
  doi: 10.1073/pnas.1815107116
– ident: e_1_2_9_22_1
  doi: 10.1146/annurev.ecolsys.35.021103.105711
– ident: e_1_2_9_35_1
  doi: 10.3389/fevo.2019.00239
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2018
  ident: e_1_2_9_72_1
– ident: e_1_2_9_20_1
  doi: 10.4996/fireecology.0301003
– ident: e_1_2_9_103_1
  doi: 10.1016/j.rse.2016.04.008
– volume: 17
  start-page: 52
  year: 1996
  ident: e_1_2_9_4_1
  article-title: The influence of forest structure on fire behavior
  publication-title: Forest Vegetation Management Conference
– ident: e_1_2_9_51_1
  doi: 10.1071/WF13066
– ident: e_1_2_9_75_1
  doi: 10.1111/1365-2745.12337
– ident: e_1_2_9_70_1
  doi: 10.1890/13-0343.1
– ident: e_1_2_9_81_1
  doi: 10.1073/pnas.1617464114
– ident: e_1_2_9_105_1
  doi: 10.1139/x77-004
– ident: e_1_2_9_29_1
  doi: 10.2737/RMRS-GTR-120
– ident: e_1_2_9_57_1
  doi: 10.1038/ncomms1731
– ident: e_1_2_9_86_1
  doi: 10.1007/s10980-018-0665-5
– ident: e_1_2_9_33_1
  doi: 10.1890/130017
– ident: e_1_2_9_67_1
  doi: 10.1088/1748-9326/aab791
– ident: e_1_2_9_109_1
– ident: e_1_2_9_52_1
  doi: 10.3390/f9010045
– ident: e_1_2_9_74_1
  doi: 10.1073/pnas.0500008102
– ident: e_1_2_9_88_1
  doi: 10.1890/07-1755.1
– volume-title: Composite Burn Index (CBI) data and field photos collected for the FIRESEV project
  year: 2013
  ident: e_1_2_9_85_1
– ident: e_1_2_9_49_1
  doi: 10.1111/gcb.12129
– ident: e_1_2_9_7_1
  doi: 10.18637/jss.v080.i01
– ident: e_1_2_9_39_1
  doi: 10.1146/annurev.es.04.110173.000245
– ident: e_1_2_9_34_1
– start-page: 1
  year: 2019
  ident: e_1_2_9_58_1
  article-title: Rethinking resilience to wildfire
  publication-title: Nat Sustain
– ident: e_1_2_9_15_1
  doi: 10.1890/15-0225
– ident: e_1_2_9_64_1
  doi: 10.1073/pnas.0508985102
– ident: e_1_2_9_61_1
  doi: 10.4996/fireecology.1301058
– ident: e_1_2_9_26_1
  doi: 10.1111/1365-2745.12575
– ident: e_1_2_9_77_1
  doi: 10.1111/ele.12717
– ident: e_1_2_9_25_1
  doi: 10.1023/B:CLIM.0000024667.89579.ed
– ident: e_1_2_9_79_1
  doi: 10.2737/PSW-GTR-256
– ident: e_1_2_9_54_1
  doi: 10.1109/LGRS.2005.857030
– ident: e_1_2_9_83_1
  doi: 10.2737/RMRS-RP-29
– ident: e_1_2_9_76_1
  doi: 10.1111/1365-2745.12342
– ident: e_1_2_9_18_1
  doi: 10.1890/ES11-00271.1
– ident: e_1_2_9_21_1
  doi: 10.1029/2005RG000183
– volume-title: Landsat 8 Surface Reflectance code (LASRC) product guide version 1.0
  year: 2018
  ident: e_1_2_9_101_1
– ident: e_1_2_9_62_1
  doi: 10.1016/j.rse.2006.12.006
– ident: e_1_2_9_68_1
  doi: 10.3390/land6020043
– ident: e_1_2_9_5_1
  doi: 10.1111/j.1600-0587.2012.07364.x
– ident: e_1_2_9_84_1
  doi: 10.1111/1365-2664.12511
– ident: e_1_2_9_13_1
  doi: 10.1007/s10980-013-9923-8
– ident: e_1_2_9_9_1
  doi: 10.1890/13-1077.1
– ident: e_1_2_9_16_1
  doi: 10.1890/13-0677.1
– ident: e_1_2_9_71_1
  doi: 10.1111/j.1461-0248.2008.01186.x
– ident: e_1_2_9_111_1
  doi: 10.1002/ecy.2571
– ident: e_1_2_9_38_1
  doi: 10.1016/j.foreco.2009.08.017
– ident: e_1_2_9_23_1
  doi: 10.1073/pnas.1417043112
– ident: e_1_2_9_73_1
  doi: 10.1029/2012JG002128
– ident: e_1_2_9_92_1
  doi: 10.1111/ele.12889
– ident: e_1_2_9_6_1
  doi: 10.2307/1939341
– ident: e_1_2_9_43_1
  doi: 10.1371/journal.pone.0062111
– ident: e_1_2_9_98_1
  doi: 10.1890/0012-9615(1997)067[0411:EOFSAP]2.0.CO;2
– ident: e_1_2_9_42_1
  doi: 10.1071/WF07049
– ident: e_1_2_9_97_1
  doi: 10.1007/BF00135079
– ident: e_1_2_9_10_1
  doi: 10.1186/s42408-019-0035-y
– ident: e_1_2_9_47_1
  doi: 10.1002/ecs2.1632
– ident: e_1_2_9_108_1
  doi: 10.1002/ecs2.1609
– ident: e_1_2_9_102_1
  doi: 10.1007/s11222-016-9696-4
– ident: e_1_2_9_40_1
  doi: 10.1111/j.1654-1103.2010.01220.x
– ident: e_1_2_9_8_1
  doi: 10.3390/rs4020456
– ident: e_1_2_9_53_1
  doi: 10.4996/fireecology.1201013
– ident: e_1_2_9_110_1
  doi: 10.1038/nclimate1693
– ident: e_1_2_9_91_1
  doi: 10.1139/cjfr-2016-0185
– ident: e_1_2_9_11_1
  doi: 10.1146/annurev.ecolsys.31.1.343
– ident: e_1_2_9_69_1
  doi: 10.1073/pnas.0403822101
– ident: e_1_2_9_12_1
  doi: 10.1111/gcb.13160
– ident: e_1_2_9_24_1
  doi: 10.1109/TGRS.1986.289543
– ident: e_1_2_9_28_1
  doi: 10.1016/j.rse.2017.06.031
– ident: e_1_2_9_60_1
  doi: 10.4996/fireecology.0803041
– ident: e_1_2_9_2_1
  doi: 10.1002/joc.3413
– ident: e_1_2_9_107_1
  doi: 10.1002/ecs2.2182
– ident: e_1_2_9_45_1
SSID ssj0012971
Score 2.6000898
Snippet A ‘resilient’ forest endures disturbance and is likely to persist. Resilience to wildfire may arise from feedback between fire behaviour and forest structure...
A 'resilient' forest endures disturbance and is likely to persist. Resilience to wildfire may arise from feedback between fire behaviour and forest structure...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 483
SubjectTerms California
Coniferous forests
disturbance
Dry forests
Ecosystem
fire behavior
Fire prevention
fire severity
fire suppression
Fires
forest
Forest ecosystems
Forest management
forest structure
Forests
homogenization
mountains
overstory
Resilience
severity
Sierra Nevada
Terrestrial ecosystems
texture analysis
Tracheophyta
tree mortality
Trees
wildfire
Wildfires
Title Local forest structure variability increases resilience to wildfire in dry western U.S. coniferous forests
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fele.13447
https://www.ncbi.nlm.nih.gov/pubmed/31922344
https://www.proquest.com/docview/2351864020
https://www.proquest.com/docview/2336259985
https://www.proquest.com/docview/2551914895
Volume 23
WOSCitedRecordID wos000506464100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1461-0248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012971
  issn: 1461-023X
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BS9xAFH7o2oIXbW3VVStj6aGXLJtkNjODJ9FdPCwirQt7C5mZDKxIVjYq7L_3myQbKrVF8BaSl_Ayee_N9yWT7xH9SBKdABnLgNtQB1xlSaBEZgInEi2UsjyzVdeSsbi6ktOpul6j09W_MLU-RPvCzWdGVa99gme6_CPJUZV7oderW6eNCHE76NDGxa_RZNx-RIhUzbd4AsYcxdNGWMgv5GlPfjkd_YUxX0LWas4Zbb_L20-01UBNdlbHxmday4sd-lg3n1xia1gJVi-_0O3YT2gM8BVOsVpR9nGRsyfw6FrGe8lmhYeXZV4yGGGXLwjsYc7gjXUomzBgdrFkjfICm_R-9xi4tl85M38sm4uXX2kyGt6cXwZND4bAxBI11AHwWeFyY03f5SKyPBTaKqFjOwBa1I5rabhvJeuMp1JZCIQByCht30ljo3iXOsW8yPeJJVGGguI0AJflCJ0MbBR8z1kwHs1tv0s_V48iNY1Aue-TcZeuiAoGMa0GsUvfW9P7WpXjNaOj1fNMm8Qs0ygehDLxpLlLJ-1hpJT_TpIVOUYENrG_FSUH_7EB0lSgkgo2e3WstJ6gqgF0cY4bqkLi3y6mw_Gw2jh4u-khbUae81fr4I6og6DIv9EH8_QwKxfHtC6m8rjJhGdD3Qpw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEB3xUUQvLS3Qhq8uqAcujmJ74_VKvaCSCFQ3QkCk3CzvrleiqpwqBqT8e97ajlUEVEi9WfHEGq9nZt9br98QfY0iFQEZxx43vvK4zCJPikx7VkRKSGl4ZqquJYkYjeLJRF4s0bfFtzC1PkS74OYyo6rXLsHdgvRfWY6y3PWdYN0yrXKEEeJ79fRyOE7atwiBrAkXj0CZg3DSKAu5nTztnx_PR09A5mPMWk06w_f_5-4GvWvAJjupo-MDLeXFR1qr20_OcTSoJKvnm_QrcVMaA4CFV6zWlL2b5eweTLoW8p6zm8IBzDIvGYzwkysJ7HbK4I6xKJwwYGY2Z432Aht3r7oMbNvtnZnelc3Fyy0aDwfX38-8pguDpzGmwrOAfEbYXBvds7kIDPeFMlKo0PSBF5XlKtbcNZO12pGpzAfGAGiMTc_G2gThNq0U0yL_TCwKMpQUqwC5DEfwZOCjYHzWgPMobnodOl48i1Q3EuWuU8bvdEFVMIhpNYgdOmpN_9S6HM8Z7S0eaNqkZpkGYd-PI0ebO3TYnkZSuTclWZFjRGATuluRcf8fNsCaEmRSwuZTHSytJ6hrgF2c44aqmHjZxXSQDKqDndebfqH1s-ufSZqcj37s0tvArQBUu-L2aAUBku_TG31_e1PODpqEeADrLA14
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS9xAEB701NIXa63VU2tX8aEvOS7JXpKFvpR6R8VwSNuDewvZX6BITi4q3H_fb5NcUKxS6FtIJmGymZn9vmTzDdFpFMkIyDjxuPalx0UeeSLOlWfjSMZCaJ7rqmtJGo_HyXQqLlfo6_JfmFofon3h5jKjqtcuwc2tto-yHGW55zvBulVa466JTIfWzn6OJmn7FSEQNeHiEShzEE4bZSG3kqc9-el89AxkPsWs1aQzevd_7m7RZgM22bc6Ot7Tiim2aaNuP7nA1rCSrF58oOvUTWkMABZesVpT9n5u2AOYdC3kvWBXhQOYpSkZjLDLlQR2N2NwR1sUThgwPV-wRnuBTXq_egxs262dmd2XzcXLHZqMhr-___CaLgyeChNUUQvIp2NrlFZ9a-JAcz-WWsQy1APgRWm5TBR3zWStcmQq94ExABoT3beJ0kH4kTrFrDB7xKIgR0mxEpBLcwRPDj4Kxmc1OI_kut-lL8tnkalGotx1yrjJllQFg5hVg9ilk9b0ttbl-JvR4fKBZk1qllkQDvwkcrS5S8ftYSSV-1KSFwYjApvQ3YpIBq_YAGsKkEkBm906WFpPUNcAuzjHDVUx8bKL2TAdVhv7_276md5cno2y9Hx8cUBvA_cCoFoUd0gdxIf5ROvq4e6qnB81-fAHYoMM8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+forest+structure+variability+increases+resilience+to+wildfire+in+dry+western+U.S.+coniferous+forests&rft.jtitle=Ecology+letters&rft.au=Koontz%2C+Michael+J&rft.au=North%2C+Malcolm+P&rft.au=Werner%2C+Chhaya+M&rft.au=Fick%2C+Stephen+E.&rft.date=2020-03-01&rft.issn=1461-023X&rft.volume=23&rft.issue=3+p.483-494&rft.spage=483&rft.epage=494&rft_id=info:doi/10.1111%2Fele.13447&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon