Coevolution of Machine Learning and Process-Based Modelling to Revolutionize Earth and Environmental Sciences: A Perspective

Machine learning (ML) applications in Earth and environmental sciences (EES) have gained incredible momentum in recent years. However, these ML applications have largely evolved in ‘isolation’ from the mechanistic, process-based modelling (PBM) paradigms, which have historically been the cornerstone...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Hydrological processes Ročník 36; číslo 6
Hlavní autori: Razavi, Saman, Elshorbagy, Amin, Kumar, Sujay, Marshall, Lucy, Solomatine, Dimitri P., Dezfuli, Amin, Sadegh, Mojtaba, Famiglietti, James
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Goddard Space Flight Center Wiley 01.06.2022
John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Predmet:
ISSN:0885-6087, 1099-1085
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Machine learning (ML) applications in Earth and environmental sciences (EES) have gained incredible momentum in recent years. However, these ML applications have largely evolved in ‘isolation’ from the mechanistic, process-based modelling (PBM) paradigms, which have historically been the cornerstone of scientific discovery and policy support. In this perspective, we assert that the cultural barriers between the ML and PBM communities limit the potential of ML, and even its ‘hybridization’ with PBM, for EES applications. Fundamental, but often ignored, differences between ML and PBM are discussed as well as their strengths and weaknesses in light of three overarching modelling objectives in EES, (1) nowcasting and prediction, (2) scenario analysis, and (3) diagnostic learning. The paper ponders over a ‘coevolutionary’ approach to model building, shifting away from a borrowing to a co-creation culture, to develop a generation of models that leverage the unique strengths of ML such as scalability to big data and high-dimensional mapping, while remaining faithful to process-based knowledge base and principles of model explainability and interpretability, and therefore, falsifiability.
AbstractList Machine learning (ML) applications in Earth and environmental sciences (EES) have gained incredible momentum in recent years. However, these ML applications have largely evolved in ‘isolation’ from the mechanistic, process‐based modelling (PBM) paradigms, which have historically been the cornerstone of scientific discovery and policy support. In this perspective, we assert that the cultural barriers between the ML and PBM communities limit the potential of ML, and even its ‘hybridization’ with PBM, for EES applications. Fundamental, but often ignored, differences between ML and PBM are discussed as well as their strengths and weaknesses in light of three overarching modelling objectives in EES, (1) nowcasting and prediction, (2) scenario analysis, and (3) diagnostic learning. The paper ponders over a ‘coevolutionary’ approach to model building, shifting away from a borrowing to a co‐creation culture, to develop a generation of models that leverage the unique strengths of ML such as scalability to big data and high‐dimensional mapping, while remaining faithful to process‐based knowledge base and principles of model explainability and interpretability, and therefore, falsifiability.
Machine learning (ML) applications in Earth and environmental sciences (EES) have gained incredible momentum in recent years. However, these ML applications have largely evolved in ‘isolation’ from the mechanistic, process‐based modelling (PBM) paradigms, which have historically been the cornerstone of scientific discovery and policy support. In this perspective, we assert that the cultural barriers between the ML and PBM communities limit the potential of ML, and even its ‘hybridization’ with PBM, for EES applications. Fundamental, but often ignored, differences between ML and PBM are discussed as well as their strengths and weaknesses in light of three overarching modelling objectives in EES, (1) nowcasting and prediction, (2) scenario analysis, and (3) diagnostic learning. The paper ponders over a ‘coevolutionary’ approach to model building, shifting away from a borrowing to a co‐creation culture, to develop a generation of models that leverage the unique strengths of ML such as scalability to big data and high‐dimensional mapping, while remaining faithful to process‐based knowledge base and principles of model explainability and interpretability, and therefore, falsifiability. In this perspective, we assert that the cultural barriers between the machine learning (ML) and process‐based modelling (PBM) communities limit the potential of ML, and even its ‘hybridization’ with PBM, for EES applications. We ponders over a ‘coevolutionary’ approach to model building, shifting away from a borrowing to a co‐creation culture, to develop a generation of models that leverage the unique strengths of ML such as scalability to big data and high‐dimensional mapping, while remaining faithful to process‐based knowledge base and principles of model explainability and interpretability, and therefore, falsifiability.
Audience PUBLIC
Author Marshall, Lucy
Razavi, Saman
Dezfuli, Amin
Kumar, Sujay
Famiglietti, James
Solomatine, Dimitri P.
Sadegh, Mojtaba
Elshorbagy, Amin
Author_xml – sequence: 1
  givenname: Saman
  orcidid: 0000-0003-1870-5810
  surname: Razavi
  fullname: Razavi, Saman
  organization: University of Saskatchewan
– sequence: 2
  givenname: David Hannah
  orcidid: 0000-0003-1714-1240
  organization: University of Birmingham
– sequence: 3
  givenname: Amin
  surname: Elshorbagy
  fullname: Elshorbagy, Amin
  organization: University of Saskatchewan
– sequence: 4
  givenname: Sujay
  surname: Kumar
  fullname: Kumar, Sujay
  organization: Goddard Space Flight Center
– sequence: 5
  givenname: Lucy
  surname: Marshall
  fullname: Marshall, Lucy
  organization: UNSW Sydney
– sequence: 6
  givenname: Dimitri P.
  surname: Solomatine
  fullname: Solomatine, Dimitri P.
  organization: IHE Delft Institute for Water Education
– sequence: 7
  givenname: Amin
  surname: Dezfuli
  fullname: Dezfuli, Amin
  organization: Goddard Space Flight Center
– sequence: 8
  givenname: Mojtaba
  surname: Sadegh
  fullname: Sadegh, Mojtaba
  organization: Boise State University
– sequence: 9
  givenname: James
  surname: Famiglietti
  fullname: Famiglietti, James
  organization: University of Saskatchewan
BookMark eNp1kb9vEzEYhi1UJNLCwM5giQWGaz-f73w-thIFipSKiB8Dk_XF9x1xdbFT-xIUxB-P0xSGCiYPfp5Xr_2eshMfPDH2XMC5ACgvVvvNuajqVj1iEwFtWwjQ9QmbgNZ1oUA3T9hpSjcAUIGGCfs1DbQLw3Z0wfPQ82u0K-eJzwmjd_47R9_xRQyWUireYqKOX4eOhuFwNwb-6a_tfhKfYRxXd8rM71wMfk1-xIF_to58jnjDL_mCYtqQHd2OnrLHPQ6Jnt2fZ-zru9mX6VUx__j-w_RyXliplSrQYq0q1ZfVkkjqSpVdWy5FT9ACtFUnO0UktKxQLlHW2raasANJqgNsm1qesVfH3E0Mt1tKo1m7ZPMj0FPYJlM2QpeVbqDJ6MsH6E3YRp_bmVJp0UClQWTq4kjZGFKK1BvrRjz8whjRDUaAOaxh8hrmbo1svH5gbKJbY9z_k71P_-EG2v8fNFffFn-MF0fDY0KTS-S2UJYAogYp5W9zZ6Tu
CitedBy_id crossref_primary_10_1002_wat2_1701
crossref_primary_10_1016_j_jhydrol_2024_131835
crossref_primary_10_1017_eds_2024_14
crossref_primary_10_2166_wqrj_2022_018
crossref_primary_10_1007_s11356_024_34245_2
crossref_primary_10_5194_hess_27_1201_2023
crossref_primary_10_1016_j_jhydrol_2022_128323
crossref_primary_10_1016_j_jhydrol_2024_130907
crossref_primary_10_5194_hess_27_4595_2023
crossref_primary_10_1016_j_envsoft_2024_106236
crossref_primary_10_1007_s00477_024_02692_5
crossref_primary_10_1038_s43017_023_00452_7
crossref_primary_10_1080_02626667_2024_2436113
crossref_primary_10_1016_j_envsoft_2025_106648
crossref_primary_10_1002_eco_2456
crossref_primary_10_1029_2023WR034750
crossref_primary_10_1038_s43247_024_01647_6
crossref_primary_10_1016_j_gsd_2024_101366
crossref_primary_10_1088_2515_7620_ad0744
crossref_primary_10_1029_2024WR039053
crossref_primary_10_1016_j_jenvman_2023_119585
crossref_primary_10_1088_1748_9326_ad4e4c
crossref_primary_10_1029_2022WR034118
crossref_primary_10_1080_13241583_2024_2343453
crossref_primary_10_1016_j_jhydrol_2024_131521
crossref_primary_10_1029_2024WR038088
crossref_primary_10_3390_w16243616
crossref_primary_10_1016_j_jhydrol_2024_132538
crossref_primary_10_1029_2024WR037398
crossref_primary_10_1016_j_envsoft_2023_105776
crossref_primary_10_1016_j_envsoft_2023_105831
crossref_primary_10_3390_w15040620
crossref_primary_10_1007_s11368_024_03726_9
crossref_primary_10_1029_2022WR033091
crossref_primary_10_1002_hyp_15263
Cites_doi 10.1029/2020WR029328
10.5194/hess-22-5639-2018
10.1109/MSPEC.2021.9563956
10.1029/2020GL088229
10.1016/j.envsoft.2016.03.014
10.5194/hess-21-4021-2017
10.1002/hyp.13805
10.1073/pnas.1906995116
10.1016/0167-2789(91)90222-U
10.1016/0004-3702(94)90105-8
10.1126/science.aar6404
10.1103/PhysRevLett.124.010508
10.1177/0309133312444943
10.1016/j.jhydrol.2005.07.007
10.1029/2020WR028091
10.1016/j.jhydrol.2020.125351
10.1109/tkde.2017.2720168
10.1038/s42256-019-0048-x
10.1007/978-3-030-28954-6_1
10.1111/j.1752-1688.2003.tb03708.x
10.1038/nclimate3001
10.1126/sciadv.1602614
10.1029/2011WR011527
10.1016/S0005-1098(96)00168-9
10.5194/hess-13-1619-2009
10.5194/hess-5-577-2001
10.1371/journal.pone.0130140
10.1080/02626667.2014.935778
10.18174/sesmo.2020a16226
10.1073/pnas.2107151119
10.1109/MIS.2008.20
10.1016/j.envsoft.2021.105159
10.1016/j.envsoft.2020.104954
10.1029/2008WR006839
10.1016/j.jhydrol.2016.06.026
10.1029/2019MS002002
10.1016/j.jhydrol.2010.06.037
10.1016/j.jcp.2018.10.045
10.1073/pnas.1517384113
10.1016/j.envsoft.2019.07.007
10.1016/j.jhydrol.2021.126888
10.1038/s41586-019-0912-1
10.1109/MSPEC.2021.9563958
10.1109/MCI.2018.2840738
10.1109/TNN.2011.2163169
10.1016/j.jhydrol.2005.06.017
ContentType Journal Article
Copyright Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL
2022 The Authors. published by John Wiley & Sons Ltd.
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL
– notice: 2022 The Authors. published by John Wiley & Sons Ltd.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID CYE
CYI
24P
AAYXX
CITATION
7QH
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
7S9
L.6
DOI 10.1002/hyp.14596
DatabaseName NASA Scientific and Technical Information
NASA Technical Reports Server
Wiley Online Library Open Access (Activated by CARLI)
CrossRef
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

Civil Engineering Abstracts
AGRICOLA

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1099-1085
EndPage n/a
ExternalDocumentID 10_1002_hyp_14596
HYP14596
20220015033
Genre commentary
GrantInformation 389018.02.15.06.93
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
– fundername: IAS Vanguard Fellowship
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABPVW
ACAHQ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
CYE
CYI
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AANHP
AASGY
ABEML
ABTAH
ACBWZ
ACCFJ
ACRPL
ACSCC
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AI.
AIWBW
AJBDE
ALUQN
ASPBG
AVWKF
AZFZN
BDRZF
DDYGU
EJD
FEDTE
HF~
HVGLF
LW6
M62
RIWAO
RJQFR
RWI
SAMSI
VH1
WRC
WWD
ZY4
AAYXX
AGQPQ
AIQQE
CITATION
O8X
7QH
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
7S9
L.6
ID FETCH-LOGICAL-c3866-aca5646f24bee38462d92b1fe090094d3d6ee1834a3ba358c98ead03e6d0a9753
IEDL.DBID 24P
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000810718900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6087
IngestDate Fri Jul 11 18:27:45 EDT 2025
Sun Jul 13 05:17:35 EDT 2025
Sat Nov 29 03:03:02 EST 2025
Tue Nov 18 22:19:48 EST 2025
Wed Jan 22 16:21:57 EST 2025
Fri Nov 21 15:49:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Creative Commons License: CCBYNCND
Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3866-aca5646f24bee38462d92b1fe090094d3d6ee1834a3ba358c98ead03e6d0a9753
Notes GSFC
Goddard Space Flight Center
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1870-5810
0000-0003-1714-1240
0000-0003-1775-5445
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.14596
PQID 2681704801
PQPubID 2034139
PageCount 7
ParticipantIDs proquest_miscellaneous_2718248707
proquest_journals_2681704801
crossref_citationtrail_10_1002_hyp_14596
crossref_primary_10_1002_hyp_14596
wiley_primary_10_1002_hyp_14596_HYP14596
nasa_ntrs_20220015033
PublicationCentury 2000
PublicationDate June 2022
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace Goddard Space Flight Center
PublicationPlace_xml – name: Goddard Space Flight Center
– name: Hoboken, USA
– name: Chichester
PublicationTitle Hydrological processes
PublicationYear 2022
Publisher Wiley
John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2018; 362
2009; 45
2017; 3
2021; 603
1991; 51
2019; 566
2016; 540
2020; 12
2020; 124
2009; 13
2020; 2
2016; 113
2019; 116
2008; 23
2011; 22
2020; 47
2019; 119
2010; 390
2016; 81
1994; 70
2006; 320
1991; 4
2006; 318
2012
2019; 1
2017; 21
2015; 10
2003; 39
2020; 34
2017; 29
2021; 144
2012; 36
2022; 119
2000; 2000
2018; 22
2021; 58
2021; 57
2016; 6
1997; 33
2015; 60
2021; 137
2001; 5
2020
2020; 590
2019
2017
2019; 378
2016; 61
2015
2022; 55
2012; 48
2018; 13
Karpatne A. (e_1_2_8_25_1) 2017
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_49_1
Shi X. (e_1_2_8_45_1) 2015
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
Antun V. (e_1_2_8_4_1) 2022; 55
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_29_1
Mount N. J. (e_1_2_8_32_1) 2016; 61
e_1_2_8_46_1
e_1_2_8_48_1
e_1_2_8_2_1
Rueden L. (e_1_2_8_52_1) 2019
e_1_2_8_6_1
Vincent J. (e_1_2_8_51_1) 2020
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
Krizhevsky A. (e_1_2_8_26_1) 2012
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Maskey S. (e_1_2_8_30_1) 2000
Krogh A. (e_1_2_8_27_1) 1991; 4
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_50_1
References_xml – volume: 603
  year: 2021
  article-title: Characterizing distributed hydrological model residual errors using a probabilistic long short‐term memory network
  publication-title: Journal of Hydrology
– volume: 362
  start-page: 1140
  issue: 6419
  year: 2018
  end-page: 1144
  article-title: A general reinforcement learning algorithm that masters chess, shogi, and go through self‐play
  publication-title: Science
– volume: 55
  start-page: 1
  issue: 04
  year: 2022
  end-page: 4
  article-title: Proving existence is not enough: Mathematical paradoxes unravel the limits of neural networks in artificial intelligence
  publication-title: SIAM News
– volume: 23
  start-page: 2
  issue: 02
  year: 2008
  end-page: 4
  article-title: Avoiding another AI winter
  publication-title: IEEE Intelligent Systems
– volume: 39
  start-page: 1269
  issue: 5
  year: 2003
  end-page: 1279
  article-title: ANN output updating of lumped conceptual rainfall/runoff forecasting models
  publication-title: Journal of the American Water Resources Association
– volume: 61
  start-page: 1192
  issue: 7
  year: 2016
  end-page: 1208
  article-title: Data‐driven modelling approaches for socio‐hydrology: Opportunities and challenges within the Panta Rhei science plan
  publication-title: Hydrological Sciences Journal
– volume: 119
  start-page: 418
  year: 2019
  end-page: 432
  article-title: Introductory overview of identifiability analysis: A guide to evaluating whether you have the right type of data for your modeling purpose
  publication-title: Environmental Modelling & Software
– year: 2017
  article-title: Physics‐guided neural networks (pgnn): An application in lake temperature modeling
  publication-title: arXiv preprint
– volume: 22
  start-page: 1588
  issue: 10
  year: 2011
  end-page: 1598
  article-title: A new formulation for feedforward neural networks
  publication-title: IEEE Transactions on Neural Networks
– volume: 13
  start-page: 1619
  year: 2009
  end-page: 1634
  article-title: Combining semi‐distributed process‐based and data‐driven models in flow simulation: A case study of the Meuse river basin
  publication-title: Hydrology and Earth System Sciences
– volume: 70
  start-page: 119
  issue: 1–2
  year: 1994
  end-page: 165
  article-title: Knowledge‐based artificial neural networks
  publication-title: Artificial Intelligence
– year: 2020
  article-title: Google's AI flood warnings now cover all of India and have expanded to Bangladesh
  publication-title: The Verge
– volume: 113
  start-page: 3932
  issue: 15
  year: 2016
  end-page: 3937
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proceedings of the National Academy of Sciences
– volume: 57
  issue: 3
  year: 2021
  article-title: What role does hydrological science play in the age of machine learning?
  publication-title: Water Resources Research
– volume: 45
  start-page: 1
  issue: 12
  year: 2009
  end-page: 16
  article-title: A novel method to estimate model uncertainty using machine learning techniques
  publication-title: Water Resources Research
– volume: 58
  start-page: 42
  issue: 10
  year: 2021
  end-page: 47
  article-title: 7 revealing ways AIs fail: Neural networks can be disastrously brittle, forgetful, and surprisingly bad at math
  publication-title: IEEE Spectrum
– volume: 57
  issue: 5
  year: 2021
  article-title: Deep learned process parameterizations provide better representations of turbulent heat fluxes in hydrologic models
  publication-title: Water Resources Research
– volume: 13
  start-page: 55
  issue: 3
  year: 2018
  end-page: 75
  article-title: Recent trends in deep learning based natural language processing
  publication-title: IEEE Computational Intelligence Magazine
– volume: 540
  start-page: 623
  year: 2016
  end-page: 640
  article-title: A hybrid approach to monthly streamflow forecasting: Integrating hydrological model outputs into a Bayesian artificial neural network
  publication-title: Journal of Hydrology
– volume: 124
  issue: 1
  year: 2020
  article-title: Discovering physical concepts with neural networks
  publication-title: Physical Review Letters
– volume: 1
  start-page: 206
  issue: 5
  year: 2019
  end-page: 215
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
  publication-title: Nature Machine Intelligence
– volume: 590
  year: 2020
  article-title: Deep learning emulators for groundwater contaminant transport modelling
  publication-title: Journal of Hydrology
– volume: 48
  start-page: 1
  issue: 7
  year: 2012
  end-page: 32
  article-title: Review of surrogate modeling in water resources
  publication-title: Water Resources Research
– volume: 34
  start-page: 3608
  issue: 16
  year: 2020
  end-page: 3613
  article-title: Deep learning, hydrological processes and the uniqueness of place
  publication-title: Hydrological Processes
– start-page: 802
  year: 2015
  end-page: 810
– volume: 29
  start-page: 2318
  issue: 10
  year: 2017
  end-page: 2331
  article-title: Theory‐guided data science: A new paradigm for scientific discovery from data
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 2
  year: 2020
  article-title: Eight grand challenges in socio‐environmental systems modeling
  publication-title: Socio‐Environmental Systems Modelling
– volume: 22
  start-page: 5639
  issue: 11
  year: 2018
  end-page: 5656
  article-title: HESS opinions: Incubating deep‐learning‐powered hydrologic science advances as a community
  publication-title: Hydrology and Earth System Sciences
– volume: 318
  start-page: 232
  issue: 1–4
  year: 2006
  end-page: 249
  article-title: Integration of artificial neural networks with conceptual models in rainfall‐runoff modeling
  publication-title: Journal of Hydrology
– volume: 116
  start-page: 22445
  issue: 45
  year: 2019
  end-page: 22451
  article-title: Data‐driven discovery of coordinates and governing equations
  publication-title: Proceedings of the National Academy of Sciences
– volume: 119
  issue: 12
  year: 2022
  article-title: The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th problem
  publication-title: Proceedings of the National Academy of Sciences
– volume: 60
  start-page: 1473
  issue: 9
  year: 2015
  end-page: 1489
  article-title: Hybrid modelling approach to prairie hydrology: Fusing data‐driven and process‐based hydrological models
  publication-title: Hydrological Sciences Journal
– volume: 12
  issue: 9
  year: 2020
  article-title: Physically interpretable neural networks for the geosciences: Applications to earth system variability
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 47
  issue: 13
  year: 2020
  article-title: Improving AI system awareness of geoscience knowledge: Symbiotic integration of physical approaches and deep learning
  publication-title: Geophysical Research Letters
– year: 2019
  article-title: Informed machine learning‐‐A taxonomy and survey of integrating knowledge into learning systems
  publication-title: arXiv preprint
– start-page: 5
  year: 2019
  end-page: 22
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  article-title: Physics‐informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: Journal of Computational Physics
– volume: 33
  start-page: 441
  issue: 3
  year: 1997
  end-page: 446
  article-title: On Tikhonov regularization, bias and variance in nonlinear system identification
  publication-title: Automatica
– volume: 2000
  start-page: 67
  year: 2000
  end-page: 80
– volume: 36
  start-page: 480
  issue: 4
  year: 2012
  end-page: 513
  article-title: Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting
  publication-title: Progress in Physical Geography: Earth and Environment
– volume: 10
  issue: 7
  year: 2015
  article-title: On pixel‐wise explanations for non‐linear classifier decisions by layer‐wise relevance propagation
  publication-title: PLoS One
– volume: 320
  start-page: 18
  issue: 1–2
  year: 2006
  end-page: 36
  article-title: A manifesto for the equifinality thesis
  publication-title: Journal of Hydrology
– volume: 58
  start-page: 26
  issue: 10
  year: 2021
  end-page: 31
  article-title: The turbulent past and uncertain future of AI: Is there a way out of AI's boom‐and‐bust cycle?
  publication-title: IEEE Spectrum
– volume: 51
  start-page: 52
  issue: 1–3
  year: 1991
  end-page: 98
  article-title: State space reconstruction in the presence of noise
  publication-title: Physica D: Nonlinear Phenomena
– start-page: 1097
  year: 2012
  end-page: 1105
– volume: 81
  start-page: 154
  year: 2016
  end-page: 164
  article-title: An uncertain future, deep uncertainty, scenarios, robustness and adaptation: How do they fit together?
  publication-title: Environmental Modelling & Software
– volume: 390
  start-page: 92
  issue: 1–2
  year: 2010
  end-page: 107
  article-title: Improving event‐based rainfall–runoff modeling using a combined artificial neural network–kinematic wave approach
  publication-title: Journal of Hydrology
– volume: 21
  start-page: 4021
  issue: 8
  year: 2017
  end-page: 4036
  article-title: Residual uncertainty estimation using instance‐based learning with applications to hydrologic forecasting
  publication-title: Hydrology and Earth System Sciences
– volume: 144
  year: 2021
  article-title: Deep learning, explained: Fundamentals, Explainability, and Bridgeability to process‐based modelling
  publication-title: Environmental Modelling & Software
– volume: 137
  year: 2021
  article-title: The future of sensitivity analysis: An essential discipline for systems modeling and policy support
  publication-title: Environmental Modelling & Software
– volume: 3
  issue: 4
  year: 2017
  article-title: Data‐driven discovery of partial differential equations
  publication-title: Science Advances
– volume: 5
  start-page: 577
  year: 2001
  end-page: 598
  article-title: A non‐linear neural network technique for updating of river flow forecasts
  publication-title: Hydrology and Earth System Sciences
– volume: 4
  start-page: 950
  year: 1991
  end-page: 957
  article-title: A simple weight decay can improve generalization
  publication-title: Advances in Neural Information Processing Systems
– volume: 6
  start-page: 777
  issue: 8
  year: 2016
  end-page: 780
  article-title: Fate of water pumped from underground and contributions to sea‐level rise
  publication-title: Nature Climate Change
– volume: 566
  start-page: 195
  issue: 7743
  year: 2019
  end-page: 204
  article-title: Deep learning and process understanding for data‐driven earth system science
  publication-title: Nature
– ident: e_1_2_8_6_1
  doi: 10.1029/2020WR029328
– ident: e_1_2_8_44_1
  doi: 10.5194/hess-22-5639-2018
– ident: e_1_2_8_48_1
  doi: 10.1109/MSPEC.2021.9563956
– ident: e_1_2_8_22_1
  doi: 10.1029/2020GL088229
– ident: e_1_2_8_29_1
  doi: 10.1016/j.envsoft.2016.03.014
– ident: e_1_2_8_54_1
  doi: 10.5194/hess-21-4021-2017
– ident: e_1_2_8_8_1
  doi: 10.1002/hyp.13805
– ident: e_1_2_8_11_1
  doi: 10.1073/pnas.1906995116
– ident: e_1_2_8_10_1
  doi: 10.1016/0167-2789(91)90222-U
– ident: e_1_2_8_50_1
  doi: 10.1016/0004-3702(94)90105-8
– ident: e_1_2_8_46_1
  doi: 10.1126/science.aar6404
– ident: e_1_2_8_21_1
  doi: 10.1103/PhysRevLett.124.010508
– ident: e_1_2_8_2_1
  doi: 10.1177/0309133312444943
– year: 2020
  ident: e_1_2_8_51_1
  article-title: Google's AI flood warnings now cover all of India and have expanded to Bangladesh
  publication-title: The Verge
– ident: e_1_2_8_7_1
  doi: 10.1016/j.jhydrol.2005.07.007
– ident: e_1_2_8_33_1
  doi: 10.1029/2020WR028091
– ident: e_1_2_8_56_1
  doi: 10.1016/j.jhydrol.2020.125351
– ident: e_1_2_8_24_1
  doi: 10.1109/tkde.2017.2720168
– ident: e_1_2_8_40_1
  doi: 10.1038/s42256-019-0048-x
– ident: e_1_2_8_42_1
  doi: 10.1007/978-3-030-28954-6_1
– ident: e_1_2_8_3_1
  doi: 10.1111/j.1752-1688.2003.tb03708.x
– ident: e_1_2_8_53_1
  doi: 10.1038/nclimate3001
– ident: e_1_2_8_41_1
  doi: 10.1126/sciadv.1602614
– ident: e_1_2_8_38_1
  doi: 10.1029/2011WR011527
– start-page: 67
  volume-title: AI methods in civil engineering applications
  year: 2000
  ident: e_1_2_8_30_1
– ident: e_1_2_8_23_1
  doi: 10.1016/S0005-1098(96)00168-9
– ident: e_1_2_8_16_1
  doi: 10.5194/hess-13-1619-2009
– ident: e_1_2_8_43_1
  doi: 10.5194/hess-5-577-2001
– ident: e_1_2_8_5_1
  doi: 10.1371/journal.pone.0130140
– ident: e_1_2_8_31_1
  doi: 10.1080/02626667.2014.935778
– ident: e_1_2_8_17_1
  doi: 10.18174/sesmo.2020a16226
– ident: e_1_2_8_15_1
  doi: 10.1073/pnas.2107151119
– ident: e_1_2_8_19_1
  doi: 10.1109/MIS.2008.20
– ident: e_1_2_8_35_1
  doi: 10.1016/j.envsoft.2021.105159
– start-page: 802
  volume-title: Advances in neural information processing systems
  year: 2015
  ident: e_1_2_8_45_1
– volume: 61
  start-page: 1192
  issue: 7
  year: 2016
  ident: e_1_2_8_32_1
  article-title: Data‐driven modelling approaches for socio‐hydrology: Opportunities and challenges within the Panta Rhei science plan
  publication-title: Hydrological Sciences Journal
– ident: e_1_2_8_36_1
  doi: 10.1016/j.envsoft.2020.104954
– ident: e_1_2_8_47_1
  doi: 10.1029/2008WR006839
– volume: 55
  start-page: 1
  issue: 04
  year: 2022
  ident: e_1_2_8_4_1
  article-title: Proving existence is not enough: Mathematical paradoxes unravel the limits of neural networks in artificial intelligence
  publication-title: SIAM News
– ident: e_1_2_8_20_1
  doi: 10.1016/j.jhydrol.2016.06.026
– ident: e_1_2_8_49_1
  doi: 10.1029/2019MS002002
– ident: e_1_2_8_14_1
  doi: 10.1016/j.jhydrol.2010.06.037
– ident: e_1_2_8_34_1
  doi: 10.1016/j.jcp.2018.10.045
– year: 2019
  ident: e_1_2_8_52_1
  article-title: Informed machine learning‐‐A taxonomy and survey of integrating knowledge into learning systems
  publication-title: arXiv preprint
– ident: e_1_2_8_9_1
  doi: 10.1073/pnas.1517384113
– ident: e_1_2_8_18_1
  doi: 10.1016/j.envsoft.2019.07.007
– ident: e_1_2_8_28_1
  doi: 10.1016/j.jhydrol.2021.126888
– volume: 4
  start-page: 950
  year: 1991
  ident: e_1_2_8_27_1
  article-title: A simple weight decay can improve generalization
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_8_39_1
  doi: 10.1038/s41586-019-0912-1
– ident: e_1_2_8_13_1
  doi: 10.1109/MSPEC.2021.9563958
– ident: e_1_2_8_55_1
  doi: 10.1109/MCI.2018.2840738
– ident: e_1_2_8_37_1
  doi: 10.1109/TNN.2011.2163169
– ident: e_1_2_8_12_1
  doi: 10.1016/j.jhydrol.2005.06.017
– year: 2017
  ident: e_1_2_8_25_1
  article-title: Physics‐guided neural networks (pgnn): An application in lake temperature modeling
  publication-title: arXiv preprint
– start-page: 1097
  volume-title: The proceedings of the 25th international conference on neural information processing systems
  year: 2012
  ident: e_1_2_8_26_1
SSID ssj0004080
Score 2.559628
Snippet Machine learning (ML) applications in Earth and environmental sciences (EES) have gained incredible momentum in recent years. However, these ML applications...
SourceID proquest
crossref
wiley
nasa
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms artificial intelligence
Coevolution
Cybernetics, Artificial Intelligence and Robotics
deep learning
Earth Resources and Remote Sensing
Environmental science
Hybridization
hydrology
issues and policy
Knowledge bases (artificial intelligence)
Learning algorithms
Machine learning
Modelling
modelling objective
Momentum
Nowcasting
policy support
predication
prediction
process‐based modelling
scenarios
scientific discovery
Title Coevolution of Machine Learning and Process-Based Modelling to Revolutionize Earth and Environmental Sciences: A Perspective
URI https://ntrs.nasa.gov/citations/20220015033
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.14596
https://www.proquest.com/docview/2681704801
https://www.proquest.com/docview/2718248707
Volume 36
WOSCitedRecordID wos000810718900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1085
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004080
  issn: 0885-6087
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fi9NAEB9qe6Av_rk7sVrLKj7cS7h0N9ls9KmcV-5BjiIWek9hk2yuBU1K0xbqg_gR_Ix-Emc2aXoFhQPfAplNhp2Znclm5_cDeKeVnxAZpSN5zB0PC3xH-1I7fqZwyQxiI0xiySaC62s1nYbjFnzY9cJU-BDNhhtFhl2vKcB1XJ7vQUNn2wWGuR_KB9AZDIQi3gbujfdNka6lTcMo8h3pqmAHK-Ty82boQTJq57rUB4Xm3XLV5pvRk__S9Ck8rstMNqz84hm0TH4MD2vG89n2BH5cFGZTux0rMvbNHqo0rGaRuGU6T9mi6iL4_fMXJbuUWdoc6l9nq4Itm_Hz74ZdogvO7KA7rXOoQZ1hy_dsyBb7xs5TmIwuv1xcOTUXg5MIJaWjEzShJzPuxcYILFp4GvJ4kBk3pMOJqUilMbg8eFrEWvgqCRX6qCuMTF1NzbvPcX6L3LwAFmYxsQJioRdwIkBTYYJVWmyyTOjQ06oLZzujREkNVE58GV-jCmKZRzihkZ3QLrxtRBcVOsffhE7JshE-pIw4dRbTLo8QXejtTB3VgYv3JSEWEqZOF940tzHk6D-Kzk2xRhnM5xw_9NwAVbWG__fLo6ubsb14eX_RV_CI1KwOpPWgvVquzWs4SjarebnsWy_vQ-fj59Hk0x9sRgHx
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NattAEB7SOJBcmv6kxK2TbEsOvYiou9JKCr2ExMahrgkhgfS0rKRVHWglYzsB91D6CH3GPElnVms5gRQKvQm0Kw3zszNa7XwfwL6Ow4zIKD3JU-4FWOB7OpTaC4sYl8woNcJklmwiGg7jq6vkbAU-LnphanyIZsONIsOu1xTgtCF9sEQNHc3HGOdhIp9AK0A3Qv9unZz3LgfLvkjfMqdhIIWe9ONogSzk84Nm8oN8tFrqqX5Qa96vWG3K6W3-n7DP4KkrNdlR7RvPYcWUL2DdsZ6P5i_h53Flbp3rsapg3-3BSsMck8RXpsucjetOgrtfvynh5cxS51APO5tVbNLMv_5hWBfdcGQn3WufQwlclp0esiM2XjZ3bsFlr3tx3PccH4OXoXalpzM0YyALHqTGCCxceJ7w9ENh_IQOKOYil8bgEhFokWoRxlkSo5_6wsjc19TA-woVXJVmG1hSpMQMiMVexIkELU4yrNRSUxRCJ4GO2_B-YRWVObBy4sz4pmqYZa5QocoqtA3vmqHjGqHjsUFbZFqFD5kqTt3FtNMjRBs6C1srF7x4XxJqIeHqtOFtcxvDjv6l6NJUNzgGczrHjz0_QlGt5f_-ctX_cmYvXv_70D1Y7198HqjB6fDTG9ggkesDah1YnU1uzA6sZbez6-lk1zn9H2dVBdc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9RAEB7qtagvttVKz7Z2FR98CY27yWZTfCltj4rlOMRCfVo2yaZXsEm4uxbqg_gT_I3-Emc2e7kWFASfEtjdZNiZ2Zls9psP4I1RcU5klIHkGQ8iTPADE0sTxKXCJTPJrLC5I5tIhkN1fp6OluD9HAvT1ofoNtzIM9x6TQ5um6LcW1QNHd826OdxKh_AMl14D5aPPg3OThe4yNAxp6EjxYEMVTKvLBTyvW7wvXjUq8zU3Ms172asLuQMVv9P2DV44lNNdtDaxjos2eopPPKs5-PbZ_D9sLY33vRYXbIrd7DSMs8kccFMVbCmRRL8-vGTAl7BHHUOYdjZrGaTbvzlN8uO0QzHbtAd-BxK4KPsdJ8dsGYB7tyAs8Hx58OTwPMxBLlQUgYmRzVGsuRRZq3AxIUXKc_elTZM6YBiIQppLS4RkRGZEbHKU4V2Ggori9AQgPc5TnBd2U1gaZkRMyAmewknEjSV5pipZbYshUkjo_rwdq4Vnfti5cSZ8VW3ZZa5xgnVbkL78Lrr2rQVOv7UaYNUq_EhU80JXUw7PUL0YXuua-2dF9slVS2kujp9eNU1o9vRvxRT2foa-2BM5_ixFyYoqtP831-uT76M3M2Lf--6Cw9HRwN9-mH4cQsek8Tt-bRt6M0m13YHVvKb2eV08tLb_G_qlwVS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coevolution+of+machine+learning+and+process%E2%80%90based+modelling+to+revolutionize+Earth+and+environmental+sciences%3A+A+perspective&rft.jtitle=Hydrological+processes&rft.au=Razavi%2C+Saman&rft.au=Hannah%2C+David+M.&rft.au=Elshorbagy%2C+Amin&rft.au=Kumar%2C+Sujay&rft.date=2022-06-01&rft.issn=0885-6087&rft.volume=36&rft.issue=6+p.e14596-&rft_id=info:doi/10.1002%2Fhyp.14596&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon