Coevolution of Machine Learning and Process-Based Modelling to Revolutionize Earth and Environmental Sciences: A Perspective
Machine learning (ML) applications in Earth and environmental sciences (EES) have gained incredible momentum in recent years. However, these ML applications have largely evolved in ‘isolation’ from the mechanistic, process-based modelling (PBM) paradigms, which have historically been the cornerstone...
Uložené v:
| Vydané v: | Hydrological processes Ročník 36; číslo 6 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Goddard Space Flight Center
Wiley
01.06.2022
John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Predmet: | |
| ISSN: | 0885-6087, 1099-1085 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Machine learning (ML) applications in Earth and environmental sciences (EES) have gained incredible momentum in recent years. However, these ML applications have largely evolved in ‘isolation’ from the mechanistic, process-based modelling (PBM) paradigms, which have historically been the cornerstone of scientific discovery and policy support. In this perspective, we assert that the cultural barriers between the ML and PBM communities limit the potential of ML, and even its ‘hybridization’ with PBM, for EES applications. Fundamental, but often ignored, differences between ML and PBM are discussed as well as their strengths and weaknesses in light of three overarching modelling objectives in EES, (1) nowcasting and prediction, (2) scenario analysis, and (3) diagnostic learning. The paper ponders over a ‘coevolutionary’ approach to model building, shifting away from a borrowing to a co-creation culture, to develop a generation of models that leverage the unique strengths of ML such as scalability to big data and high-dimensional mapping, while remaining faithful to process-based knowledge base and principles of model explainability and interpretability, and therefore, falsifiability. |
|---|---|
| AbstractList | Machine learning (ML) applications in Earth and environmental sciences (EES) have gained incredible momentum in recent years. However, these ML applications have largely evolved in ‘isolation’ from the mechanistic, process‐based modelling (PBM) paradigms, which have historically been the cornerstone of scientific discovery and policy support. In this perspective, we assert that the cultural barriers between the ML and PBM communities limit the potential of ML, and even its ‘hybridization’ with PBM, for EES applications. Fundamental, but often ignored, differences between ML and PBM are discussed as well as their strengths and weaknesses in light of three overarching modelling objectives in EES, (1) nowcasting and prediction, (2) scenario analysis, and (3) diagnostic learning. The paper ponders over a ‘coevolutionary’ approach to model building, shifting away from a borrowing to a co‐creation culture, to develop a generation of models that leverage the unique strengths of ML such as scalability to big data and high‐dimensional mapping, while remaining faithful to process‐based knowledge base and principles of model explainability and interpretability, and therefore, falsifiability. Machine learning (ML) applications in Earth and environmental sciences (EES) have gained incredible momentum in recent years. However, these ML applications have largely evolved in ‘isolation’ from the mechanistic, process‐based modelling (PBM) paradigms, which have historically been the cornerstone of scientific discovery and policy support. In this perspective, we assert that the cultural barriers between the ML and PBM communities limit the potential of ML, and even its ‘hybridization’ with PBM, for EES applications. Fundamental, but often ignored, differences between ML and PBM are discussed as well as their strengths and weaknesses in light of three overarching modelling objectives in EES, (1) nowcasting and prediction, (2) scenario analysis, and (3) diagnostic learning. The paper ponders over a ‘coevolutionary’ approach to model building, shifting away from a borrowing to a co‐creation culture, to develop a generation of models that leverage the unique strengths of ML such as scalability to big data and high‐dimensional mapping, while remaining faithful to process‐based knowledge base and principles of model explainability and interpretability, and therefore, falsifiability. In this perspective, we assert that the cultural barriers between the machine learning (ML) and process‐based modelling (PBM) communities limit the potential of ML, and even its ‘hybridization’ with PBM, for EES applications. We ponders over a ‘coevolutionary’ approach to model building, shifting away from a borrowing to a co‐creation culture, to develop a generation of models that leverage the unique strengths of ML such as scalability to big data and high‐dimensional mapping, while remaining faithful to process‐based knowledge base and principles of model explainability and interpretability, and therefore, falsifiability. |
| Audience | PUBLIC |
| Author | Marshall, Lucy Razavi, Saman Dezfuli, Amin Kumar, Sujay Famiglietti, James Solomatine, Dimitri P. Sadegh, Mojtaba Elshorbagy, Amin |
| Author_xml | – sequence: 1 givenname: Saman orcidid: 0000-0003-1870-5810 surname: Razavi fullname: Razavi, Saman organization: University of Saskatchewan – sequence: 2 givenname: David Hannah orcidid: 0000-0003-1714-1240 organization: University of Birmingham – sequence: 3 givenname: Amin surname: Elshorbagy fullname: Elshorbagy, Amin organization: University of Saskatchewan – sequence: 4 givenname: Sujay surname: Kumar fullname: Kumar, Sujay organization: Goddard Space Flight Center – sequence: 5 givenname: Lucy surname: Marshall fullname: Marshall, Lucy organization: UNSW Sydney – sequence: 6 givenname: Dimitri P. surname: Solomatine fullname: Solomatine, Dimitri P. organization: IHE Delft Institute for Water Education – sequence: 7 givenname: Amin surname: Dezfuli fullname: Dezfuli, Amin organization: Goddard Space Flight Center – sequence: 8 givenname: Mojtaba surname: Sadegh fullname: Sadegh, Mojtaba organization: Boise State University – sequence: 9 givenname: James surname: Famiglietti fullname: Famiglietti, James organization: University of Saskatchewan |
| BookMark | eNp1kb9vEzEYhi1UJNLCwM5giQWGaz-f73w-thIFipSKiB8Dk_XF9x1xdbFT-xIUxB-P0xSGCiYPfp5Xr_2eshMfPDH2XMC5ACgvVvvNuajqVj1iEwFtWwjQ9QmbgNZ1oUA3T9hpSjcAUIGGCfs1DbQLw3Z0wfPQ82u0K-eJzwmjd_47R9_xRQyWUireYqKOX4eOhuFwNwb-6a_tfhKfYRxXd8rM71wMfk1-xIF_to58jnjDL_mCYtqQHd2OnrLHPQ6Jnt2fZ-zru9mX6VUx__j-w_RyXliplSrQYq0q1ZfVkkjqSpVdWy5FT9ACtFUnO0UktKxQLlHW2raasANJqgNsm1qesVfH3E0Mt1tKo1m7ZPMj0FPYJlM2QpeVbqDJ6MsH6E3YRp_bmVJp0UClQWTq4kjZGFKK1BvrRjz8whjRDUaAOaxh8hrmbo1svH5gbKJbY9z_k71P_-EG2v8fNFffFn-MF0fDY0KTS-S2UJYAogYp5W9zZ6Tu |
| CitedBy_id | crossref_primary_10_1002_wat2_1701 crossref_primary_10_1016_j_jhydrol_2024_131835 crossref_primary_10_1017_eds_2024_14 crossref_primary_10_2166_wqrj_2022_018 crossref_primary_10_1007_s11356_024_34245_2 crossref_primary_10_5194_hess_27_1201_2023 crossref_primary_10_1016_j_jhydrol_2022_128323 crossref_primary_10_1016_j_jhydrol_2024_130907 crossref_primary_10_5194_hess_27_4595_2023 crossref_primary_10_1016_j_envsoft_2024_106236 crossref_primary_10_1007_s00477_024_02692_5 crossref_primary_10_1038_s43017_023_00452_7 crossref_primary_10_1080_02626667_2024_2436113 crossref_primary_10_1016_j_envsoft_2025_106648 crossref_primary_10_1002_eco_2456 crossref_primary_10_1029_2023WR034750 crossref_primary_10_1038_s43247_024_01647_6 crossref_primary_10_1016_j_gsd_2024_101366 crossref_primary_10_1088_2515_7620_ad0744 crossref_primary_10_1029_2024WR039053 crossref_primary_10_1016_j_jenvman_2023_119585 crossref_primary_10_1088_1748_9326_ad4e4c crossref_primary_10_1029_2022WR034118 crossref_primary_10_1080_13241583_2024_2343453 crossref_primary_10_1016_j_jhydrol_2024_131521 crossref_primary_10_1029_2024WR038088 crossref_primary_10_3390_w16243616 crossref_primary_10_1016_j_jhydrol_2024_132538 crossref_primary_10_1029_2024WR037398 crossref_primary_10_1016_j_envsoft_2023_105776 crossref_primary_10_1016_j_envsoft_2023_105831 crossref_primary_10_3390_w15040620 crossref_primary_10_1007_s11368_024_03726_9 crossref_primary_10_1029_2022WR033091 crossref_primary_10_1002_hyp_15263 |
| Cites_doi | 10.1029/2020WR029328 10.5194/hess-22-5639-2018 10.1109/MSPEC.2021.9563956 10.1029/2020GL088229 10.1016/j.envsoft.2016.03.014 10.5194/hess-21-4021-2017 10.1002/hyp.13805 10.1073/pnas.1906995116 10.1016/0167-2789(91)90222-U 10.1016/0004-3702(94)90105-8 10.1126/science.aar6404 10.1103/PhysRevLett.124.010508 10.1177/0309133312444943 10.1016/j.jhydrol.2005.07.007 10.1029/2020WR028091 10.1016/j.jhydrol.2020.125351 10.1109/tkde.2017.2720168 10.1038/s42256-019-0048-x 10.1007/978-3-030-28954-6_1 10.1111/j.1752-1688.2003.tb03708.x 10.1038/nclimate3001 10.1126/sciadv.1602614 10.1029/2011WR011527 10.1016/S0005-1098(96)00168-9 10.5194/hess-13-1619-2009 10.5194/hess-5-577-2001 10.1371/journal.pone.0130140 10.1080/02626667.2014.935778 10.18174/sesmo.2020a16226 10.1073/pnas.2107151119 10.1109/MIS.2008.20 10.1016/j.envsoft.2021.105159 10.1016/j.envsoft.2020.104954 10.1029/2008WR006839 10.1016/j.jhydrol.2016.06.026 10.1029/2019MS002002 10.1016/j.jhydrol.2010.06.037 10.1016/j.jcp.2018.10.045 10.1073/pnas.1517384113 10.1016/j.envsoft.2019.07.007 10.1016/j.jhydrol.2021.126888 10.1038/s41586-019-0912-1 10.1109/MSPEC.2021.9563958 10.1109/MCI.2018.2840738 10.1109/TNN.2011.2163169 10.1016/j.jhydrol.2005.06.017 |
| ContentType | Journal Article |
| Copyright | Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL 2022 The Authors. published by John Wiley & Sons Ltd. 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL – notice: 2022 The Authors. published by John Wiley & Sons Ltd. – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | CYE CYI 24P AAYXX CITATION 7QH 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI 7S9 L.6 |
| DOI | 10.1002/hyp.14596 |
| DatabaseName | NASA Scientific and Technical Information NASA Technical Reports Server Wiley Online Library Open Access (Activated by CARLI) CrossRef Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts AGRICOLA |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1099-1085 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_hyp_14596 HYP14596 20220015033 |
| Genre | commentary |
| GrantInformation | 389018.02.15.06.93 |
| GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada – fundername: IAS Vanguard Fellowship |
| GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABPVW ACAHQ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 CYE CYI D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AANHP AASGY ABEML ABTAH ACBWZ ACCFJ ACRPL ACSCC ACYXJ ADNMO ADZOD AEEZP AEQDE AEUQT AFPWT AI. AIWBW AJBDE ALUQN ASPBG AVWKF AZFZN BDRZF DDYGU EJD FEDTE HF~ HVGLF LW6 M62 RIWAO RJQFR RWI SAMSI VH1 WRC WWD ZY4 AAYXX AGQPQ AIQQE CITATION O8X 7QH 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c3866-aca5646f24bee38462d92b1fe090094d3d6ee1834a3ba358c98ead03e6d0a9753 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000810718900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-6087 |
| IngestDate | Fri Jul 11 18:27:45 EDT 2025 Sun Jul 13 05:17:35 EDT 2025 Sat Nov 29 03:03:02 EST 2025 Tue Nov 18 22:19:48 EST 2025 Wed Jan 22 16:21:57 EST 2025 Fri Nov 21 15:49:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Creative Commons License: CCBYNCND Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3866-aca5646f24bee38462d92b1fe090094d3d6ee1834a3ba358c98ead03e6d0a9753 |
| Notes | GSFC Goddard Space Flight Center ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1870-5810 0000-0003-1714-1240 0000-0003-1775-5445 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.14596 |
| PQID | 2681704801 |
| PQPubID | 2034139 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_2718248707 proquest_journals_2681704801 crossref_citationtrail_10_1002_hyp_14596 crossref_primary_10_1002_hyp_14596 wiley_primary_10_1002_hyp_14596_HYP14596 nasa_ntrs_20220015033 |
| PublicationCentury | 2000 |
| PublicationDate | June 2022 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Goddard Space Flight Center |
| PublicationPlace_xml | – name: Goddard Space Flight Center – name: Hoboken, USA – name: Chichester |
| PublicationTitle | Hydrological processes |
| PublicationYear | 2022 |
| Publisher | Wiley John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2018; 362 2009; 45 2017; 3 2021; 603 1991; 51 2019; 566 2016; 540 2020; 12 2020; 124 2009; 13 2020; 2 2016; 113 2019; 116 2008; 23 2011; 22 2020; 47 2019; 119 2010; 390 2016; 81 1994; 70 2006; 320 1991; 4 2006; 318 2012 2019; 1 2017; 21 2015; 10 2003; 39 2020; 34 2017; 29 2021; 144 2012; 36 2022; 119 2000; 2000 2018; 22 2021; 58 2021; 57 2016; 6 1997; 33 2015; 60 2021; 137 2001; 5 2020 2020; 590 2019 2017 2019; 378 2016; 61 2015 2022; 55 2012; 48 2018; 13 Karpatne A. (e_1_2_8_25_1) 2017 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_49_1 Shi X. (e_1_2_8_45_1) 2015 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 Antun V. (e_1_2_8_4_1) 2022; 55 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_29_1 Mount N. J. (e_1_2_8_32_1) 2016; 61 e_1_2_8_46_1 e_1_2_8_48_1 e_1_2_8_2_1 Rueden L. (e_1_2_8_52_1) 2019 e_1_2_8_6_1 Vincent J. (e_1_2_8_51_1) 2020 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 Krizhevsky A. (e_1_2_8_26_1) 2012 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Maskey S. (e_1_2_8_30_1) 2000 Krogh A. (e_1_2_8_27_1) 1991; 4 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_50_1 |
| References_xml | – volume: 603 year: 2021 article-title: Characterizing distributed hydrological model residual errors using a probabilistic long short‐term memory network publication-title: Journal of Hydrology – volume: 362 start-page: 1140 issue: 6419 year: 2018 end-page: 1144 article-title: A general reinforcement learning algorithm that masters chess, shogi, and go through self‐play publication-title: Science – volume: 55 start-page: 1 issue: 04 year: 2022 end-page: 4 article-title: Proving existence is not enough: Mathematical paradoxes unravel the limits of neural networks in artificial intelligence publication-title: SIAM News – volume: 23 start-page: 2 issue: 02 year: 2008 end-page: 4 article-title: Avoiding another AI winter publication-title: IEEE Intelligent Systems – volume: 39 start-page: 1269 issue: 5 year: 2003 end-page: 1279 article-title: ANN output updating of lumped conceptual rainfall/runoff forecasting models publication-title: Journal of the American Water Resources Association – volume: 61 start-page: 1192 issue: 7 year: 2016 end-page: 1208 article-title: Data‐driven modelling approaches for socio‐hydrology: Opportunities and challenges within the Panta Rhei science plan publication-title: Hydrological Sciences Journal – volume: 119 start-page: 418 year: 2019 end-page: 432 article-title: Introductory overview of identifiability analysis: A guide to evaluating whether you have the right type of data for your modeling purpose publication-title: Environmental Modelling & Software – year: 2017 article-title: Physics‐guided neural networks (pgnn): An application in lake temperature modeling publication-title: arXiv preprint – volume: 22 start-page: 1588 issue: 10 year: 2011 end-page: 1598 article-title: A new formulation for feedforward neural networks publication-title: IEEE Transactions on Neural Networks – volume: 13 start-page: 1619 year: 2009 end-page: 1634 article-title: Combining semi‐distributed process‐based and data‐driven models in flow simulation: A case study of the Meuse river basin publication-title: Hydrology and Earth System Sciences – volume: 70 start-page: 119 issue: 1–2 year: 1994 end-page: 165 article-title: Knowledge‐based artificial neural networks publication-title: Artificial Intelligence – year: 2020 article-title: Google's AI flood warnings now cover all of India and have expanded to Bangladesh publication-title: The Verge – volume: 113 start-page: 3932 issue: 15 year: 2016 end-page: 3937 article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems publication-title: Proceedings of the National Academy of Sciences – volume: 57 issue: 3 year: 2021 article-title: What role does hydrological science play in the age of machine learning? publication-title: Water Resources Research – volume: 45 start-page: 1 issue: 12 year: 2009 end-page: 16 article-title: A novel method to estimate model uncertainty using machine learning techniques publication-title: Water Resources Research – volume: 58 start-page: 42 issue: 10 year: 2021 end-page: 47 article-title: 7 revealing ways AIs fail: Neural networks can be disastrously brittle, forgetful, and surprisingly bad at math publication-title: IEEE Spectrum – volume: 57 issue: 5 year: 2021 article-title: Deep learned process parameterizations provide better representations of turbulent heat fluxes in hydrologic models publication-title: Water Resources Research – volume: 13 start-page: 55 issue: 3 year: 2018 end-page: 75 article-title: Recent trends in deep learning based natural language processing publication-title: IEEE Computational Intelligence Magazine – volume: 540 start-page: 623 year: 2016 end-page: 640 article-title: A hybrid approach to monthly streamflow forecasting: Integrating hydrological model outputs into a Bayesian artificial neural network publication-title: Journal of Hydrology – volume: 124 issue: 1 year: 2020 article-title: Discovering physical concepts with neural networks publication-title: Physical Review Letters – volume: 1 start-page: 206 issue: 5 year: 2019 end-page: 215 article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead publication-title: Nature Machine Intelligence – volume: 590 year: 2020 article-title: Deep learning emulators for groundwater contaminant transport modelling publication-title: Journal of Hydrology – volume: 48 start-page: 1 issue: 7 year: 2012 end-page: 32 article-title: Review of surrogate modeling in water resources publication-title: Water Resources Research – volume: 34 start-page: 3608 issue: 16 year: 2020 end-page: 3613 article-title: Deep learning, hydrological processes and the uniqueness of place publication-title: Hydrological Processes – start-page: 802 year: 2015 end-page: 810 – volume: 29 start-page: 2318 issue: 10 year: 2017 end-page: 2331 article-title: Theory‐guided data science: A new paradigm for scientific discovery from data publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 2 year: 2020 article-title: Eight grand challenges in socio‐environmental systems modeling publication-title: Socio‐Environmental Systems Modelling – volume: 22 start-page: 5639 issue: 11 year: 2018 end-page: 5656 article-title: HESS opinions: Incubating deep‐learning‐powered hydrologic science advances as a community publication-title: Hydrology and Earth System Sciences – volume: 318 start-page: 232 issue: 1–4 year: 2006 end-page: 249 article-title: Integration of artificial neural networks with conceptual models in rainfall‐runoff modeling publication-title: Journal of Hydrology – volume: 116 start-page: 22445 issue: 45 year: 2019 end-page: 22451 article-title: Data‐driven discovery of coordinates and governing equations publication-title: Proceedings of the National Academy of Sciences – volume: 119 issue: 12 year: 2022 article-title: The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th problem publication-title: Proceedings of the National Academy of Sciences – volume: 60 start-page: 1473 issue: 9 year: 2015 end-page: 1489 article-title: Hybrid modelling approach to prairie hydrology: Fusing data‐driven and process‐based hydrological models publication-title: Hydrological Sciences Journal – volume: 12 issue: 9 year: 2020 article-title: Physically interpretable neural networks for the geosciences: Applications to earth system variability publication-title: Journal of Advances in Modeling Earth Systems – volume: 47 issue: 13 year: 2020 article-title: Improving AI system awareness of geoscience knowledge: Symbiotic integration of physical approaches and deep learning publication-title: Geophysical Research Letters – year: 2019 article-title: Informed machine learning‐‐A taxonomy and survey of integrating knowledge into learning systems publication-title: arXiv preprint – start-page: 5 year: 2019 end-page: 22 – volume: 378 start-page: 686 year: 2019 end-page: 707 article-title: Physics‐informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: Journal of Computational Physics – volume: 33 start-page: 441 issue: 3 year: 1997 end-page: 446 article-title: On Tikhonov regularization, bias and variance in nonlinear system identification publication-title: Automatica – volume: 2000 start-page: 67 year: 2000 end-page: 80 – volume: 36 start-page: 480 issue: 4 year: 2012 end-page: 513 article-title: Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting publication-title: Progress in Physical Geography: Earth and Environment – volume: 10 issue: 7 year: 2015 article-title: On pixel‐wise explanations for non‐linear classifier decisions by layer‐wise relevance propagation publication-title: PLoS One – volume: 320 start-page: 18 issue: 1–2 year: 2006 end-page: 36 article-title: A manifesto for the equifinality thesis publication-title: Journal of Hydrology – volume: 58 start-page: 26 issue: 10 year: 2021 end-page: 31 article-title: The turbulent past and uncertain future of AI: Is there a way out of AI's boom‐and‐bust cycle? publication-title: IEEE Spectrum – volume: 51 start-page: 52 issue: 1–3 year: 1991 end-page: 98 article-title: State space reconstruction in the presence of noise publication-title: Physica D: Nonlinear Phenomena – start-page: 1097 year: 2012 end-page: 1105 – volume: 81 start-page: 154 year: 2016 end-page: 164 article-title: An uncertain future, deep uncertainty, scenarios, robustness and adaptation: How do they fit together? publication-title: Environmental Modelling & Software – volume: 390 start-page: 92 issue: 1–2 year: 2010 end-page: 107 article-title: Improving event‐based rainfall–runoff modeling using a combined artificial neural network–kinematic wave approach publication-title: Journal of Hydrology – volume: 21 start-page: 4021 issue: 8 year: 2017 end-page: 4036 article-title: Residual uncertainty estimation using instance‐based learning with applications to hydrologic forecasting publication-title: Hydrology and Earth System Sciences – volume: 144 year: 2021 article-title: Deep learning, explained: Fundamentals, Explainability, and Bridgeability to process‐based modelling publication-title: Environmental Modelling & Software – volume: 137 year: 2021 article-title: The future of sensitivity analysis: An essential discipline for systems modeling and policy support publication-title: Environmental Modelling & Software – volume: 3 issue: 4 year: 2017 article-title: Data‐driven discovery of partial differential equations publication-title: Science Advances – volume: 5 start-page: 577 year: 2001 end-page: 598 article-title: A non‐linear neural network technique for updating of river flow forecasts publication-title: Hydrology and Earth System Sciences – volume: 4 start-page: 950 year: 1991 end-page: 957 article-title: A simple weight decay can improve generalization publication-title: Advances in Neural Information Processing Systems – volume: 6 start-page: 777 issue: 8 year: 2016 end-page: 780 article-title: Fate of water pumped from underground and contributions to sea‐level rise publication-title: Nature Climate Change – volume: 566 start-page: 195 issue: 7743 year: 2019 end-page: 204 article-title: Deep learning and process understanding for data‐driven earth system science publication-title: Nature – ident: e_1_2_8_6_1 doi: 10.1029/2020WR029328 – ident: e_1_2_8_44_1 doi: 10.5194/hess-22-5639-2018 – ident: e_1_2_8_48_1 doi: 10.1109/MSPEC.2021.9563956 – ident: e_1_2_8_22_1 doi: 10.1029/2020GL088229 – ident: e_1_2_8_29_1 doi: 10.1016/j.envsoft.2016.03.014 – ident: e_1_2_8_54_1 doi: 10.5194/hess-21-4021-2017 – ident: e_1_2_8_8_1 doi: 10.1002/hyp.13805 – ident: e_1_2_8_11_1 doi: 10.1073/pnas.1906995116 – ident: e_1_2_8_10_1 doi: 10.1016/0167-2789(91)90222-U – ident: e_1_2_8_50_1 doi: 10.1016/0004-3702(94)90105-8 – ident: e_1_2_8_46_1 doi: 10.1126/science.aar6404 – ident: e_1_2_8_21_1 doi: 10.1103/PhysRevLett.124.010508 – ident: e_1_2_8_2_1 doi: 10.1177/0309133312444943 – year: 2020 ident: e_1_2_8_51_1 article-title: Google's AI flood warnings now cover all of India and have expanded to Bangladesh publication-title: The Verge – ident: e_1_2_8_7_1 doi: 10.1016/j.jhydrol.2005.07.007 – ident: e_1_2_8_33_1 doi: 10.1029/2020WR028091 – ident: e_1_2_8_56_1 doi: 10.1016/j.jhydrol.2020.125351 – ident: e_1_2_8_24_1 doi: 10.1109/tkde.2017.2720168 – ident: e_1_2_8_40_1 doi: 10.1038/s42256-019-0048-x – ident: e_1_2_8_42_1 doi: 10.1007/978-3-030-28954-6_1 – ident: e_1_2_8_3_1 doi: 10.1111/j.1752-1688.2003.tb03708.x – ident: e_1_2_8_53_1 doi: 10.1038/nclimate3001 – ident: e_1_2_8_41_1 doi: 10.1126/sciadv.1602614 – ident: e_1_2_8_38_1 doi: 10.1029/2011WR011527 – start-page: 67 volume-title: AI methods in civil engineering applications year: 2000 ident: e_1_2_8_30_1 – ident: e_1_2_8_23_1 doi: 10.1016/S0005-1098(96)00168-9 – ident: e_1_2_8_16_1 doi: 10.5194/hess-13-1619-2009 – ident: e_1_2_8_43_1 doi: 10.5194/hess-5-577-2001 – ident: e_1_2_8_5_1 doi: 10.1371/journal.pone.0130140 – ident: e_1_2_8_31_1 doi: 10.1080/02626667.2014.935778 – ident: e_1_2_8_17_1 doi: 10.18174/sesmo.2020a16226 – ident: e_1_2_8_15_1 doi: 10.1073/pnas.2107151119 – ident: e_1_2_8_19_1 doi: 10.1109/MIS.2008.20 – ident: e_1_2_8_35_1 doi: 10.1016/j.envsoft.2021.105159 – start-page: 802 volume-title: Advances in neural information processing systems year: 2015 ident: e_1_2_8_45_1 – volume: 61 start-page: 1192 issue: 7 year: 2016 ident: e_1_2_8_32_1 article-title: Data‐driven modelling approaches for socio‐hydrology: Opportunities and challenges within the Panta Rhei science plan publication-title: Hydrological Sciences Journal – ident: e_1_2_8_36_1 doi: 10.1016/j.envsoft.2020.104954 – ident: e_1_2_8_47_1 doi: 10.1029/2008WR006839 – volume: 55 start-page: 1 issue: 04 year: 2022 ident: e_1_2_8_4_1 article-title: Proving existence is not enough: Mathematical paradoxes unravel the limits of neural networks in artificial intelligence publication-title: SIAM News – ident: e_1_2_8_20_1 doi: 10.1016/j.jhydrol.2016.06.026 – ident: e_1_2_8_49_1 doi: 10.1029/2019MS002002 – ident: e_1_2_8_14_1 doi: 10.1016/j.jhydrol.2010.06.037 – ident: e_1_2_8_34_1 doi: 10.1016/j.jcp.2018.10.045 – year: 2019 ident: e_1_2_8_52_1 article-title: Informed machine learning‐‐A taxonomy and survey of integrating knowledge into learning systems publication-title: arXiv preprint – ident: e_1_2_8_9_1 doi: 10.1073/pnas.1517384113 – ident: e_1_2_8_18_1 doi: 10.1016/j.envsoft.2019.07.007 – ident: e_1_2_8_28_1 doi: 10.1016/j.jhydrol.2021.126888 – volume: 4 start-page: 950 year: 1991 ident: e_1_2_8_27_1 article-title: A simple weight decay can improve generalization publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_8_39_1 doi: 10.1038/s41586-019-0912-1 – ident: e_1_2_8_13_1 doi: 10.1109/MSPEC.2021.9563958 – ident: e_1_2_8_55_1 doi: 10.1109/MCI.2018.2840738 – ident: e_1_2_8_37_1 doi: 10.1109/TNN.2011.2163169 – ident: e_1_2_8_12_1 doi: 10.1016/j.jhydrol.2005.06.017 – year: 2017 ident: e_1_2_8_25_1 article-title: Physics‐guided neural networks (pgnn): An application in lake temperature modeling publication-title: arXiv preprint – start-page: 1097 volume-title: The proceedings of the 25th international conference on neural information processing systems year: 2012 ident: e_1_2_8_26_1 |
| SSID | ssj0004080 |
| Score | 2.559628 |
| Snippet | Machine learning (ML) applications in Earth and environmental sciences (EES) have gained incredible momentum in recent years. However, these ML applications... |
| SourceID | proquest crossref wiley nasa |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | artificial intelligence Coevolution Cybernetics, Artificial Intelligence and Robotics deep learning Earth Resources and Remote Sensing Environmental science Hybridization hydrology issues and policy Knowledge bases (artificial intelligence) Learning algorithms Machine learning Modelling modelling objective Momentum Nowcasting policy support predication prediction process‐based modelling scenarios scientific discovery |
| Title | Coevolution of Machine Learning and Process-Based Modelling to Revolutionize Earth and Environmental Sciences: A Perspective |
| URI | https://ntrs.nasa.gov/citations/20220015033 https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.14596 https://www.proquest.com/docview/2681704801 https://www.proquest.com/docview/2718248707 |
| Volume | 36 |
| WOSCitedRecordID | wos000810718900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-1085 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004080 issn: 0885-6087 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fi9NAEB9qe6Av_rk7sVrLKj7cS7h0N9ls9KmcV-5BjiIWek9hk2yuBU1K0xbqg_gR_Ix-Emc2aXoFhQPfAplNhp2Znclm5_cDeKeVnxAZpSN5zB0PC3xH-1I7fqZwyQxiI0xiySaC62s1nYbjFnzY9cJU-BDNhhtFhl2vKcB1XJ7vQUNn2wWGuR_KB9AZDIQi3gbujfdNka6lTcMo8h3pqmAHK-Ty82boQTJq57rUB4Xm3XLV5pvRk__S9Ck8rstMNqz84hm0TH4MD2vG89n2BH5cFGZTux0rMvbNHqo0rGaRuGU6T9mi6iL4_fMXJbuUWdoc6l9nq4Itm_Hz74ZdogvO7KA7rXOoQZ1hy_dsyBb7xs5TmIwuv1xcOTUXg5MIJaWjEzShJzPuxcYILFp4GvJ4kBk3pMOJqUilMbg8eFrEWvgqCRX6qCuMTF1NzbvPcX6L3LwAFmYxsQJioRdwIkBTYYJVWmyyTOjQ06oLZzujREkNVE58GV-jCmKZRzihkZ3QLrxtRBcVOsffhE7JshE-pIw4dRbTLo8QXejtTB3VgYv3JSEWEqZOF940tzHk6D-Kzk2xRhnM5xw_9NwAVbWG__fLo6ubsb14eX_RV_CI1KwOpPWgvVquzWs4SjarebnsWy_vQ-fj59Hk0x9sRgHx |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NattAEB7SOJBcmv6kxK2TbEsOvYiou9JKCr2ExMahrgkhgfS0rKRVHWglYzsB91D6CH3GPElnVms5gRQKvQm0Kw3zszNa7XwfwL6Ow4zIKD3JU-4FWOB7OpTaC4sYl8woNcJklmwiGg7jq6vkbAU-LnphanyIZsONIsOu1xTgtCF9sEQNHc3HGOdhIp9AK0A3Qv9unZz3LgfLvkjfMqdhIIWe9ONogSzk84Nm8oN8tFrqqX5Qa96vWG3K6W3-n7DP4KkrNdlR7RvPYcWUL2DdsZ6P5i_h53Flbp3rsapg3-3BSsMck8RXpsucjetOgrtfvynh5cxS51APO5tVbNLMv_5hWBfdcGQn3WufQwlclp0esiM2XjZ3bsFlr3tx3PccH4OXoXalpzM0YyALHqTGCCxceJ7w9ENh_IQOKOYil8bgEhFokWoRxlkSo5_6wsjc19TA-woVXJVmG1hSpMQMiMVexIkELU4yrNRSUxRCJ4GO2_B-YRWVObBy4sz4pmqYZa5QocoqtA3vmqHjGqHjsUFbZFqFD5kqTt3FtNMjRBs6C1srF7x4XxJqIeHqtOFtcxvDjv6l6NJUNzgGczrHjz0_QlGt5f_-ctX_cmYvXv_70D1Y7198HqjB6fDTG9ggkesDah1YnU1uzA6sZbez6-lk1zn9H2dVBdc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9RAEB7qtagvttVKz7Z2FR98CY27yWZTfCltj4rlOMRCfVo2yaZXsEm4uxbqg_gT_I3-Emc2e7kWFASfEtjdZNiZ2Zls9psP4I1RcU5klIHkGQ8iTPADE0sTxKXCJTPJrLC5I5tIhkN1fp6OluD9HAvT1ofoNtzIM9x6TQ5um6LcW1QNHd826OdxKh_AMl14D5aPPg3OThe4yNAxp6EjxYEMVTKvLBTyvW7wvXjUq8zU3Ms172asLuQMVv9P2DV44lNNdtDaxjos2eopPPKs5-PbZ_D9sLY33vRYXbIrd7DSMs8kccFMVbCmRRL8-vGTAl7BHHUOYdjZrGaTbvzlN8uO0QzHbtAd-BxK4KPsdJ8dsGYB7tyAs8Hx58OTwPMxBLlQUgYmRzVGsuRRZq3AxIUXKc_elTZM6YBiIQppLS4RkRGZEbHKU4V2Ggori9AQgPc5TnBd2U1gaZkRMyAmewknEjSV5pipZbYshUkjo_rwdq4Vnfti5cSZ8VW3ZZa5xgnVbkL78Lrr2rQVOv7UaYNUq_EhU80JXUw7PUL0YXuua-2dF9slVS2kujp9eNU1o9vRvxRT2foa-2BM5_ixFyYoqtP831-uT76M3M2Lf--6Cw9HRwN9-mH4cQsek8Tt-bRt6M0m13YHVvKb2eV08tLb_G_qlwVS |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coevolution+of+machine+learning+and+process%E2%80%90based+modelling+to+revolutionize+Earth+and+environmental+sciences%3A+A+perspective&rft.jtitle=Hydrological+processes&rft.au=Razavi%2C+Saman&rft.au=Hannah%2C+David+M.&rft.au=Elshorbagy%2C+Amin&rft.au=Kumar%2C+Sujay&rft.date=2022-06-01&rft.issn=0885-6087&rft.volume=36&rft.issue=6+p.e14596-&rft_id=info:doi/10.1002%2Fhyp.14596&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon |