The maximum-likelihood strategy for determining transcranial magnetic stimulation motor threshold, using parameter estimation by sequential testing is faster than conventional methods with similar precision
The resting motor threshold (rMT) is the basic unit of transcranial magnetic stimulation (TMS) dosing. Traditional methods of determining rMT involve finding a threshold of either visible movement or electromyography (EMG) motor-evoked potentials, commonly approached from above and below and then av...
Gespeichert in:
| Veröffentlicht in: | The journal of ECT Jg. 20; H. 3; S. 160 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
01.09.2004
|
| Schlagworte: | |
| ISSN: | 1095-0680 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The resting motor threshold (rMT) is the basic unit of transcranial magnetic stimulation (TMS) dosing. Traditional methods of determining rMT involve finding a threshold of either visible movement or electromyography (EMG) motor-evoked potentials, commonly approached from above and below and then averaged. This time-consuming method typically uses many TMS pulses. Mathematical programs can efficiently determine a threshold by calculating the next intensity needed based on the prior results. Within our group of experienced TMS researchers, we sought to perform an illustrative study to compare one of these programs, the Maximum-Likelihood Strategy using Parameter Estimation by Sequential Testing (MLS-PEST) approach, to a modification of the traditional International Federation of Clinical Neurophysiology (IFCN) method for determining rMT in terms of the time and pulses required and the rMT value.
One subject participated in the study. Five researchers determined the same subject's rMT on 4 separate days-twice using EMG and twice using visible movement. On each visit, researchers used both the MLS-PEST and the IFCN methods, in alternating order.
The MLS-PEST approach was significantly faster and used fewer pulses to estimate rMT. For EMG-determined rMT, MLS-PEST and IFCN derived similar rMT, whereas for visible movement MLS-PEST rMT was higher than for IFCN.
The MLS-PEST algorithm is a promising alternative to traditional, time-consuming methods for determining rMT. Because the EMG-PEST method is totally automated, it may prove useful in studies using rMT as a quickly changing variable, as well as in large-scale clinical trials. Further work with PEST is warranted. |
|---|---|
| AbstractList | The resting motor threshold (rMT) is the basic unit of transcranial magnetic stimulation (TMS) dosing. Traditional methods of determining rMT involve finding a threshold of either visible movement or electromyography (EMG) motor-evoked potentials, commonly approached from above and below and then averaged. This time-consuming method typically uses many TMS pulses. Mathematical programs can efficiently determine a threshold by calculating the next intensity needed based on the prior results. Within our group of experienced TMS researchers, we sought to perform an illustrative study to compare one of these programs, the Maximum-Likelihood Strategy using Parameter Estimation by Sequential Testing (MLS-PEST) approach, to a modification of the traditional International Federation of Clinical Neurophysiology (IFCN) method for determining rMT in terms of the time and pulses required and the rMT value.BACKGROUNDThe resting motor threshold (rMT) is the basic unit of transcranial magnetic stimulation (TMS) dosing. Traditional methods of determining rMT involve finding a threshold of either visible movement or electromyography (EMG) motor-evoked potentials, commonly approached from above and below and then averaged. This time-consuming method typically uses many TMS pulses. Mathematical programs can efficiently determine a threshold by calculating the next intensity needed based on the prior results. Within our group of experienced TMS researchers, we sought to perform an illustrative study to compare one of these programs, the Maximum-Likelihood Strategy using Parameter Estimation by Sequential Testing (MLS-PEST) approach, to a modification of the traditional International Federation of Clinical Neurophysiology (IFCN) method for determining rMT in terms of the time and pulses required and the rMT value.One subject participated in the study. Five researchers determined the same subject's rMT on 4 separate days-twice using EMG and twice using visible movement. On each visit, researchers used both the MLS-PEST and the IFCN methods, in alternating order.METHODSOne subject participated in the study. Five researchers determined the same subject's rMT on 4 separate days-twice using EMG and twice using visible movement. On each visit, researchers used both the MLS-PEST and the IFCN methods, in alternating order.The MLS-PEST approach was significantly faster and used fewer pulses to estimate rMT. For EMG-determined rMT, MLS-PEST and IFCN derived similar rMT, whereas for visible movement MLS-PEST rMT was higher than for IFCN.RESULTSThe MLS-PEST approach was significantly faster and used fewer pulses to estimate rMT. For EMG-determined rMT, MLS-PEST and IFCN derived similar rMT, whereas for visible movement MLS-PEST rMT was higher than for IFCN.The MLS-PEST algorithm is a promising alternative to traditional, time-consuming methods for determining rMT. Because the EMG-PEST method is totally automated, it may prove useful in studies using rMT as a quickly changing variable, as well as in large-scale clinical trials. Further work with PEST is warranted.CONCLUSIONSThe MLS-PEST algorithm is a promising alternative to traditional, time-consuming methods for determining rMT. Because the EMG-PEST method is totally automated, it may prove useful in studies using rMT as a quickly changing variable, as well as in large-scale clinical trials. Further work with PEST is warranted. The resting motor threshold (rMT) is the basic unit of transcranial magnetic stimulation (TMS) dosing. Traditional methods of determining rMT involve finding a threshold of either visible movement or electromyography (EMG) motor-evoked potentials, commonly approached from above and below and then averaged. This time-consuming method typically uses many TMS pulses. Mathematical programs can efficiently determine a threshold by calculating the next intensity needed based on the prior results. Within our group of experienced TMS researchers, we sought to perform an illustrative study to compare one of these programs, the Maximum-Likelihood Strategy using Parameter Estimation by Sequential Testing (MLS-PEST) approach, to a modification of the traditional International Federation of Clinical Neurophysiology (IFCN) method for determining rMT in terms of the time and pulses required and the rMT value. One subject participated in the study. Five researchers determined the same subject's rMT on 4 separate days-twice using EMG and twice using visible movement. On each visit, researchers used both the MLS-PEST and the IFCN methods, in alternating order. The MLS-PEST approach was significantly faster and used fewer pulses to estimate rMT. For EMG-determined rMT, MLS-PEST and IFCN derived similar rMT, whereas for visible movement MLS-PEST rMT was higher than for IFCN. The MLS-PEST algorithm is a promising alternative to traditional, time-consuming methods for determining rMT. Because the EMG-PEST method is totally automated, it may prove useful in studies using rMT as a quickly changing variable, as well as in large-scale clinical trials. Further work with PEST is warranted. |
| Author | Stroud, Zachary George, Mark S Molnar, Christine Li, Xingbao Myrick, Hugh Kozel, F Andrew Nahas, Ziad Mishory, Alexander Koola, Jejo |
| Author_xml | – sequence: 1 givenname: Alexander surname: Mishory fullname: Mishory, Alexander email: mishory@musc.edu organization: Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston 29425, USA. mishory@musc.edu – sequence: 2 givenname: Christine surname: Molnar fullname: Molnar, Christine – sequence: 3 givenname: Jejo surname: Koola fullname: Koola, Jejo – sequence: 4 givenname: Xingbao surname: Li fullname: Li, Xingbao – sequence: 5 givenname: F Andrew surname: Kozel fullname: Kozel, F Andrew – sequence: 6 givenname: Hugh surname: Myrick fullname: Myrick, Hugh – sequence: 7 givenname: Zachary surname: Stroud fullname: Stroud, Zachary – sequence: 8 givenname: Ziad surname: Nahas fullname: Nahas, Ziad – sequence: 9 givenname: Mark S surname: George fullname: George, Mark S |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15343000$$D View this record in MEDLINE/PubMed |
| BookMark | eNo10ctOxCAUBmAWGu-vYFi5snoKLXSWxnhLTNzoesKU0ynKZQSqzkv6TNKoCyDhfOcHwiHZ8cEjIbSGixoW8hKgZk0Li4oBNLAAgKoMkDvkoNTbCkQH--QwpdciJedij-zXLW94QQfk-3lE6tSXcZOrrHlDa8YQNE05qozrLR1CpBozRme88Wta9n3qy2SULY1rj9n0hZcAq7IJnrqQS08eI6YxWH1OpzQ3blRUbg6iOOtfu9rShO8T-jzH5blSqEl0UGmmeVSe9sF_zCL4-UjMY9CJfpo80mScsSrSTcTepAKOye6gbMKTv_WIvNzePF_fV49Pdw_XV49VzzshK1lzUFzwmjOUyDSojndaSy16UXMOvB2wVR1TMDSsWYmOCQmc91zKRsu2Y0fk7Dd3E0O5fspLZ1KP1iqPYUpLIbpipSzw9A9OK4d6uYnl6XG7_P8B9gP_o4_0 |
| CitedBy_id | crossref_primary_10_1038_s41386_024_01871_w crossref_primary_10_1080_08990220_2018_1460263 crossref_primary_10_1016_j_brs_2018_11_003 crossref_primary_10_1186_s13063_024_07913_4 crossref_primary_10_3389_fnagi_2014_00182 crossref_primary_10_1371_journal_pone_0060358 crossref_primary_10_1093_pm_pnx036 crossref_primary_10_1097_01_yct_0000235923_52741_72 crossref_primary_10_1016_j_brs_2019_04_015 crossref_primary_10_1186_s13063_024_08121_w crossref_primary_10_1111_j_1526_4637_2009_00657_x crossref_primary_10_3390_brainsci15070700 crossref_primary_10_1016_j_brs_2018_04_012 crossref_primary_10_3109_15622975_2014_925141 crossref_primary_10_3389_fneur_2024_1460925 crossref_primary_10_1016_j_clinph_2013_04_343 crossref_primary_10_1016_j_jstrokecerebrovasdis_2014_10_021 crossref_primary_10_1097_01_yct_0000244248_40662_9a crossref_primary_10_1088_1741_2552_acf1cc crossref_primary_10_1016_j_brs_2010_10_002 crossref_primary_10_1186_s12883_020_01881_3 crossref_primary_10_1186_s13102_019_0120_1 crossref_primary_10_1371_journal_pone_0073789 crossref_primary_10_1007_s13534_022_00259_3 crossref_primary_10_1016_j_jad_2017_12_046 crossref_primary_10_1097_WNP_0000000000000994 crossref_primary_10_1152_jn_00689_2020 crossref_primary_10_1016_j_neubiorev_2023_105273 crossref_primary_10_1371_journal_pone_0021421 crossref_primary_10_1007_s10548_016_0470_x crossref_primary_10_1016_j_clinph_2012_01_010 crossref_primary_10_3389_fnhum_2016_00049 crossref_primary_10_4085_1062_6050_50_5_08 crossref_primary_10_3390_brainsci14090919 crossref_primary_10_1002_hbm_20649 crossref_primary_10_1097_j_pain_0000000000003488 crossref_primary_10_7717_peerj_6163 crossref_primary_10_1080_08990220_2020_1815691 crossref_primary_10_1109_TNSRE_2019_2926543 crossref_primary_10_3389_fnhum_2020_578127 crossref_primary_10_3233_JAD_210311 crossref_primary_10_1016_j_brs_2020_05_012 crossref_primary_10_1016_j_jad_2019_07_019 crossref_primary_10_1080_01612840_2016_1239794 crossref_primary_10_1177_2396987320934935 crossref_primary_10_1109_TBME_2024_3450789 crossref_primary_10_1371_journal_pone_0110004 crossref_primary_10_3389_fnins_2019_00286 crossref_primary_10_1002_ana_26509 crossref_primary_10_1016_j_neuropsychologia_2019_107205 crossref_primary_10_1016_j_neulet_2012_12_029 crossref_primary_10_1111_j_1460_9568_2007_05531_x crossref_primary_10_1016_j_brs_2008_02_002 crossref_primary_10_1016_j_clinph_2012_09_018 crossref_primary_10_1177_15459683211065448 crossref_primary_10_1016_j_neulet_2015_06_008 crossref_primary_10_3389_fnins_2018_00954 crossref_primary_10_1111_j_1469_8986_2006_00487_x crossref_primary_10_3389_fnins_2017_00580 crossref_primary_10_1016_j_jneumeth_2008_06_032 crossref_primary_10_1097_01_yct_0000235924_60364_27 crossref_primary_10_1016_j_clinph_2019_04_004 crossref_primary_10_1016_j_jad_2010_10_011 crossref_primary_10_1007_s00221_025_07003_0 crossref_primary_10_1080_13554794_2013_860173 crossref_primary_10_1016_j_drugalcdep_2024_111278 crossref_primary_10_1016_j_clinph_2009_09_034 crossref_primary_10_1038_s41598_020_72909_4 crossref_primary_10_3390_jcm12185993 crossref_primary_10_1097_YCT_0b013e3181ce1a8c crossref_primary_10_1016_j_jneumeth_2020_108950 crossref_primary_10_3389_fneur_2025_1605157 crossref_primary_10_3109_15622975_2011_615861 crossref_primary_10_1016_j_brs_2020_01_009 crossref_primary_10_1371_journal_pone_0211279 crossref_primary_10_1111_j_1528_1167_2008_01562_x crossref_primary_10_1002_jnr_24319 crossref_primary_10_1038_s41526_020_00116_6 crossref_primary_10_1016_j_brs_2009_08_003 crossref_primary_10_1016_j_clinph_2013_06_187 crossref_primary_10_3390_brainsci14030253 crossref_primary_10_1371_journal_pone_0076824 crossref_primary_10_1097_YCT_0b013e3181f5581c crossref_primary_10_1016_j_clinph_2015_02_001 crossref_primary_10_1016_j_psychres_2019_01_004 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1097/00124509-200409000-00007 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| ExternalDocumentID | 15343000 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: NIAAA NIH HHS grantid: 2 P50 AA10761-03 – fundername: NINDS NIH HHS grantid: R01 NS40956-1 – fundername: NCRR NIH HHS grantid: R01 RR 14080-02 – fundername: NCRR NIH HHS grantid: R01 RR14080-01 |
| GroupedDBID | --- .3C .Z2 0R~ 123 4Q1 4Q2 4Q3 53G 5RE 8L- AAAAV AAHPQ AAIQE AAMTA AARTV AASCR AAWTL AAYEP ABASU ABBUW ABDIG ABIVO ABJNI ABVCZ ABXVJ ABZAD ACDDN ACEWG ACGFS ACHQT ACILI ACNWC ACPRK ACWDW ACWRI ACXJB ACXNZ ADFPA ADGGA ADHPY ADNKB AE3 AEETU AENEX AFDTB AFMFG AHMBA AHQNM AHVBC AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW BQLVK BS7 BYPQX C45 CGR CS3 CUY CVF DIWNM DU5 DUNZO E.X EBS ECM EEVPB EIF EJD EX3 F5P FCALG FL- GNXGY GQDEL H0~ HLJTE HZ~ IKREB IN~ JF9 JG8 JK3 JK8 K8S KD2 NPM N~M O9- OAG OAH OCUKA ODA OLG OLW OPUJH OPX ORVUJ OUVQU OVD OVDNE OWU OWV OWW OWX OWY OWZ OXXIT P-K PQQKQ R58 RLZ S4R S4S T8P TEORI TSPGW V2I W3M WOQ WOW X3V X3W XXN XYM YFH ZZMQN 7X8 ABPXF ADKSD |
| ID | FETCH-LOGICAL-c3867-7130a363132e7e2d0a838dd7d6c6133035fe5a82a0f424b68267033c3774d7582 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 108 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000224068000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1095-0680 |
| IngestDate | Mon Sep 08 11:16:08 EDT 2025 Wed Feb 19 01:39:01 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3867-7130a363132e7e2d0a838dd7d6c6133035fe5a82a0f424b68267033c3774d7582 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 15343000 |
| PQID | 66837777 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_66837777 pubmed_primary_15343000 |
| PublicationCentury | 2000 |
| PublicationDate | 2004-September |
| PublicationDateYYYYMMDD | 2004-09-01 |
| PublicationDate_xml | – month: 09 year: 2004 text: 2004-September |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The journal of ECT |
| PublicationTitleAlternate | J ECT |
| PublicationYear | 2004 |
| SSID | ssj0017336 |
| Score | 2.0240107 |
| Snippet | The resting motor threshold (rMT) is the basic unit of transcranial magnetic stimulation (TMS) dosing. Traditional methods of determining rMT involve finding a... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 160 |
| SubjectTerms | Algorithms Analysis of Variance Differential Threshold Electromyography Evoked Potentials, Motor - physiology Humans Likelihood Functions Male Middle Aged Motor Cortex - physiology Software Transcranial Magnetic Stimulation |
| Title | The maximum-likelihood strategy for determining transcranial magnetic stimulation motor threshold, using parameter estimation by sequential testing is faster than conventional methods with similar precision |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/15343000 https://www.proquest.com/docview/66837777 |
| Volume | 20 |
| WOSCitedRecordID | wos000224068000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUocOiFglooLR9z6LER6cZxHAkJIQTiACsOIO1t5dgOikqyWxJQ-ZP8Jt7EWdFLxYEccoltRfFkPjxv3gjxI4WLasvMR7IwaSTzuIy010kkrZG5k2xTe57Zi2w81pNJfrUkDhe1MAyrXOjEXlG7meUz8gOlEErhOpr_ibhnFOdWhwYaH8RKAkeGZTqbvOYQmOivz3VyDbLS8YDjCZSNMGsp5xZYiPOhujrO_u9m9ubm7NP7XnRdrA1uJh0HudgQS775LJ4hE1Sbv1X9UEd31W9_VzGpMbWBofaJ4MCSG_AxMGnUsSGzuEFIMfG24YpHDMcCAUJH2GjM6SAQLeexfhLj6G-JCcVrXoiYxCNUR1LxRAG43fFyHT_B0Kql0jBbA_EhPv2LgqfQ3rolPiymtqorhOE0vx_aAn0RN2en1yfn0dDPIbKJhj5GPBybRDFZpM_8yMVGJ9q5zCkLpwK2NC19avTIxKUcyUIh8oE-Siw-p3SIa0abYrmZNf6roMIgcE2Z0lQhwC9-5UWmysx4XSbOF1Zti_3F5kzxv3ASxDR-9tBOF9uzLbbC_k7ngdZjCt0vE0jBtzfnfhcfA4CHoWY7YqWEpvC7YtU-dlV7v9eLIe7jq8sXQGjsbQ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+maximum-likelihood+strategy+for+determining+transcranial+magnetic+stimulation+motor+threshold%2C+using+parameter+estimation+by+sequential+testing+is+faster+than+conventional+methods+with+similar+precision&rft.jtitle=The+journal+of+ECT&rft.au=Mishory%2C+Alexander&rft.au=Molnar%2C+Christine&rft.au=Koola%2C+Jejo&rft.au=Li%2C+Xingbao&rft.date=2004-09-01&rft.issn=1095-0680&rft.volume=20&rft.issue=3&rft.spage=160&rft_id=info:doi/10.1097%2F00124509-200409000-00007&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1095-0680&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1095-0680&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1095-0680&client=summon |