The maximum-likelihood strategy for determining transcranial magnetic stimulation motor threshold, using parameter estimation by sequential testing is faster than conventional methods with similar precision

The resting motor threshold (rMT) is the basic unit of transcranial magnetic stimulation (TMS) dosing. Traditional methods of determining rMT involve finding a threshold of either visible movement or electromyography (EMG) motor-evoked potentials, commonly approached from above and below and then av...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The journal of ECT Ročník 20; číslo 3; s. 160
Hlavní autoři: Mishory, Alexander, Molnar, Christine, Koola, Jejo, Li, Xingbao, Kozel, F Andrew, Myrick, Hugh, Stroud, Zachary, Nahas, Ziad, George, Mark S
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.09.2004
Témata:
ISSN:1095-0680
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The resting motor threshold (rMT) is the basic unit of transcranial magnetic stimulation (TMS) dosing. Traditional methods of determining rMT involve finding a threshold of either visible movement or electromyography (EMG) motor-evoked potentials, commonly approached from above and below and then averaged. This time-consuming method typically uses many TMS pulses. Mathematical programs can efficiently determine a threshold by calculating the next intensity needed based on the prior results. Within our group of experienced TMS researchers, we sought to perform an illustrative study to compare one of these programs, the Maximum-Likelihood Strategy using Parameter Estimation by Sequential Testing (MLS-PEST) approach, to a modification of the traditional International Federation of Clinical Neurophysiology (IFCN) method for determining rMT in terms of the time and pulses required and the rMT value. One subject participated in the study. Five researchers determined the same subject's rMT on 4 separate days-twice using EMG and twice using visible movement. On each visit, researchers used both the MLS-PEST and the IFCN methods, in alternating order. The MLS-PEST approach was significantly faster and used fewer pulses to estimate rMT. For EMG-determined rMT, MLS-PEST and IFCN derived similar rMT, whereas for visible movement MLS-PEST rMT was higher than for IFCN. The MLS-PEST algorithm is a promising alternative to traditional, time-consuming methods for determining rMT. Because the EMG-PEST method is totally automated, it may prove useful in studies using rMT as a quickly changing variable, as well as in large-scale clinical trials. Further work with PEST is warranted.
AbstractList The resting motor threshold (rMT) is the basic unit of transcranial magnetic stimulation (TMS) dosing. Traditional methods of determining rMT involve finding a threshold of either visible movement or electromyography (EMG) motor-evoked potentials, commonly approached from above and below and then averaged. This time-consuming method typically uses many TMS pulses. Mathematical programs can efficiently determine a threshold by calculating the next intensity needed based on the prior results. Within our group of experienced TMS researchers, we sought to perform an illustrative study to compare one of these programs, the Maximum-Likelihood Strategy using Parameter Estimation by Sequential Testing (MLS-PEST) approach, to a modification of the traditional International Federation of Clinical Neurophysiology (IFCN) method for determining rMT in terms of the time and pulses required and the rMT value. One subject participated in the study. Five researchers determined the same subject's rMT on 4 separate days-twice using EMG and twice using visible movement. On each visit, researchers used both the MLS-PEST and the IFCN methods, in alternating order. The MLS-PEST approach was significantly faster and used fewer pulses to estimate rMT. For EMG-determined rMT, MLS-PEST and IFCN derived similar rMT, whereas for visible movement MLS-PEST rMT was higher than for IFCN. The MLS-PEST algorithm is a promising alternative to traditional, time-consuming methods for determining rMT. Because the EMG-PEST method is totally automated, it may prove useful in studies using rMT as a quickly changing variable, as well as in large-scale clinical trials. Further work with PEST is warranted.
The resting motor threshold (rMT) is the basic unit of transcranial magnetic stimulation (TMS) dosing. Traditional methods of determining rMT involve finding a threshold of either visible movement or electromyography (EMG) motor-evoked potentials, commonly approached from above and below and then averaged. This time-consuming method typically uses many TMS pulses. Mathematical programs can efficiently determine a threshold by calculating the next intensity needed based on the prior results. Within our group of experienced TMS researchers, we sought to perform an illustrative study to compare one of these programs, the Maximum-Likelihood Strategy using Parameter Estimation by Sequential Testing (MLS-PEST) approach, to a modification of the traditional International Federation of Clinical Neurophysiology (IFCN) method for determining rMT in terms of the time and pulses required and the rMT value.BACKGROUNDThe resting motor threshold (rMT) is the basic unit of transcranial magnetic stimulation (TMS) dosing. Traditional methods of determining rMT involve finding a threshold of either visible movement or electromyography (EMG) motor-evoked potentials, commonly approached from above and below and then averaged. This time-consuming method typically uses many TMS pulses. Mathematical programs can efficiently determine a threshold by calculating the next intensity needed based on the prior results. Within our group of experienced TMS researchers, we sought to perform an illustrative study to compare one of these programs, the Maximum-Likelihood Strategy using Parameter Estimation by Sequential Testing (MLS-PEST) approach, to a modification of the traditional International Federation of Clinical Neurophysiology (IFCN) method for determining rMT in terms of the time and pulses required and the rMT value.One subject participated in the study. Five researchers determined the same subject's rMT on 4 separate days-twice using EMG and twice using visible movement. On each visit, researchers used both the MLS-PEST and the IFCN methods, in alternating order.METHODSOne subject participated in the study. Five researchers determined the same subject's rMT on 4 separate days-twice using EMG and twice using visible movement. On each visit, researchers used both the MLS-PEST and the IFCN methods, in alternating order.The MLS-PEST approach was significantly faster and used fewer pulses to estimate rMT. For EMG-determined rMT, MLS-PEST and IFCN derived similar rMT, whereas for visible movement MLS-PEST rMT was higher than for IFCN.RESULTSThe MLS-PEST approach was significantly faster and used fewer pulses to estimate rMT. For EMG-determined rMT, MLS-PEST and IFCN derived similar rMT, whereas for visible movement MLS-PEST rMT was higher than for IFCN.The MLS-PEST algorithm is a promising alternative to traditional, time-consuming methods for determining rMT. Because the EMG-PEST method is totally automated, it may prove useful in studies using rMT as a quickly changing variable, as well as in large-scale clinical trials. Further work with PEST is warranted.CONCLUSIONSThe MLS-PEST algorithm is a promising alternative to traditional, time-consuming methods for determining rMT. Because the EMG-PEST method is totally automated, it may prove useful in studies using rMT as a quickly changing variable, as well as in large-scale clinical trials. Further work with PEST is warranted.
Author Stroud, Zachary
George, Mark S
Molnar, Christine
Li, Xingbao
Myrick, Hugh
Kozel, F Andrew
Nahas, Ziad
Mishory, Alexander
Koola, Jejo
Author_xml – sequence: 1
  givenname: Alexander
  surname: Mishory
  fullname: Mishory, Alexander
  email: mishory@musc.edu
  organization: Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston 29425, USA. mishory@musc.edu
– sequence: 2
  givenname: Christine
  surname: Molnar
  fullname: Molnar, Christine
– sequence: 3
  givenname: Jejo
  surname: Koola
  fullname: Koola, Jejo
– sequence: 4
  givenname: Xingbao
  surname: Li
  fullname: Li, Xingbao
– sequence: 5
  givenname: F Andrew
  surname: Kozel
  fullname: Kozel, F Andrew
– sequence: 6
  givenname: Hugh
  surname: Myrick
  fullname: Myrick, Hugh
– sequence: 7
  givenname: Zachary
  surname: Stroud
  fullname: Stroud, Zachary
– sequence: 8
  givenname: Ziad
  surname: Nahas
  fullname: Nahas, Ziad
– sequence: 9
  givenname: Mark S
  surname: George
  fullname: George, Mark S
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15343000$$D View this record in MEDLINE/PubMed
BookMark eNo10ctOxCAUBmAWGu-vYFi5snoKLXSWxnhLTNzoesKU0ynKZQSqzkv6TNKoCyDhfOcHwiHZ8cEjIbSGixoW8hKgZk0Li4oBNLAAgKoMkDvkoNTbCkQH--QwpdciJedij-zXLW94QQfk-3lE6tSXcZOrrHlDa8YQNE05qozrLR1CpBozRme88Wta9n3qy2SULY1rj9n0hZcAq7IJnrqQS08eI6YxWH1OpzQ3blRUbg6iOOtfu9rShO8T-jzH5blSqEl0UGmmeVSe9sF_zCL4-UjMY9CJfpo80mScsSrSTcTepAKOye6gbMKTv_WIvNzePF_fV49Pdw_XV49VzzshK1lzUFzwmjOUyDSojndaSy16UXMOvB2wVR1TMDSsWYmOCQmc91zKRsu2Y0fk7Dd3E0O5fspLZ1KP1iqPYUpLIbpipSzw9A9OK4d6uYnl6XG7_P8B9gP_o4_0
CitedBy_id crossref_primary_10_1038_s41386_024_01871_w
crossref_primary_10_1080_08990220_2018_1460263
crossref_primary_10_1016_j_brs_2018_11_003
crossref_primary_10_1186_s13063_024_07913_4
crossref_primary_10_3389_fnagi_2014_00182
crossref_primary_10_1371_journal_pone_0060358
crossref_primary_10_1093_pm_pnx036
crossref_primary_10_1097_01_yct_0000235923_52741_72
crossref_primary_10_1016_j_brs_2019_04_015
crossref_primary_10_1186_s13063_024_08121_w
crossref_primary_10_1111_j_1526_4637_2009_00657_x
crossref_primary_10_3390_brainsci15070700
crossref_primary_10_1016_j_brs_2018_04_012
crossref_primary_10_3109_15622975_2014_925141
crossref_primary_10_3389_fneur_2024_1460925
crossref_primary_10_1016_j_clinph_2013_04_343
crossref_primary_10_1016_j_jstrokecerebrovasdis_2014_10_021
crossref_primary_10_1097_01_yct_0000244248_40662_9a
crossref_primary_10_1088_1741_2552_acf1cc
crossref_primary_10_1016_j_brs_2010_10_002
crossref_primary_10_1186_s12883_020_01881_3
crossref_primary_10_1186_s13102_019_0120_1
crossref_primary_10_1371_journal_pone_0073789
crossref_primary_10_1007_s13534_022_00259_3
crossref_primary_10_1016_j_jad_2017_12_046
crossref_primary_10_1097_WNP_0000000000000994
crossref_primary_10_1152_jn_00689_2020
crossref_primary_10_1016_j_neubiorev_2023_105273
crossref_primary_10_1371_journal_pone_0021421
crossref_primary_10_1007_s10548_016_0470_x
crossref_primary_10_1016_j_clinph_2012_01_010
crossref_primary_10_3389_fnhum_2016_00049
crossref_primary_10_4085_1062_6050_50_5_08
crossref_primary_10_3390_brainsci14090919
crossref_primary_10_1002_hbm_20649
crossref_primary_10_1097_j_pain_0000000000003488
crossref_primary_10_7717_peerj_6163
crossref_primary_10_1080_08990220_2020_1815691
crossref_primary_10_1109_TNSRE_2019_2926543
crossref_primary_10_3389_fnhum_2020_578127
crossref_primary_10_3233_JAD_210311
crossref_primary_10_1016_j_brs_2020_05_012
crossref_primary_10_1016_j_jad_2019_07_019
crossref_primary_10_1080_01612840_2016_1239794
crossref_primary_10_1177_2396987320934935
crossref_primary_10_1109_TBME_2024_3450789
crossref_primary_10_1371_journal_pone_0110004
crossref_primary_10_3389_fnins_2019_00286
crossref_primary_10_1002_ana_26509
crossref_primary_10_1016_j_neuropsychologia_2019_107205
crossref_primary_10_1016_j_neulet_2012_12_029
crossref_primary_10_1111_j_1460_9568_2007_05531_x
crossref_primary_10_1016_j_brs_2008_02_002
crossref_primary_10_1016_j_clinph_2012_09_018
crossref_primary_10_1177_15459683211065448
crossref_primary_10_1016_j_neulet_2015_06_008
crossref_primary_10_3389_fnins_2018_00954
crossref_primary_10_1111_j_1469_8986_2006_00487_x
crossref_primary_10_3389_fnins_2017_00580
crossref_primary_10_1016_j_jneumeth_2008_06_032
crossref_primary_10_1097_01_yct_0000235924_60364_27
crossref_primary_10_1016_j_clinph_2019_04_004
crossref_primary_10_1016_j_jad_2010_10_011
crossref_primary_10_1007_s00221_025_07003_0
crossref_primary_10_1080_13554794_2013_860173
crossref_primary_10_1016_j_drugalcdep_2024_111278
crossref_primary_10_1016_j_clinph_2009_09_034
crossref_primary_10_1038_s41598_020_72909_4
crossref_primary_10_3390_jcm12185993
crossref_primary_10_1097_YCT_0b013e3181ce1a8c
crossref_primary_10_1016_j_jneumeth_2020_108950
crossref_primary_10_3389_fneur_2025_1605157
crossref_primary_10_3109_15622975_2011_615861
crossref_primary_10_1016_j_brs_2020_01_009
crossref_primary_10_1371_journal_pone_0211279
crossref_primary_10_1111_j_1528_1167_2008_01562_x
crossref_primary_10_1002_jnr_24319
crossref_primary_10_1038_s41526_020_00116_6
crossref_primary_10_1016_j_brs_2009_08_003
crossref_primary_10_1016_j_clinph_2013_06_187
crossref_primary_10_3390_brainsci14030253
crossref_primary_10_1371_journal_pone_0076824
crossref_primary_10_1097_YCT_0b013e3181f5581c
crossref_primary_10_1016_j_clinph_2015_02_001
crossref_primary_10_1016_j_psychres_2019_01_004
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1097/00124509-200409000-00007
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
ExternalDocumentID 15343000
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIAAA NIH HHS
  grantid: 2 P50 AA10761-03
– fundername: NINDS NIH HHS
  grantid: R01 NS40956-1
– fundername: NCRR NIH HHS
  grantid: R01 RR 14080-02
– fundername: NCRR NIH HHS
  grantid: R01 RR14080-01
GroupedDBID ---
.3C
.Z2
0R~
123
4Q1
4Q2
4Q3
53G
5RE
8L-
AAAAV
AAHPQ
AAIQE
AAMTA
AARTV
AASCR
AAWTL
AAYEP
ABASU
ABBUW
ABDIG
ABIVO
ABJNI
ABVCZ
ABXVJ
ABZAD
ACDDN
ACEWG
ACGFS
ACHQT
ACILI
ACNWC
ACPRK
ACWDW
ACWRI
ACXJB
ACXNZ
ADFPA
ADGGA
ADHPY
ADNKB
AE3
AEETU
AENEX
AFDTB
AFMFG
AHMBA
AHQNM
AHVBC
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
BQLVK
BS7
BYPQX
C45
CGR
CS3
CUY
CVF
DIWNM
DU5
DUNZO
E.X
EBS
ECM
EEVPB
EIF
EJD
EX3
F5P
FCALG
FL-
GNXGY
GQDEL
H0~
HLJTE
HZ~
IKREB
IN~
JF9
JG8
JK3
JK8
K8S
KD2
NPM
N~M
O9-
OAG
OAH
OCUKA
ODA
OLG
OLW
OPUJH
OPX
ORVUJ
OUVQU
OVD
OVDNE
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
PQQKQ
R58
RLZ
S4R
S4S
T8P
TEORI
TSPGW
V2I
W3M
WOQ
WOW
X3V
X3W
XXN
XYM
YFH
ZZMQN
7X8
ABPXF
ADKSD
ID FETCH-LOGICAL-c3867-7130a363132e7e2d0a838dd7d6c6133035fe5a82a0f424b68267033c3774d7582
IEDL.DBID 7X8
ISICitedReferencesCount 108
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000224068000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1095-0680
IngestDate Mon Sep 08 11:16:08 EDT 2025
Wed Feb 19 01:39:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3867-7130a363132e7e2d0a838dd7d6c6133035fe5a82a0f424b68267033c3774d7582
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 15343000
PQID 66837777
PQPubID 23479
ParticipantIDs proquest_miscellaneous_66837777
pubmed_primary_15343000
PublicationCentury 2000
PublicationDate 2004-September
PublicationDateYYYYMMDD 2004-09-01
PublicationDate_xml – month: 09
  year: 2004
  text: 2004-September
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of ECT
PublicationTitleAlternate J ECT
PublicationYear 2004
SSID ssj0017336
Score 2.0245037
Snippet The resting motor threshold (rMT) is the basic unit of transcranial magnetic stimulation (TMS) dosing. Traditional methods of determining rMT involve finding a...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 160
SubjectTerms Algorithms
Analysis of Variance
Differential Threshold
Electromyography
Evoked Potentials, Motor - physiology
Humans
Likelihood Functions
Male
Middle Aged
Motor Cortex - physiology
Software
Transcranial Magnetic Stimulation
Title The maximum-likelihood strategy for determining transcranial magnetic stimulation motor threshold, using parameter estimation by sequential testing is faster than conventional methods with similar precision
URI https://www.ncbi.nlm.nih.gov/pubmed/15343000
https://www.proquest.com/docview/66837777
Volume 20
WOSCitedRecordID wos000224068000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ4HbiUVtCWQmEOPRI1jZ3EkZAQqrriwopDK-1tlfiBopLsQgLq_sn-pn4TZ9VeKg7kkEtsK4on8_B8840QnzITJ_5LZaJc2SJSvsI_530aeSdTqzUsmPFDs4l8OtWzWXGzIc7XtTAMq1zrxEFR24XhM_LPWYZQCtfF8j7inlGcWx0baGyKbQlHhmU6n_3NITDR35Dr5BrkTMcjjidQNsKspZxbYCEuxurqOP-_mzmYm8ney170tXg1upl0GeTijdhw7b74DZmgpvxVN49NdFf_dHc1kxpTFxhqVwQHluyIj4FJo54NmcENQoqJty1XPGI4FggQOsJGY04Pgeg4j3VGjKO_JSYUb3ghYhKPUB1J1YoCcLvn5Xp-gqF1R75ktgbiQ3z6FwVPob11R3xYTF3d1AjDafkwtgU6ED8m375_vYrGfg6RkRr6GPFwXMqMySJd7hIbl1pqa3ObGTgVsKWpd2mpkzL2KlFVhsgH-kgafE5lEdckb8VWu2jde0GFd5mC6xo775WUsrDKY6DVVaEdbMmhOF1vzhz_CydBytYtHrv5ensOxbuwv_NloPWYQ_crCSn48OzcI7EbADwMNTsW2x6awn0UO-apr7uHk0EMcZ_eXP8BtwntpA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+maximum-likelihood+strategy+for+determining+transcranial+magnetic+stimulation+motor+threshold%2C+using+parameter+estimation+by+sequential+testing+is+faster+than+conventional+methods+with+similar+precision&rft.jtitle=The+journal+of+ECT&rft.au=Mishory%2C+Alexander&rft.au=Molnar%2C+Christine&rft.au=Koola%2C+Jejo&rft.au=Li%2C+Xingbao&rft.date=2004-09-01&rft.issn=1095-0680&rft.volume=20&rft.issue=3&rft.spage=160&rft_id=info:doi/10.1097%2F00124509-200409000-00007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1095-0680&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1095-0680&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1095-0680&client=summon