Local forest structure variability increases resilience to wildfire in dry western U.S. coniferous forests
A ‘resilient’ forest endures disturbance and is likely to persist. Resilience to wildfire may arise from feedback between fire behaviour and forest structure in dry forest systems. Frequent fire creates fine‐scale variability in forest structure, which may then interrupt fuel continuity and prevent...
Uloženo v:
| Vydáno v: | Ecology letters Ročník 23; číslo 3; s. 483 - 494 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Blackwell Publishing Ltd
01.03.2020
|
| Témata: | |
| ISSN: | 1461-023X, 1461-0248, 1461-0248 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A ‘resilient’ forest endures disturbance and is likely to persist. Resilience to wildfire may arise from feedback between fire behaviour and forest structure in dry forest systems. Frequent fire creates fine‐scale variability in forest structure, which may then interrupt fuel continuity and prevent future fires from killing overstorey trees. Testing the generality and scale of this phenomenon is challenging for vast, long‐lived forest ecosystems. We quantify forest structural variability and fire severity across >30 years and >1000 wildfires in California's Sierra Nevada. We find that greater variability in forest structure increases resilience by reducing rates of fire‐induced tree mortality and that the scale of this effect is local, manifesting at the smallest spatial extent of forest structure tested (90 × 90 m). Resilience of these forests is likely compromised by structural homogenisation from a century of fire suppression, but could be restored with management that increases forest structural variability.
Structurally variable forests may be more likely to persist in the face of wildfire disturbance, but demonstrating this phenomenon at an ecosystem‐scale is challenging. We linked local forest structural heterogeneity to wildfire severity for over 1000 fires across a 34‐year period in the Sierra Nevada mountain range and found that greater heterogeneity strongly reduced the probability of complete tree mortality. The local‐scale effect of forest structure on fire effects feeds back to maintain landscape heterogeneity, promoting forest resilience on an ecosystem‐scale. |
|---|---|
| AbstractList | A 'resilient' forest endures disturbance and is likely to persist. Resilience to wildfire may arise from feedback between fire behaviour and forest structure in dry forest systems. Frequent fire creates fine-scale variability in forest structure, which may then interrupt fuel continuity and prevent future fires from killing overstorey trees. Testing the generality and scale of this phenomenon is challenging for vast, long-lived forest ecosystems. We quantify forest structural variability and fire severity across >30 years and >1000 wildfires in California's Sierra Nevada. We find that greater variability in forest structure increases resilience by reducing rates of fire-induced tree mortality and that the scale of this effect is local, manifesting at the smallest spatial extent of forest structure tested (90 × 90 m). Resilience of these forests is likely compromised by structural homogenisation from a century of fire suppression, but could be restored with management that increases forest structural variability. A ‘resilient’ forest endures disturbance and is likely to persist. Resilience to wildfire may arise from feedback between fire behaviour and forest structure in dry forest systems. Frequent fire creates fine‐scale variability in forest structure, which may then interrupt fuel continuity and prevent future fires from killing overstorey trees. Testing the generality and scale of this phenomenon is challenging for vast, long‐lived forest ecosystems. We quantify forest structural variability and fire severity across >30 years and >1000 wildfires in California's Sierra Nevada. We find that greater variability in forest structure increases resilience by reducing rates of fire‐induced tree mortality and that the scale of this effect is local, manifesting at the smallest spatial extent of forest structure tested (90 × 90 m). Resilience of these forests is likely compromised by structural homogenisation from a century of fire suppression, but could be restored with management that increases forest structural variability. A 'resilient' forest endures disturbance and is likely to persist. Resilience to wildfire may arise from feedback between fire behaviour and forest structure in dry forest systems. Frequent fire creates fine-scale variability in forest structure, which may then interrupt fuel continuity and prevent future fires from killing overstorey trees. Testing the generality and scale of this phenomenon is challenging for vast, long-lived forest ecosystems. We quantify forest structural variability and fire severity across >30 years and >1000 wildfires in California's Sierra Nevada. We find that greater variability in forest structure increases resilience by reducing rates of fire-induced tree mortality and that the scale of this effect is local, manifesting at the smallest spatial extent of forest structure tested (90 × 90 m). Resilience of these forests is likely compromised by structural homogenisation from a century of fire suppression, but could be restored with management that increases forest structural variability.A 'resilient' forest endures disturbance and is likely to persist. Resilience to wildfire may arise from feedback between fire behaviour and forest structure in dry forest systems. Frequent fire creates fine-scale variability in forest structure, which may then interrupt fuel continuity and prevent future fires from killing overstorey trees. Testing the generality and scale of this phenomenon is challenging for vast, long-lived forest ecosystems. We quantify forest structural variability and fire severity across >30 years and >1000 wildfires in California's Sierra Nevada. We find that greater variability in forest structure increases resilience by reducing rates of fire-induced tree mortality and that the scale of this effect is local, manifesting at the smallest spatial extent of forest structure tested (90 × 90 m). Resilience of these forests is likely compromised by structural homogenisation from a century of fire suppression, but could be restored with management that increases forest structural variability. A ‘resilient’ forest endures disturbance and is likely to persist. Resilience to wildfire may arise from feedback between fire behaviour and forest structure in dry forest systems. Frequent fire creates fine‐scale variability in forest structure, which may then interrupt fuel continuity and prevent future fires from killing overstorey trees. Testing the generality and scale of this phenomenon is challenging for vast, long‐lived forest ecosystems. We quantify forest structural variability and fire severity across >30 years and >1000 wildfires in California's Sierra Nevada. We find that greater variability in forest structure increases resilience by reducing rates of fire‐induced tree mortality and that the scale of this effect is local, manifesting at the smallest spatial extent of forest structure tested (90 × 90 m). Resilience of these forests is likely compromised by structural homogenisation from a century of fire suppression, but could be restored with management that increases forest structural variability. Structurally variable forests may be more likely to persist in the face of wildfire disturbance, but demonstrating this phenomenon at an ecosystem‐scale is challenging. We linked local forest structural heterogeneity to wildfire severity for over 1000 fires across a 34‐year period in the Sierra Nevada mountain range and found that greater heterogeneity strongly reduced the probability of complete tree mortality. The local‐scale effect of forest structure on fire effects feeds back to maintain landscape heterogeneity, promoting forest resilience on an ecosystem‐scale. |
| Author | Werner, Chhaya M. North, Malcolm P. Latimer, Andrew M. Koontz, Michael J. Swenson, Nathan Fick, Stephen E. |
| Author_xml | – sequence: 1 givenname: Michael J. orcidid: 0000-0002-8276-210X surname: Koontz fullname: Koontz, Michael J. email: michael.koontz@colorado.edu organization: University of Colorado‐Boulder – sequence: 2 givenname: Malcolm P. surname: North fullname: North, Malcolm P. organization: USDA Forest Service – sequence: 3 givenname: Chhaya M. surname: Werner fullname: Werner, Chhaya M. organization: German Centre for Integrative Biodiversity Research – sequence: 4 givenname: Stephen E. orcidid: 0000-0002-3548-6966 surname: Fick fullname: Fick, Stephen E. organization: University of Colorado – sequence: 5 givenname: Andrew M. orcidid: 0000-0001-8098-0448 surname: Latimer fullname: Latimer, Andrew M. organization: University of California – sequence: 6 givenname: Nathan surname: Swenson fullname: Swenson, Nathan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31922344$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0ctqGzEUBmBRUprrIi8QBN20Czu6zkjLEtwLGLpIAtkNGukIZMZSIs0k-O0jx04WgTbaSIjv_LqcY3QQUwSEzimZ0zouYYA55UK0n9ARFQ2dESbUwdua3x2i41JWhFCmW_oFHXKqGasFR2i1TNYM2KcMZcRlzJMdpwz40eRg-jCEcYNDtBlMgYIrqlsQLeAx4acwOB8qDhG7vMFPNQJyxLfz6zm2KQYPOU1lH15O0WdvhgJn-_kE3f5c3Fz9ni3__vpz9WM5s1w17czLRrrWg3WWeGiZE7TtnW577iShTe9Fr6zQkihvGya1oVQTTolyxCvrGD9B33a59zk9TPXkbh2KhWEwEep1OiYl1VQoLT-mnG-P0GpLv76jqzTlWB9SlaSqEYSRqi72aurX4Lr7HNYmb7rXD6_g-w7YnErJ4N8IJd22mV1tZvfSzGov31kbRjOGFMdswvC_itoa2Pw7ulssF7uKZxF3r6k |
| CitedBy_id | crossref_primary_10_1007_s40823_022_00075_6 crossref_primary_10_1016_j_foreco_2024_122297 crossref_primary_10_1093_biosci_biaa134 crossref_primary_10_1111_rec_70154 crossref_primary_10_1016_j_foreco_2022_120270 crossref_primary_10_1016_j_rse_2024_114518 crossref_primary_10_1002_eap_2433 crossref_primary_10_1016_j_foreco_2021_119361 crossref_primary_10_1093_biosci_biaf023 crossref_primary_10_1007_s44391_025_00034_8 crossref_primary_10_1016_j_foreco_2020_118595 crossref_primary_10_1002_ecy_3968 crossref_primary_10_1007_s41651_024_00185_1 crossref_primary_10_1016_j_foreco_2022_120107 crossref_primary_10_1016_j_foreco_2020_118864 crossref_primary_10_1016_j_foreco_2021_119678 crossref_primary_10_1016_j_scitotenv_2023_164832 crossref_primary_10_3390_su17177907 crossref_primary_10_1016_j_foreco_2022_120620 crossref_primary_10_1016_j_foreco_2023_121478 crossref_primary_10_1016_j_agrformet_2025_110688 crossref_primary_10_3390_f11080834 crossref_primary_10_1186_s42408_025_00360_9 crossref_primary_10_3389_ffgc_2025_1498430 crossref_primary_10_1016_j_foreco_2025_122761 crossref_primary_10_1016_j_foreco_2024_122388 crossref_primary_10_1007_s11676_024_01806_7 crossref_primary_10_1093_forestry_cpac046 crossref_primary_10_1126_sciadv_adt2041 crossref_primary_10_1093_biosci_biaa061 crossref_primary_10_1093_jofore_fvab026 crossref_primary_10_1016_j_tree_2024_03_003 crossref_primary_10_1111_gcb_16939 crossref_primary_10_1139_cjfr_2020_0480 crossref_primary_10_1016_j_foreco_2020_118220 crossref_primary_10_1002_ecs2_4184 crossref_primary_10_1111_acv_12976 crossref_primary_10_1002_ecy_4188 crossref_primary_10_1111_2041_210X_14416 crossref_primary_10_1111_jvs_13207 crossref_primary_10_1002_ecs2_4061 crossref_primary_10_1016_j_biocon_2025_111241 crossref_primary_10_1111_acv_12697 crossref_primary_10_1894_0038_4909_69_2_3 crossref_primary_10_1111_1365_2435_14263 crossref_primary_10_1016_j_foreco_2022_120572 crossref_primary_10_1002_ecs2_3177 crossref_primary_10_1371_journal_pone_0311940 crossref_primary_10_1002_eap_2383 crossref_primary_10_1111_gcb_70400 crossref_primary_10_1002_eap_3075 crossref_primary_10_1038_s41586_021_04325_1 crossref_primary_10_1007_s10980_024_01901_4 crossref_primary_10_1002_ece3_7084 crossref_primary_10_1111_csp2_497 crossref_primary_10_1186_s42408_025_00389_w crossref_primary_10_1007_s10980_023_01737_4 crossref_primary_10_1093_forestry_cpaf025 crossref_primary_10_1111_1365_2745_13764 crossref_primary_10_1186_s42408_022_00157_0 crossref_primary_10_3390_geosciences14050112 crossref_primary_10_1016_j_foreco_2021_119611 crossref_primary_10_1016_j_ssci_2022_105797 crossref_primary_10_1111_rec_13863 crossref_primary_10_1016_j_foreco_2021_120004 crossref_primary_10_1016_j_jenvman_2025_126974 crossref_primary_10_1002_ecs2_4655 crossref_primary_10_1016_j_agrformet_2024_110105 crossref_primary_10_1016_j_foreco_2023_121531 crossref_primary_10_1016_j_foreco_2025_123010 crossref_primary_10_1186_s42408_024_00324_5 crossref_primary_10_1016_j_foreco_2025_122540 crossref_primary_10_1186_s42408_025_00377_0 crossref_primary_10_1002_eap_2682 crossref_primary_10_1111_brv_13041 crossref_primary_10_3389_ffgc_2024_1402124 crossref_primary_10_1002_eap_2400 crossref_primary_10_1016_j_rse_2025_114802 crossref_primary_10_1016_j_foreco_2024_122404 crossref_primary_10_1088_1748_9326_ac939b crossref_primary_10_1016_j_foreco_2020_117987 crossref_primary_10_1017_aae_2022_41 crossref_primary_10_1002_fee_2499 crossref_primary_10_1111_1365_2745_13999 crossref_primary_10_7717_peerj_10158 crossref_primary_10_1111_aec_13514 crossref_primary_10_1111_1365_2745_13830 crossref_primary_10_1016_j_foreco_2021_118973 crossref_primary_10_1007_s10021_020_00544_1 crossref_primary_10_1016_j_foreco_2021_118979 crossref_primary_10_1007_s10980_023_01710_1 crossref_primary_10_1139_cjfr_2020_0337 crossref_primary_10_3389_fenvs_2022_949442 crossref_primary_10_1016_j_foreco_2023_121102 crossref_primary_10_1002_ecy_3270 crossref_primary_10_1016_j_foreco_2024_122010 |
| Cites_doi | 10.2307/3545542 10.3390/rs6031827 10.2737/PSW-GTR-220 10.1016/j.foreco.2017.08.051 10.1016/j.foreco.2016.09.010 10.1111/geb.12365 10.1007/s10980-012-9741-4 10.1007/s10980-015-0268-3 10.1016/j.rse.2017.12.038 10.1890/08-1210.1 10.5751/ES-02380-130210 10.1890/08-2324.1 10.1016/j.foreco.2011.11.038 10.1109/TSMC.1973.4309314 10.1186/s42408-019-0032-1 10.1080/00031305.2018.1549100 10.1016/j.foreco.2015.09.001 10.1111/2041-210X.13177 10.1016/j.foreco.2014.06.005 10.4996/fireecology.0502086 10.1016/j.foreco.2019.01.010 10.1016/j.foreco.2012.02.013 10.1093/biosci/biz030 10.1016/j.rse.2008.11.009 10.1126/science.aac6759 10.1126/science.aaa9933 10.1525/california/9780520246058.001.0001 10.1111/j.1654-1103.2002.tb02087.x 10.1073/pnas.1607171113 10.1007/978-94-007-0301-8_2 10.1073/pnas.1815107116 10.1146/annurev.ecolsys.35.021103.105711 10.3389/fevo.2019.00239 10.4996/fireecology.0301003 10.1016/j.rse.2016.04.008 10.1071/WF13066 10.1111/1365-2745.12337 10.1890/13-0343.1 10.1073/pnas.1617464114 10.1139/x77-004 10.2737/RMRS-GTR-120 10.1038/ncomms1731 10.1007/s10980-018-0665-5 10.1890/130017 10.1088/1748-9326/aab791 10.3390/f9010045 10.1073/pnas.0500008102 10.1890/07-1755.1 10.1111/gcb.12129 10.18637/jss.v080.i01 10.1146/annurev.es.04.110173.000245 10.1890/15-0225 10.1073/pnas.0508985102 10.4996/fireecology.1301058 10.1111/1365-2745.12575 10.1111/ele.12717 10.1023/B:CLIM.0000024667.89579.ed 10.2737/PSW-GTR-256 10.1109/LGRS.2005.857030 10.2737/RMRS-RP-29 10.1111/1365-2745.12342 10.1890/ES11-00271.1 10.1029/2005RG000183 10.1016/j.rse.2006.12.006 10.3390/land6020043 10.1111/j.1600-0587.2012.07364.x 10.1111/1365-2664.12511 10.1007/s10980-013-9923-8 10.1890/13-1077.1 10.1890/13-0677.1 10.1111/j.1461-0248.2008.01186.x 10.1002/ecy.2571 10.1016/j.foreco.2009.08.017 10.1073/pnas.1417043112 10.1029/2012JG002128 10.1111/ele.12889 10.2307/1939341 10.1371/journal.pone.0062111 10.1890/0012-9615(1997)067[0411:EOFSAP]2.0.CO;2 10.1071/WF07049 10.1007/BF00135079 10.1186/s42408-019-0035-y 10.1002/ecs2.1632 10.1002/ecs2.1609 10.1007/s11222-016-9696-4 10.1111/j.1654-1103.2010.01220.x 10.3390/rs4020456 10.4996/fireecology.1201013 10.1038/nclimate1693 10.1139/cjfr-2016-0185 10.1146/annurev.ecolsys.31.1.343 10.1073/pnas.0403822101 10.1111/gcb.13160 10.1109/TGRS.1986.289543 10.1016/j.rse.2017.06.031 10.4996/fireecology.0803041 10.1002/joc.3413 10.1002/ecs2.2182 |
| ContentType | Journal Article |
| Copyright | 2020 John Wiley & Sons Ltd/CNRS 2020 John Wiley & Sons Ltd/CNRS. Copyright © 2020 John Wiley & Sons Ltd/CNRS |
| Copyright_xml | – notice: 2020 John Wiley & Sons Ltd/CNRS – notice: 2020 John Wiley & Sons Ltd/CNRS. – notice: Copyright © 2020 John Wiley & Sons Ltd/CNRS |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 7U9 C1K H94 M7N 7X8 7S9 L.6 |
| DOI | 10.1111/ele.13447 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Virology and AIDS Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts AIDS and Cancer Research Abstracts Virology and AIDS Abstracts Ecology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE AGRICOLA Entomology Abstracts MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Ecology |
| EISSN | 1461-0248 |
| EndPage | 494 |
| ExternalDocumentID | 31922344 10_1111_ele_13447 ELE13447 |
| Genre | letter Letter Correspondence |
| GeographicLocations | California Western states |
| GeographicLocations_xml | – name: California – name: Western states |
| GrantInformation_xml | – fundername: Cooperative Institute for Research in Environmental Sciences – fundername: NSF Graduate Research Fellowship funderid: DGE 1321845 Amend. 3 – fundername: CU‐Boulder's Grand Challenge Initiative – fundername: NSF Graduate Research Fellowship grantid: DGE 1321845 Amend. 3 – fundername: CU-Boulder's Grand Challenge Initiative |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOD ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ N~3 O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZY4 ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION O8X CGR CUY CVF ECM EIF NPM 7SN 7SS 7U9 C1K H94 M7N 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c3867-f565d7fecdc0fe72d417bd97b3d5016bf4b8c49508fc6259a11903108d0f8cd23 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 100 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506464100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1461-023X 1461-0248 |
| IngestDate | Fri Jul 11 18:27:28 EDT 2025 Fri Jul 11 07:25:51 EDT 2025 Fri Jul 25 19:30:29 EDT 2025 Wed Feb 19 02:31:46 EST 2025 Sat Nov 29 03:47:30 EST 2025 Tue Nov 18 21:08:38 EST 2025 Wed Jan 22 16:39:39 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | forest structure severity disturbance forest wildfire Sierra Nevada resilience texture analysis |
| Language | English |
| License | 2020 John Wiley & Sons Ltd/CNRS. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3867-f565d7fecdc0fe72d417bd97b3d5016bf4b8c49508fc6259a11903108d0f8cd23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Correspondence-1 |
| ORCID | 0000-0002-8276-210X 0000-0002-3548-6966 0000-0001-8098-0448 |
| PMID | 31922344 |
| PQID | 2351864020 |
| PQPubID | 32390 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2551914895 proquest_miscellaneous_2336259985 proquest_journals_2351864020 pubmed_primary_31922344 crossref_primary_10_1111_ele_13447 crossref_citationtrail_10_1111_ele_13447 wiley_primary_10_1111_ele_13447_ELE13447 |
| PublicationCentury | 2000 |
| PublicationDate | March 2020 2020-03-00 2020-Mar 20200301 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Paris |
| PublicationTitle | Ecology letters |
| PublicationTitleAlternate | Ecol Lett |
| PublicationYear | 2020 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2017; 80 2013; 3 1990; 59 2018; 206 2019; 10 2002; 13 2019; 15 2004; 3 2016; 31 2014; 24 1973 2009; 113 2013; 8 2007; 109 2016; 381 2010; 21 2018; 9 2010; 20 2005; 102 2014; 15 2019; 436 2007; 3 2018; 33 2009; 19 2017; 202 2014; 12 2016; 46 2009; 18 2019; 7 1996; 17 2011; 2 2012; 35 2018; 21 2019; 100 2016; 12 2016; 7 2009; 79 2015; 358 1986; GE‐24 2015; 112 1973; SMC‐3 2016; 26 2012; 117 2016; 22 2018; 13 2017; 6 2004; 64 2013; 28 2013; 23 1995; 76 2016; 104 2015; 349 2017; 114 2016; 185 2013; 19 2014; 328 2017; 406 2001 2019; 69 2016; 113 2019; 116 2015b; 103 2014; 6 2004; 101 2017; 20 2019; 73 2012; 267 2011 2018b 2018a 2017; 27 1997; 67 2009 2016; 53 2006 2008; 13 2006; 3 2004 2008; 11 2009; 258 2015; 24 1994; 9 2012; 274 2012; 3 2013; 33 2017; 13 2000; 31 2019 2018 2017 2015a; 103 2009; 5 2013 2012; 4 2007; 45 1977; 7 2012; 8 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_107_1 Walker B. (e_1_2_9_106_1) 2004 e_1_2_9_14_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_111_1 USGS (e_1_2_9_100_1) 2018 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 Sikkink P.G. (e_1_2_9_85_1) 2013 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 USGS (e_1_2_9_101_1) 2018 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_105_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_81_1 R Core Team (e_1_2_9_72_1) 2018 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 Agee J.K. (e_1_2_9_4_1) 1996; 17 e_1_2_9_70_1 e_1_2_9_104_1 McWethy D.B. (e_1_2_9_58_1) 2019 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 Hoffman M.D. (e_1_2_9_37_1) 2014; 15 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – volume: 103 start-page: 5 year: 2015a end-page: 15 article-title: Forest resilience and tipping points at different spatio‐temporal scales: approaches and challenges publication-title: J. Ecol. – year: 2018a – volume: 9 start-page: 59 year: 1994 end-page: 77 article-title: Landscape dynamics in crown fire ecosystems publication-title: Landscape Ecol – volume: 112 start-page: 2378 year: 2015 end-page: 2383 article-title: Warning signals for eruptive events in spreading fires publication-title: Proc. Natl Acad. Sci. – volume: 12 start-page: 5 year: 2014 end-page: 14 article-title: Macrosystems ecology: Understanding ecological patterns and processes at continental scales publication-title: Front. Ecol. Environ. – start-page: 1 year: 2019 end-page: 8 article-title: Rethinking resilience to wildfire publication-title: Nat Sustain – volume: 23 start-page: 1735 year: 2013 end-page: 1742 article-title: Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems publication-title: Ecol. Appl. – volume: 113 start-page: 645 year: 2009 end-page: 656 article-title: Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA publication-title: Remote Sens. Environ. – volume: 114 start-page: 4582 year: 2017 end-page: 4590 article-title: Adapt to more wildfire in western North American forests as climate changes publication-title: Proc. Natl Acad. Sci. – volume: 206 start-page: 287 year: 2018 end-page: 299 article-title: A comparison and validation of satellite‐derived fire severity mapping techniques in fire prone north Australian savannas: Extreme fires and tree stem mortality publication-title: Remote Sens. Environ. – volume: 102 start-page: 2826 year: 2005 end-page: 2831 article-title: Ecosystem recovery after climatic extremes enhanced by genotypic diversity publication-title: Proc. Natl Acad. Sci. – volume: 31 start-page: 619 year: 2016 end-page: 636 article-title: Fire legacies impact conifer regeneration across environmental gradients in the U.S publication-title: Northern Rockies. Landscape Ecol – start-page: 27 year: 2011 end-page: 49 – volume: 12 start-page: 13 year: 2016 end-page: 25 article-title: Does prescribed fire promote resistance to drought in low elevation forests of the Sierra Nevada, California, USA? publication-title: Fire Ecology – volume: 19 start-page: 305 year: 2009 end-page: 320 article-title: Fire treatment effects on vegetation structure, fuels, and potential fire severity in western U.S publication-title: Forests. Ecological Applications – volume: 8 year: 2013 article-title: Scientific foundations for an IUCN red list of ecosystems publication-title: PLoS ONE – volume: 436 start-page: 45 year: 2019 end-page: 55 article-title: Strategically placed landscape fuel treatments decrease fire severity and promote recovery in the northern Sierra Nevada publication-title: For. Ecol. Manage. – volume: 10 start-page: 767 year: 2019 end-page: 778 article-title: Incorporating fine‐scale environmental heterogeneity into broad‐extent models publication-title: Methods Ecol. Evol. – volume: 24 start-page: 1037 year: 2014 end-page: 1056 article-title: Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA publication-title: Ecol. Appl. – volume: 67 start-page: 411 year: 1997 article-title: Effects of fire size and pattern on early succession in Yellowstone National Park publication-title: Ecol. Monogr. – volume: 328 start-page: 326 year: 2014 end-page: 334 article-title: Severity of an uncharacteristically large wildfire, the Rim Fire, in forests with relatively restored frequent fire regimes publication-title: For. Ecol. Manage. – volume: 381 start-page: 74 year: 2016 end-page: 83 article-title: Variability in vegetation and surface fuels across mixed‐conifer‐dominated landscapes with over 40 years of natural fire publication-title: For. Ecol. Manage. – volume: 76 start-page: 747 year: 1995 end-page: 762 article-title: The relative importance of fuels and weather on fire behavior in subalpine forests publication-title: Ecology – start-page: 9 year: 2004 article-title: Resilience, adaptability, and transformability in social‐ecological systems publication-title: Ecol. Soc. – volume: 17 start-page: 52 year: 1996 end-page: 68 article-title: The influence of forest structure on fire behavior publication-title: Forest Vegetation Management Conference – volume: 9 year: 2018 article-title: Fire regimes approaching historic norms reduce wildfire‐facilitated conversion from forest to non‐forest publication-title: Ecosphere – volume: 21 start-page: 1099 year: 2010 end-page: 1109 article-title: In situ survival of forest bryophytes in small‐scale refugia after an intense forest fire publication-title: J. Veg. Sci. – volume: 267 start-page: 74 year: 2012 end-page: 92 article-title: Tree spatial patterns in fire‐frequent forests of western North America, including mechanisms of pattern formation and implications for designing fuel reduction and restoration treatments publication-title: For. Ecol. Manage. – year: 2019 – volume: 26 start-page: 686 year: 2016 end-page: 699 article-title: Post‐fire vegetation and fuel development influences fire severity patterns in reburns publication-title: Ecol. Appl. – volume: 79 start-page: 557 year: 2009 end-page: 574 article-title: How does spatial heterogeneity influence resilience to climatic changes? Ecological dynamics in southeast Madagascar publication-title: Ecol. Monogr. – volume: 11 start-page: 717 year: 2008 end-page: 726 article-title: Coexistence through spatio‐temporal heterogeneity and species sorting in grassland plant communities publication-title: Ecol. Lett. – volume: 73 start-page: 307 year: 2019 end-page: 309 article-title: R‐squared for Bayesian regression models publication-title: The American Statistician – volume: 19 start-page: 1470 year: 2013 end-page: 1481 article-title: Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe publication-title: Glob. Change Biol. – volume: 53 start-page: 120 year: 2016 end-page: 129 article-title: Searching for resilience: Addressing the impacts of changing disturbance regimes on forest ecosystem services publication-title: J. Appl. Ecol. – volume: 349 start-page: 814 year: 2015 end-page: 818 article-title: Forest health and global change publication-title: Science – volume: 15 start-page: 1 year: 2019 end-page: 17 article-title: Tree regeneration following wildfires in the western US: a review publication-title: Fire Ecology – volume: 7 start-page: 23 year: 1977 end-page: 34 article-title: Conditions for the start and spread of crown fire publication-title: Can. J. For. Res. – year: 1973 – start-page: 1 year: 1973 end-page: 23 article-title: Resilience and stability of ecological systems publication-title: Annu. Rev. Ecol. Syst. – volume: 20 start-page: 362 year: 2010 end-page: 380 article-title: Fire regimes, forest change, and self‐organization in an old‐growth mixed‐conifer forest, Yosemite National Park, USA publication-title: Ecol. Appl. – volume: 69 start-page: 379 year: 2019 end-page: 388 article-title: Integrating subjective and objective dimensions of resilience in fire‐prone landscapes publication-title: Bioscience – volume: 80 start-page: 1 year: 2017 end-page: 28 article-title: : An package for bayesian multilevel models using publication-title: J. Stat. Softw. – volume: 202 start-page: 18 year: 2017 end-page: 27 article-title: Google earth engine: Planetary‐scale geospatial analysis for everyone publication-title: Remote Sens. Environ. – volume: 6 start-page: 43 year: 2017 article-title: Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior publication-title: Land – volume: 20 start-page: 147 year: 2017 end-page: 157 article-title: Historical foundations and future directions in macrosystems ecology publication-title: Ecol. Lett. – volume: SMC‐3 start-page: 610 year: 1973 end-page: 621 article-title: Textural features for image classification publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 64 start-page: 169 year: 2004 end-page: 191 article-title: The impact of climate change on wildfire severity: A regional forecast for Northern California publication-title: Clim. Change. – volume: 185 start-page: 46 year: 2016 end-page: 56 article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product publication-title: Remote Sens. Environ. – volume: 5 start-page: 86 year: 2009 end-page: 103 article-title: Changes in fire severity across gradients of climate, fire size, and topography: a landscape ecological perspective publication-title: Fire Ecol. – volume: 117 start-page: 1 year: 2012 end-page: 23 article-title: Global burned area and biomass burning emissions from small fires publication-title: J. Geophys. Res. Biogeosciences – volume: 274 start-page: 17 year: 2012 end-page: 28 article-title: Fuel treatment effectiveness in California yellow pine and mixed conifer forests publication-title: For. Ecol. Manage. – volume: 28 start-page: 1801 year: 2013 end-page: 1813 article-title: Early forest dynamics in stand‐replacing fire patches in the northern Sierra Nevada, California, USA publication-title: Landscape Ecol. – year: 2013 – year: 2009 – volume: 45 start-page: 21 year: 2007 article-title: The shuttle radar topography mission publication-title: Rev. Geophys. – volume: GE‐24 start-page: 139 year: 1986 end-page: 149 article-title: Coniferous forest classification and inventory using Landsat and digital terrain data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 13 start-page: 603 year: 2002 end-page: 606 article-title: Equations for potential annual direct incident radiation and heat load publication-title: J. Veg. Sci. – volume: 349 start-page: 823 year: 2015 end-page: 826 article-title: Temperate forest health in an era of emerging megadisturbance publication-title: Science – year: 2001 – volume: 7 year: 2016 article-title: Topographic and fire weather controls of fire refugia in forested ecosystems of northwestern North America publication-title: Ecosphere – volume: 33 start-page: 1159 year: 2018 end-page: 1176 article-title: The changing landscape of wildfire: Burn pattern trends and implications for California's yellow pine and mixed conifer forests publication-title: Landscape Ecol. – volume: 258 start-page: 2399 year: 2009 end-page: 2406 article-title: A predictive model of burn severity based on 20‐year satellite‐inferred burn severity data in a large southwestern US wilderness area publication-title: For. Ecol. Manage. – volume: 7 start-page: 239 year: 2019 article-title: Climate, environment, and disturbance history govern resilience of Western North American Forests publication-title: Front. Ecol. Evol. – year: 2018 – volume: 21 start-page: 243 year: 2018 end-page: 252 article-title: Evidence for declining forest resilience to wildfires under climate change publication-title: Ecol. Lett. – volume: 3 start-page: 68 year: 2006 end-page: 72 article-title: A Landsat surface reflectance dataset for North America, 19902000 publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 406 start-page: 28 year: 2017 end-page: 36 article-title: Changing spatial patterns of stand‐replacing fire in California conifer forests publication-title: For. Ecol. Manage. – volume: 27 start-page: 1413 year: 2017 end-page: 1432 article-title: Practical Bayesian model evaluation using leave‐one‐out cross‐validation and WAIC publication-title: Statistics and Computing – volume: 18 start-page: 116 year: 2009 article-title: Fire intensity, fire severity and burn severity: A brief review and suggested usage publication-title: Int. J. Wildl. Fire – volume: 13 start-page: 58 year: 2017 end-page: 90 article-title: Corroborating evidence of a pre‐Euro‐American low‐ to moderate‐severity fire regime in yellow pineMixed conifer forests of the Sierra Nevada, California, USA publication-title: Fire Ecology – year: 2018b – volume: 31 start-page: 343 year: 2000 end-page: 366 article-title: Mechanisms of maintenance of species diversity publication-title: Annu. Rev. Ecol. Syst. – volume: 59 start-page: 253 year: 1990 article-title: Multiple scales of patchiness and patch structure: A hierarchical framework for the study of heterogeneity publication-title: Oikos – volume: 358 start-page: 62 year: 2015 end-page: 79 article-title: Mixed severity fire effects within the Rim fire: Relative importance of local climate, fire weather, topography, and forest structure publication-title: For. Ecol. Manage. – volume: 15 start-page: 31 year: 2014 article-title: The No‐U‐Turn Sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo publication-title: Journal of Machine Learning Research – volume: 3 start-page: 726 year: 2012 article-title: Power laws reveal phase transitions in landscape controls of fire regimes publication-title: Nat. Commun. – volume: 2 start-page: 1 year: 2011 end-page: 33 article-title: Both topography and climate affected forest and woodland burn severity in two regions of the western U.S., 1984 to 2006 publication-title: Ecosphere – volume: 3 start-page: 557 year: 2004 end-page: 581 article-title: Regime shifts, resilience, and biodiversity in ecosystem management publication-title: Annu. Rev. Ecol. Evol. Syst. – year: 2004 – volume: 33 start-page: 121 year: 2013 end-page: 131 article-title: Development of gridded surface meteorological data for ecological applications and modelling publication-title: Int. J. Climatol. – volume: 46 start-page: 1375 year: 2016 end-page: 1385 article-title: Prior wildfires influence burn severity of subsequent large fires publication-title: Can. J. For. Res. – volume: 109 start-page: 66 year: 2007 end-page: 80 article-title: Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR) publication-title: Remote Sens. Environ. – volume: 8 start-page: 41 year: 2012 end-page: 57 article-title: Trends in wildfire severity: 1984 to 2010 in the Sierra Nevada, Modoc Plateau, and Southern Cascades, California, U.S.A publication-title: Fire Ecol. – volume: 3 start-page: 3 year: 2007 end-page: 21 article-title: A project for monitoring trends in burn severity publication-title: Fire Ecology – volume: 113 start-page: 11770 year: 2016 end-page: 11775 article-title: Impact of anthropogenic climate change on wildfire across western U.S. Forests publication-title: Proc. Natl Acad. Sci. – volume: 9 start-page: 45 year: 2018 article-title: Mixed‐severity fire fosters heterogeneous spatial patterns of conifer regeneration in a dry conifer forest publication-title: Forests – volume: 24 start-page: 571 year: 2014 end-page: 590 article-title: Fuel treatments and landform modify landscape patterns of burn severity in an extreme fire event publication-title: Ecol. Appl. – volume: 13 start-page: 1 year: 2008 end-page: 12 article-title: Wildfire and spatial patterns in forests in Northwestern Mexico: The United States wishes it had similar fire problems publication-title: Ecol. Soc. – volume: 28 start-page: 1081 year: 2013 end-page: 1097 article-title: Consequences of spatial heterogeneity for ecosystem services in changing forest landscapes: Priorities for future research publication-title: Landscape Ecol. – volume: 104 start-page: 1063 year: 2016 end-page: 1075 article-title: Functional diversity enhances silver fir growth resilience to an extreme drought publication-title: J. Ecol. – volume: 4 start-page: 456 year: 2012 end-page: 483 article-title: How robust are burn severity indices when applied in a new region? Evaluation of alternate field‐based and remote‐sensing methods publication-title: Remote Sens. – volume: 13 start-page: 044037 year: 2018 article-title: High‐severity fire: Evaluating its key drivers and mapping its probability across western U.S publication-title: Forests. Environmental Research Letters – volume: 102 start-page: 17912 year: 2005 end-page: 17917 article-title: Wildfires, complexity, and highly optimized tolerance publication-title: Proc. Natl Acad. Sci. – volume: 35 start-page: 673 year: 2012 end-page: 683 article-title: What's on the horizon for macroecology? publication-title: Ecography – volume: 15 start-page: 16 year: 2019 article-title: Fuel dynamics after reintroduced fire in an old‐growth Sierra Nevada mixed‐conifer forest publication-title: Fire Ecology – volume: 24 start-page: 1329 year: 2015 end-page: 1339 article-title: A global, remote sensing‐based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling: Global habitat heterogeneity publication-title: Glob. Ecol. Biogeogr. – volume: 22 start-page: 2329 year: 2016 end-page: 2352 article-title: The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States publication-title: Glob. Change Biol. – volume: 24 start-page: 484 year: 2015 article-title: Relating fuel loads to overstorey structure and composition in a fire‐excluded Sierra Nevada mixed conifer forest publication-title: Int. J. Wildl. Fire – volume: 101 start-page: 15130 year: 2004 end-page: 15135 article-title: Cross‐scale interactions, nonlinearities, and forecasting catastrophic events publication-title: Proc. Natl Acad. Sci. – volume: 103 start-page: 1 year: 2015b end-page: 4 article-title: Forest resilience, tipping points and global change processes publication-title: J. Ecol. – volume: 6 start-page: 1827 year: 2014 end-page: 1844 article-title: A new metric for quantifying burn severity: The Relativized Burn Ratio publication-title: Remote Sens. – year: 2006 – volume: 3 start-page: 292 year: 2013 end-page: 297 article-title: Temperature as a potent driver of regional forest drought stress and tree mortality publication-title: Nat. Clim. Chang. – year: 2017 – volume: 100 year: 2019 article-title: Post‐fire forest regeneration shows limited climate tracking and potential for drought‐induced type conversion publication-title: Ecology – volume: 116 start-page: 6193 issue: 13 year: 2019 end-page: 6198 article-title: Wildfires and climate change push low‐elevation forests across a critical climate threshold for tree regeneration publication-title: Proc. Natl Acad Sci. – volume: 7 year: 2016 article-title: Predicting conifer establishment post wildfire in mixed conifer forests of the North American Mediterranean‐climate zone publication-title: Ecosphere – ident: e_1_2_9_46_1 doi: 10.2307/3545542 – ident: e_1_2_9_66_1 doi: 10.3390/rs6031827 – ident: e_1_2_9_65_1 doi: 10.2737/PSW-GTR-220 – ident: e_1_2_9_89_1 doi: 10.1016/j.foreco.2017.08.051 – ident: e_1_2_9_14_1 doi: 10.1016/j.foreco.2016.09.010 – ident: e_1_2_9_78_1 – ident: e_1_2_9_95_1 doi: 10.1111/geb.12365 – ident: e_1_2_9_99_1 doi: 10.1007/s10980-012-9741-4 – ident: e_1_2_9_44_1 doi: 10.1007/s10980-015-0268-3 – ident: e_1_2_9_19_1 doi: 10.1016/j.rse.2017.12.038 – volume: 15 start-page: 31 year: 2014 ident: e_1_2_9_37_1 article-title: The No‐U‐Turn Sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo publication-title: Journal of Machine Learning Research – ident: e_1_2_9_104_1 doi: 10.1890/08-1210.1 – ident: e_1_2_9_87_1 doi: 10.5751/ES-02380-130210 – ident: e_1_2_9_82_1 doi: 10.1890/08-2324.1 – ident: e_1_2_9_48_1 doi: 10.1016/j.foreco.2011.11.038 – start-page: 9 year: 2004 ident: e_1_2_9_106_1 article-title: Resilience, adaptability, and transformability in social‐ecological systems publication-title: Ecol. Soc. – volume-title: Landsat 4-7 Surface Reflectance (LEDAPS) product guide version 1.0 year: 2018 ident: e_1_2_9_100_1 – ident: e_1_2_9_32_1 doi: 10.1109/TSMC.1973.4309314 – ident: e_1_2_9_90_1 doi: 10.1186/s42408-019-0032-1 – ident: e_1_2_9_27_1 doi: 10.1080/00031305.2018.1549100 – ident: e_1_2_9_41_1 doi: 10.1016/j.foreco.2015.09.001 – ident: e_1_2_9_30_1 doi: 10.1111/2041-210X.13177 – ident: e_1_2_9_50_1 doi: 10.1016/j.foreco.2014.06.005 – ident: e_1_2_9_31_1 doi: 10.4996/fireecology.0502086 – ident: e_1_2_9_96_1 doi: 10.1016/j.foreco.2019.01.010 – ident: e_1_2_9_80_1 doi: 10.1016/j.foreco.2012.02.013 – ident: e_1_2_9_36_1 doi: 10.1093/biosci/biz030 – ident: e_1_2_9_63_1 doi: 10.1016/j.rse.2008.11.009 – ident: e_1_2_9_94_1 doi: 10.1126/science.aac6759 – ident: e_1_2_9_59_1 doi: 10.1126/science.aaa9933 – ident: e_1_2_9_93_1 doi: 10.1525/california/9780520246058.001.0001 – ident: e_1_2_9_55_1 doi: 10.1111/j.1654-1103.2002.tb02087.x – ident: e_1_2_9_3_1 doi: 10.1073/pnas.1607171113 – ident: e_1_2_9_56_1 doi: 10.1007/978-94-007-0301-8_2 – ident: e_1_2_9_112_1 – ident: e_1_2_9_17_1 doi: 10.1073/pnas.1815107116 – ident: e_1_2_9_22_1 doi: 10.1146/annurev.ecolsys.35.021103.105711 – ident: e_1_2_9_35_1 doi: 10.3389/fevo.2019.00239 – volume-title: R: A Language and Environment for Statistical Computing year: 2018 ident: e_1_2_9_72_1 – ident: e_1_2_9_20_1 doi: 10.4996/fireecology.0301003 – ident: e_1_2_9_103_1 doi: 10.1016/j.rse.2016.04.008 – volume: 17 start-page: 52 year: 1996 ident: e_1_2_9_4_1 article-title: The influence of forest structure on fire behavior publication-title: Forest Vegetation Management Conference – ident: e_1_2_9_51_1 doi: 10.1071/WF13066 – ident: e_1_2_9_75_1 doi: 10.1111/1365-2745.12337 – ident: e_1_2_9_70_1 doi: 10.1890/13-0343.1 – ident: e_1_2_9_81_1 doi: 10.1073/pnas.1617464114 – ident: e_1_2_9_105_1 doi: 10.1139/x77-004 – ident: e_1_2_9_29_1 doi: 10.2737/RMRS-GTR-120 – ident: e_1_2_9_57_1 doi: 10.1038/ncomms1731 – ident: e_1_2_9_86_1 doi: 10.1007/s10980-018-0665-5 – ident: e_1_2_9_33_1 doi: 10.1890/130017 – ident: e_1_2_9_67_1 doi: 10.1088/1748-9326/aab791 – ident: e_1_2_9_109_1 – ident: e_1_2_9_52_1 doi: 10.3390/f9010045 – ident: e_1_2_9_74_1 doi: 10.1073/pnas.0500008102 – ident: e_1_2_9_88_1 doi: 10.1890/07-1755.1 – volume-title: Composite Burn Index (CBI) data and field photos collected for the FIRESEV project year: 2013 ident: e_1_2_9_85_1 – ident: e_1_2_9_49_1 doi: 10.1111/gcb.12129 – ident: e_1_2_9_7_1 doi: 10.18637/jss.v080.i01 – ident: e_1_2_9_39_1 doi: 10.1146/annurev.es.04.110173.000245 – ident: e_1_2_9_34_1 – start-page: 1 year: 2019 ident: e_1_2_9_58_1 article-title: Rethinking resilience to wildfire publication-title: Nat Sustain – ident: e_1_2_9_15_1 doi: 10.1890/15-0225 – ident: e_1_2_9_64_1 doi: 10.1073/pnas.0508985102 – ident: e_1_2_9_61_1 doi: 10.4996/fireecology.1301058 – ident: e_1_2_9_26_1 doi: 10.1111/1365-2745.12575 – ident: e_1_2_9_77_1 doi: 10.1111/ele.12717 – ident: e_1_2_9_25_1 doi: 10.1023/B:CLIM.0000024667.89579.ed – ident: e_1_2_9_79_1 doi: 10.2737/PSW-GTR-256 – ident: e_1_2_9_54_1 doi: 10.1109/LGRS.2005.857030 – ident: e_1_2_9_83_1 doi: 10.2737/RMRS-RP-29 – ident: e_1_2_9_76_1 doi: 10.1111/1365-2745.12342 – ident: e_1_2_9_18_1 doi: 10.1890/ES11-00271.1 – ident: e_1_2_9_21_1 doi: 10.1029/2005RG000183 – volume-title: Landsat 8 Surface Reflectance code (LASRC) product guide version 1.0 year: 2018 ident: e_1_2_9_101_1 – ident: e_1_2_9_62_1 doi: 10.1016/j.rse.2006.12.006 – ident: e_1_2_9_68_1 doi: 10.3390/land6020043 – ident: e_1_2_9_5_1 doi: 10.1111/j.1600-0587.2012.07364.x – ident: e_1_2_9_84_1 doi: 10.1111/1365-2664.12511 – ident: e_1_2_9_13_1 doi: 10.1007/s10980-013-9923-8 – ident: e_1_2_9_9_1 doi: 10.1890/13-1077.1 – ident: e_1_2_9_16_1 doi: 10.1890/13-0677.1 – ident: e_1_2_9_71_1 doi: 10.1111/j.1461-0248.2008.01186.x – ident: e_1_2_9_111_1 doi: 10.1002/ecy.2571 – ident: e_1_2_9_38_1 doi: 10.1016/j.foreco.2009.08.017 – ident: e_1_2_9_23_1 doi: 10.1073/pnas.1417043112 – ident: e_1_2_9_73_1 doi: 10.1029/2012JG002128 – ident: e_1_2_9_92_1 doi: 10.1111/ele.12889 – ident: e_1_2_9_6_1 doi: 10.2307/1939341 – ident: e_1_2_9_43_1 doi: 10.1371/journal.pone.0062111 – ident: e_1_2_9_98_1 doi: 10.1890/0012-9615(1997)067[0411:EOFSAP]2.0.CO;2 – ident: e_1_2_9_42_1 doi: 10.1071/WF07049 – ident: e_1_2_9_97_1 doi: 10.1007/BF00135079 – ident: e_1_2_9_10_1 doi: 10.1186/s42408-019-0035-y – ident: e_1_2_9_47_1 doi: 10.1002/ecs2.1632 – ident: e_1_2_9_108_1 doi: 10.1002/ecs2.1609 – ident: e_1_2_9_102_1 doi: 10.1007/s11222-016-9696-4 – ident: e_1_2_9_40_1 doi: 10.1111/j.1654-1103.2010.01220.x – ident: e_1_2_9_8_1 doi: 10.3390/rs4020456 – ident: e_1_2_9_53_1 doi: 10.4996/fireecology.1201013 – ident: e_1_2_9_110_1 doi: 10.1038/nclimate1693 – ident: e_1_2_9_91_1 doi: 10.1139/cjfr-2016-0185 – ident: e_1_2_9_11_1 doi: 10.1146/annurev.ecolsys.31.1.343 – ident: e_1_2_9_69_1 doi: 10.1073/pnas.0403822101 – ident: e_1_2_9_12_1 doi: 10.1111/gcb.13160 – ident: e_1_2_9_24_1 doi: 10.1109/TGRS.1986.289543 – ident: e_1_2_9_28_1 doi: 10.1016/j.rse.2017.06.031 – ident: e_1_2_9_60_1 doi: 10.4996/fireecology.0803041 – ident: e_1_2_9_2_1 doi: 10.1002/joc.3413 – ident: e_1_2_9_107_1 doi: 10.1002/ecs2.2182 – ident: e_1_2_9_45_1 |
| SSID | ssj0012971 |
| Score | 2.6001468 |
| Snippet | A ‘resilient’ forest endures disturbance and is likely to persist. Resilience to wildfire may arise from feedback between fire behaviour and forest structure... A 'resilient' forest endures disturbance and is likely to persist. Resilience to wildfire may arise from feedback between fire behaviour and forest structure... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 483 |
| SubjectTerms | California Coniferous forests disturbance Dry forests Ecosystem fire behavior Fire prevention fire severity fire suppression Fires forest Forest ecosystems Forest management forest structure Forests homogenization mountains overstory Resilience severity Sierra Nevada Terrestrial ecosystems texture analysis Tracheophyta tree mortality Trees wildfire Wildfires |
| Title | Local forest structure variability increases resilience to wildfire in dry western U.S. coniferous forests |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fele.13447 https://www.ncbi.nlm.nih.gov/pubmed/31922344 https://www.proquest.com/docview/2351864020 https://www.proquest.com/docview/2336259985 https://www.proquest.com/docview/2551914895 |
| Volume | 23 |
| WOSCitedRecordID | wos000506464100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1461-0248 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012971 issn: 1461-023X databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qq-DF96M-yioevLQ0m02ziyfRFg-liFrpLWRfoEgqjS303zubpEHxgeBtSSZhsjsz-33J5luAM2u1ECpUTV9p3WS2HWPOYV5JQz0jZGyDTInpsR8OBnw0ErcVuFj8C5PrQ5Qv3FxmZPXaJXgs0w9JjlW55Tm9uiWoUYzboAq167vesF9-RKAi51usg4yZ-qNCWMgt5Ckv_jwdfcGYnyFrNuf01v_l7QasFVCTXOaxsQkVk2zBSr755Bxb3Uywer4Nz303oRGEr-gUyRVlpxNDZsijcxnvOXlKHLxMTUrQCA-5gkDexgS90RbLJhoQPZmTQnmBDFv3LYJc262cGU_T4ubpDgx73Yerm2axB0NT-RxrqEXAp0NrlFZta0KqmRdKLULp6wDRorRMcsXcVrJWOSoVe4gwEDJy3bZcaervQjUZJ2YfiKEdzRQCLCGdrr0UXEnGDRM2lILSuA7ni6GIVCFQ7vbJeIkWRAU7Mco6sQ6npelrrsrxndHRYjyjIjHTiPqBxzuONNfhpDyNKeW-k8SJwR5BG989iuDBLzaINAVSSYE2e3mslJ5gVUPQxRg-UBYSP7sYdfvdrHHwd9NDWKWO82fr4I6gikFhjmFZzd6e0kkDlsIRbxSZ8A4_Sgs4 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VFlQuvAuBAgviwMVRvN7EXqmXChIVYSIEDcrN8r6kIuSguK2Uf883tmNR8RASN8seW7OzM7Pf7K6_JXoVgtPapjZKrHORCqMSMYe4Ml7GXpsyjBsmpi95Op9ny6X-uENH239hWn6IfsKNI6PJ1xzgPCH9U5QjLQ9jJqy7RnsKbgT_3nv7abbI-1UEqduCS01QMstk2TEL8U6e_uWr49EvIPMqZm0Gndnt_1P3Dt3qwKY4br3jLu346h7daI-f3OBq2lBWb-7T15yHNAEAC61Eyyl7sfbiEpV0S-S9EWcVA8za1wJCuMUpQZyvBNRxAYkTAsKtN6LjXhCL4eehQLXNe2dWF3X38foBLWbT0zcnUXcKQ2Rh0zQKgHwuDd46Owo-lU7FqXE6NYkbAy-aoExmFR8mGywXU2UMjAHQmLlRyKyTyQHtVqvKPyLh5cQpC4ilDTPbG51ZozKvdEiNlrIc0OttXxS2oyjnkzK-FdtSBUYsGiMO6GUv-r3l5fid0OG2Q4suNOtCJuM4m3DZPKAX_WMEFa-UlJWHRSCTcFN0Nv6LDLCmRjGpIfOwdZZeE-Q1wC6l0KDGJ_6sYjHNp83F438XfU77J6cf8iJ_N3__hG5KngFodsUd0i4cxD-l6_by_KxeP-sC4gftDw5A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-NAEB-0nuKL9-FX1fPW4x58aWk222YXfBFtOblQRO3Rt5D9goqk0qjQ_96ZJA0n6nFwbyGZhNndmdnf7G5-A_DDe6uUiUwrNNa2hO-k6HPoV9rxwCmd-m7BxPQ7joZDOR6ryyU4WfwLU_JD1Atu5BlFvCYHd_fW_-HlGJbbARHWLcOKoCIyDVg5vxqM4noXgasy4RI9TJl5OK6YhegkT_3yy_noFch8iVmLSWfw8f_U_QQbFdhkp6V1fIYll32B1bL85Byv-gVl9XwTbmOa0hgCWNSKlZyyjzPHnjCTLom852ySEcDMXc5QCG9RSGAPU4bqWI-BEwWYnc1Zxb3ARu3rNsNsm87OTB_z6uP5FowG_Zuzn62qCkPLhBKjqEfIZyPvjDUd7yJuRRBpqyId2i7iRe2FlkZQMVlvKJlKA8QYCBql7XhpLA-3oZFNM7cLzPGeFQYhltLEbK-VNFpIJ5SPtOI8bcLxYiwSU1GUU6WMu2SRqmAnJkUnNuF7LXpf8nK8JXSwGNCkcs084WE3kD1Km5twVD9Gp6KdkjRz2CMoE1JTlOz-RQaxpsJkUqHMTmkstSYY1xB2CYENKmzifRWTftwvLvb-XfQbrF2eD5L4YvhrH9Y5LQAUh-IOoIH24b7CB_P0MMlnh5U_PANjng27 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+forest+structure+variability+increases+resilience+to+wildfire+in+dry+western+U.S.+coniferous+forests&rft.jtitle=Ecology+letters&rft.au=Koontz%2C+Michael+J&rft.au=North%2C+Malcolm+P&rft.au=Werner%2C+Chhaya+M&rft.au=Fick%2C+Stephen+E.&rft.date=2020-03-01&rft.issn=1461-023X&rft.volume=23&rft.issue=3+p.483-494&rft.spage=483&rft.epage=494&rft_id=info:doi/10.1111%2Fele.13447&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon |