A combined first‐ and second‐order approach for model predictive control

This article presents a simple iterative method that combines first‐ and second‐order approaches for linear model predictive control (MPC). Approximate value functions requiring only first‐order derivatives and incorporating fixed second‐order information are employed, which leads to a method that s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International Journal of Robust and Nonlinear Control Ročník 31; číslo 10; s. 4553 - 4569
Hlavní autoři: Deng, Haoyang, Ohtsuka, Toshiyuki
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bognor Regis Wiley 10.07.2021
Wiley Subscription Services, Inc
Témata:
ISSN:1049-8923, 1099-1239
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article presents a simple iterative method that combines first‐ and second‐order approaches for linear model predictive control (MPC). Approximate value functions requiring only first‐order derivatives and incorporating fixed second‐order information are employed, which leads to a method that splits the MPC problem into subproblems along the prediction horizon, and only the states and costates (Lagrange multipliers corresponding to the state equations) are exchanged between consecutive subproblems during iteration. The convergence is guaranteed under the framework of the majorization minimization principle. For efficient implementation, practical details are discussed, and the performance was assessed against both first‐ and second‐order methods with two numerical experiments. The results indicate that the proposed method can obtain a moderately accurate solution with a small number of cheap iterations.
Bibliografie:Funding information
JSPS KAKENHI, 15H02257
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1049-8923
1099-1239
DOI:10.1002/rnc.5497