Stacks 2: Analytical methods for paired‐end sequencing improve RADseq‐based population genomics

For half a century population genetics studies have put type II restriction endonucleases to work. Now, coupled with massively‐parallel, short‐read sequencing, the family of RAD protocols that wields these enzymes has generated vast genetic knowledge from the natural world. Here, we describe the fir...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Molecular ecology Ročník 28; číslo 21; s. 4737 - 4754
Hlavní autori: Rochette, Nicolas C., Rivera‐Colón, Angel G., Catchen, Julian M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Blackwell Publishing Ltd 01.11.2019
Predmet:
ISSN:0962-1083, 1365-294X, 1365-294X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract For half a century population genetics studies have put type II restriction endonucleases to work. Now, coupled with massively‐parallel, short‐read sequencing, the family of RAD protocols that wields these enzymes has generated vast genetic knowledge from the natural world. Here, we describe the first software natively capable of using paired‐end sequencing to derive short contigs from de novo RAD data. Stacks version 2 employs a de Bruijn graph assembler to build and connect contigs from forward and reverse reads for each de novo RAD locus, which it then uses as a reference for read alignments. The new architecture allows all the individuals in a metapopulation to be considered at the same time as each RAD locus is processed. This enables a Bayesian genotype caller to provide precise SNPs, and a robust algorithm to phase those SNPs into long haplotypes, generating RAD loci that are 400–800 bp in length. To prove its recall and precision, we tested the software with simulated data and compared reference‐aligned and de novo analyses of three empirical data sets. Our study shows that the latest version of Stacks is highly accurate and outperforms other software in assembling and genotyping paired‐end de novo data sets.
AbstractList For half a century population genetics studies have put type II restriction endonucleases to work. Now, coupled with massively-parallel, short-read sequencing, the family of RAD protocols that wields these enzymes has generated vast genetic knowledge from the natural world. Here, we describe the first software natively capable of using paired-end sequencing to derive short contigs from de novo RAD data. Stacks version 2 employs a de Bruijn graph assembler to build and connect contigs from forward and reverse reads for each de novo RAD locus, which it then uses as a reference for read alignments. The new architecture allows all the individuals in a metapopulation to be considered at the same time as each RAD locus is processed. This enables a Bayesian genotype caller to provide precise SNPs, and a robust algorithm to phase those SNPs into long haplotypes, generating RAD loci that are 400-800 bp in length. To prove its recall and precision, we tested the software with simulated data and compared reference-aligned and de novo analyses of three empirical data sets. Our study shows that the latest version of Stacks is highly accurate and outperforms other software in assembling and genotyping paired-end de novo data sets.
For half a century population genetics studies have put type II restriction endonucleases to work. Now, coupled with massively‐parallel, short‐read sequencing, the family of RAD protocols that wields these enzymes has generated vast genetic knowledge from the natural world. Here, we describe the first software natively capable of using paired‐end sequencing to derive short contigs from de novo RAD data. Stacks version 2 employs a de Bruijn graph assembler to build and connect contigs from forward and reverse reads for each de novo RAD locus, which it then uses as a reference for read alignments. The new architecture allows all the individuals in a metapopulation to be considered at the same time as each RAD locus is processed. This enables a Bayesian genotype caller to provide precise SNPs, and a robust algorithm to phase those SNPs into long haplotypes, generating RAD loci that are 400–800 bp in length. To prove its recall and precision, we tested the software with simulated data and compared reference‐aligned and de novo analyses of three empirical data sets. Our study shows that the latest version of Stacks is highly accurate and outperforms other software in assembling and genotyping paired‐end de novo data sets.
For half a century population genetics studies have put type II restriction endonucleases to work. Now, coupled with massively-parallel, short-read sequencing, the family of RAD protocols that wields these enzymes has generated vast genetic knowledge from the natural world. Here, we describe the first software natively capable of using paired-end sequencing to derive short contigs from de novo RAD data. Stacks version 2 employs a de Bruijn graph assembler to build and connect contigs from forward and reverse reads for each de novo RAD locus, which it then uses as a reference for read alignments. The new architecture allows all the individuals in a metapopulation to be considered at the same time as each RAD locus is processed. This enables a Bayesian genotype caller to provide precise SNPs, and a robust algorithm to phase those SNPs into long haplotypes, generating RAD loci that are 400-800 bp in length. To prove its recall and precision, we tested the software with simulated data and compared reference-aligned and de novo analyses of three empirical data sets. Our study shows that the latest version of Stacks is highly accurate and outperforms other software in assembling and genotyping paired-end de novo data sets.For half a century population genetics studies have put type II restriction endonucleases to work. Now, coupled with massively-parallel, short-read sequencing, the family of RAD protocols that wields these enzymes has generated vast genetic knowledge from the natural world. Here, we describe the first software natively capable of using paired-end sequencing to derive short contigs from de novo RAD data. Stacks version 2 employs a de Bruijn graph assembler to build and connect contigs from forward and reverse reads for each de novo RAD locus, which it then uses as a reference for read alignments. The new architecture allows all the individuals in a metapopulation to be considered at the same time as each RAD locus is processed. This enables a Bayesian genotype caller to provide precise SNPs, and a robust algorithm to phase those SNPs into long haplotypes, generating RAD loci that are 400-800 bp in length. To prove its recall and precision, we tested the software with simulated data and compared reference-aligned and de novo analyses of three empirical data sets. Our study shows that the latest version of Stacks is highly accurate and outperforms other software in assembling and genotyping paired-end de novo data sets.
Author Catchen, Julian M.
Rivera‐Colón, Angel G.
Rochette, Nicolas C.
Author_xml – sequence: 1
  givenname: Nicolas C.
  orcidid: 0000-0003-1899-1765
  surname: Rochette
  fullname: Rochette, Nicolas C.
  organization: University of Illinois at Urbana‐Champaign
– sequence: 2
  givenname: Angel G.
  orcidid: 0000-0001-9097-3241
  surname: Rivera‐Colón
  fullname: Rivera‐Colón, Angel G.
  organization: University of Illinois at Urbana‐Champaign
– sequence: 3
  givenname: Julian M.
  orcidid: 0000-0002-4798-660X
  surname: Catchen
  fullname: Catchen, Julian M.
  email: jcatchen@illinois.edu
  organization: University of Illinois at Urbana‐Champaign
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31550391$$D View this record in MEDLINE/PubMed
BookMark eNqF0c1u1DAQB3ALFdFt4cALIEtc4JDWY8dOzG21lA-pCIkPiVvkOJPiktipnYD2xiPwjDwJ3m7hUAnwxZL9m9HoP0fkwAePhDwEdgL5nI5oT0ByKe6QFQglC67LTwdkxbTiBbBaHJKjlC4ZA8GlvEcOBUjJhIYVse9nY78kyp_RtTfDdnbWDHTE-XPoEu1DpJNxEbuf33-g72jCqwW9df6CunGK4SvSd-vn-TX_tyZhR6cwLYOZXfD0An0YnU33yd3eDAkf3NzH5OOLsw-bV8X525evN-vzwopaiaITtTSVFEaI3vBSI4hetr0BIwBtKUVd6w5rZTJvFUCpNNe9tspAL9pSiWPyZN83D5bHTHMzumRxGIzHsKSGi6oEJTWv_0-5roCriu3o41v0MiwxZ7VrCLySiknI6tGNWtoRu2aKbjRx2_xOOoOne2BjSCli_4cAa3ZbbPIWm-stZnt6y1o3X2c6R-OGf1V8cwNu_966eXO22Vf8AsMJrcc
CitedBy_id crossref_primary_10_1002_ece3_10721
crossref_primary_10_1111_nph_18550
crossref_primary_10_1016_j_cub_2021_06_051
crossref_primary_10_1093_isd_ixac027
crossref_primary_10_1002_tax_12818
crossref_primary_10_3389_fpls_2022_1099705
crossref_primary_10_1093_jmammal_gyae151
crossref_primary_10_1002_aqc_4153
crossref_primary_10_1186_s12862_024_02308_0
crossref_primary_10_1111_ddi_13811
crossref_primary_10_1111_eva_70066
crossref_primary_10_3390_plants14010051
crossref_primary_10_1186_s12915_024_01907_z
crossref_primary_10_1111_1365_2656_13545
crossref_primary_10_3389_fpls_2021_677009
crossref_primary_10_1016_j_aquaculture_2021_737592
crossref_primary_10_1111_eva_70071
crossref_primary_10_3390_biology12020303
crossref_primary_10_1093_icesjms_fsae059
crossref_primary_10_1016_j_foreco_2023_121370
crossref_primary_10_1111_eva_13267
crossref_primary_10_1038_s41598_023_44534_4
crossref_primary_10_1093_molbev_msac279
crossref_primary_10_1111_1365_2745_14309
crossref_primary_10_3389_fpls_2022_857016
crossref_primary_10_1002_ece3_70913
crossref_primary_10_1128_aem_00987_24
crossref_primary_10_1007_s10530_024_03268_8
crossref_primary_10_70322_ecoldivers_2025_10007
crossref_primary_10_1007_s10592_025_01691_5
crossref_primary_10_1111_eva_13261
crossref_primary_10_1038_s41598_025_08085_0
crossref_primary_10_3390_agronomy15010022
crossref_primary_10_1016_j_biocontrol_2022_105102
crossref_primary_10_1371_journal_pone_0317768
crossref_primary_10_1038_s41437_021_00466_1
crossref_primary_10_1111_mec_17085
crossref_primary_10_3389_fpls_2024_1392990
crossref_primary_10_1007_s11295_023_01588_9
crossref_primary_10_1111_cla_70005
crossref_primary_10_1016_j_pld_2021_04_003
crossref_primary_10_1111_2041_210X_13562
crossref_primary_10_1111_evo_14538
crossref_primary_10_1007_s13595_021_01051_6
crossref_primary_10_1038_s41437_024_00708_y
crossref_primary_10_1111_mec_17080
crossref_primary_10_1016_j_fishres_2022_106499
crossref_primary_10_1111_eva_13135
crossref_primary_10_1002_ece3_10861
crossref_primary_10_1007_s10592_025_01701_6
crossref_primary_10_1111_eva_13133
crossref_primary_10_1016_j_ygeno_2020_08_036
crossref_primary_10_1007_s10722_024_02020_4
crossref_primary_10_1007_s10265_023_01448_6
crossref_primary_10_1007_s10592_024_01640_8
crossref_primary_10_1080_14772000_2023_2237050
crossref_primary_10_7717_peerj_16302
crossref_primary_10_1007_s12686_024_01370_6
crossref_primary_10_1093_jhered_esae073
crossref_primary_10_1111_2041_210X_14429
crossref_primary_10_1111_eva_70050
crossref_primary_10_1093_jhered_esae072
crossref_primary_10_1111_jbi_14774
crossref_primary_10_1111_2041_210X_13454
crossref_primary_10_1016_j_fishres_2023_106857
crossref_primary_10_1038_s41598_024_69782_w
crossref_primary_10_3389_fpls_2020_588354
crossref_primary_10_1007_s10641_025_01686_8
crossref_primary_10_1111_eva_13367
crossref_primary_10_1093_molbev_msad029
crossref_primary_10_3389_fpls_2024_1335715
crossref_primary_10_1111_nph_18645
crossref_primary_10_1111_eva_13248
crossref_primary_10_1038_s41437_023_00657_y
crossref_primary_10_1038_s41467_024_49025_2
crossref_primary_10_1038_s41598_022_14100_5
crossref_primary_10_1111_eva_70058
crossref_primary_10_1111_jbi_14516
crossref_primary_10_1038_s41598_025_09432_x
crossref_primary_10_1016_j_gecco_2025_e03437
crossref_primary_10_1038_s41598_024_67764_6
crossref_primary_10_1111_mec_17188
crossref_primary_10_1088_1755_1315_777_1_012026
crossref_primary_10_1270_jsbbs_23050
crossref_primary_10_1093_molbev_msab092
crossref_primary_10_1038_s42003_023_05498_3
crossref_primary_10_1270_jsbbs_23053
crossref_primary_10_1111_jbi_70014
crossref_primary_10_1111_rec_14283
crossref_primary_10_1186_s12862_024_02209_2
crossref_primary_10_1002_ece3_10523
crossref_primary_10_1111_nph_20432
crossref_primary_10_1111_eva_13475
crossref_primary_10_1111_eva_13359
crossref_primary_10_1038_s41588_020_00717_7
crossref_primary_10_1111_nph_19325
crossref_primary_10_1007_s11273_024_10012_5
crossref_primary_10_1111_eva_13593
crossref_primary_10_1093_sysbio_syaa101
crossref_primary_10_1111_plb_13713
crossref_primary_10_1111_mec_17293
crossref_primary_10_3389_frish_2024_1356313
crossref_primary_10_3390_genes14101870
crossref_primary_10_1093_aob_mcad120
crossref_primary_10_3390_plants12071579
crossref_primary_10_1038_s41437_023_00642_5
crossref_primary_10_1016_j_funeco_2022_101165
crossref_primary_10_1093_botlinnean_boad032
crossref_primary_10_3897_phytokeys_212_91536
crossref_primary_10_1111_eva_13466
crossref_primary_10_1093_genetics_iyab236
crossref_primary_10_1111_eva_13344
crossref_primary_10_1111_eva_13584
crossref_primary_10_7717_peerj_15029
crossref_primary_10_1111_eva_13469
crossref_primary_10_1111_jbi_14739
crossref_primary_10_1093_zoolinnean_zlab051
crossref_primary_10_1007_s10592_024_01652_4
crossref_primary_10_1111_mec_17169
crossref_primary_10_1002_ece3_6503
crossref_primary_10_1038_s41559_023_02265_9
crossref_primary_10_1111_eva_13460
crossref_primary_10_1111_1442_1984_12502
crossref_primary_10_1007_s10722_023_01683_9
crossref_primary_10_1111_jbi_14623
crossref_primary_10_1007_s10592_024_01665_z
crossref_primary_10_3897_neobiota_82_97881
crossref_primary_10_1007_s10592_020_01329_8
crossref_primary_10_1016_j_cub_2023_11_046
crossref_primary_10_1111_jbi_14861
crossref_primary_10_1111_1365_2745_14340
crossref_primary_10_3390_plants12040829
crossref_primary_10_1111_eva_13334
crossref_primary_10_3390_f16020217
crossref_primary_10_3390_plants13020221
crossref_primary_10_1111_eva_13338
crossref_primary_10_1186_s12915_023_01722_y
crossref_primary_10_1111_mec_16189
crossref_primary_10_1007_s10530_023_03117_0
crossref_primary_10_1111_eva_13330
crossref_primary_10_3389_fmars_2023_1113870
crossref_primary_10_1002_ece3_71903
crossref_primary_10_1038_s41576_024_00738_6
crossref_primary_10_1093_molbev_msaf021
crossref_primary_10_3390_genes11040462
crossref_primary_10_1111_eva_13209
crossref_primary_10_1111_eva_70090
crossref_primary_10_1186_s12859_020_03701_4
crossref_primary_10_1007_s10592_025_01710_5
crossref_primary_10_1111_eva_13202
crossref_primary_10_1093_jue_juac009
crossref_primary_10_1111_eva_13321
crossref_primary_10_3389_fgene_2019_01269
crossref_primary_10_1111_1755_0998_14085
crossref_primary_10_1111_eva_13325
crossref_primary_10_1111_eva_13567
crossref_primary_10_1126_science_adj7430
crossref_primary_10_1093_icesjms_fsae019
crossref_primary_10_1007_s10071_025_01962_1
crossref_primary_10_3389_fmars_2021_683528
crossref_primary_10_1016_j_avrs_2023_100078
crossref_primary_10_3390_horticulturae10121325
crossref_primary_10_3897_evolsyst_8_124491
crossref_primary_10_1101_gr_279066_124
crossref_primary_10_34133_plantphenomics_0063
crossref_primary_10_1038_s41559_025_02838_w
crossref_primary_10_1016_j_biocon_2023_110332
crossref_primary_10_3389_fmars_2023_1057206
crossref_primary_10_1007_s10228_024_00976_y
crossref_primary_10_1007_s12237_023_01296_6
crossref_primary_10_1111_eva_13439
crossref_primary_10_1002_ece3_10319
crossref_primary_10_1016_j_aquaculture_2024_741310
crossref_primary_10_1016_j_ympev_2023_107781
crossref_primary_10_1038_s41598_022_19790_5
crossref_primary_10_1111_mec_15758
crossref_primary_10_1186_s12864_024_11160_x
crossref_primary_10_4039_tce_2020_83
crossref_primary_10_1007_s00606_025_01957_y
crossref_primary_10_1111_1755_0998_70034
crossref_primary_10_1111_eva_70105
crossref_primary_10_1016_j_ijpara_2025_08_005
crossref_primary_10_1111_1755_0998_13487
crossref_primary_10_1093_sysbio_syaf033
crossref_primary_10_1111_eva_70104
crossref_primary_10_1111_jbi_14709
crossref_primary_10_1534_g3_120_401497
crossref_primary_10_1111_1755_0998_13369
crossref_primary_10_1111_ecog_07117
crossref_primary_10_3390_plants11172274
crossref_primary_10_1186_s12864_024_11096_2
crossref_primary_10_1093_evolut_qpaf147
crossref_primary_10_1093_aob_mcaf100
crossref_primary_10_1093_molbev_msaf163
crossref_primary_10_1093_jhered_esae011
crossref_primary_10_1093_jhered_esae013
crossref_primary_10_1007_s00227_023_04361_7
crossref_primary_10_3390_microorganisms8101569
crossref_primary_10_1016_j_ympev_2023_107893
crossref_primary_10_1093_molbev_msaf024
crossref_primary_10_1038_s41598_024_82462_z
crossref_primary_10_1371_journal_pone_0291202
crossref_primary_10_1093_mollus_eyae029
crossref_primary_10_1038_s41437_022_00512_6
crossref_primary_10_1093_sysbio_syaf023
crossref_primary_10_1111_1755_0998_13498
crossref_primary_10_1111_mec_15860
crossref_primary_10_1111_eva_70115
crossref_primary_10_1111_jav_03034
crossref_primary_10_1016_j_isci_2025_113493
crossref_primary_10_1111_eva_70113
crossref_primary_10_1534_g3_120_401485
crossref_primary_10_1016_j_cub_2024_07_098
crossref_primary_10_1093_molbev_msad095
crossref_primary_10_1111_csp2_13204
crossref_primary_10_1002_ps_6577
crossref_primary_10_3390_agronomy14020350
crossref_primary_10_1093_jhered_esac064
crossref_primary_10_1002_ece3_8050
crossref_primary_10_1016_j_cois_2023_101084
crossref_primary_10_1016_j_ygeno_2022_110329
crossref_primary_10_1038_s41598_025_90274_y
crossref_primary_10_1093_aob_mcad151
crossref_primary_10_1093_g3journal_jkae110
crossref_primary_10_1016_j_genrep_2023_101800
crossref_primary_10_1093_ornithapp_duae009
crossref_primary_10_1093_evolut_qpae039
crossref_primary_10_1002_ece3_71263
crossref_primary_10_1093_evolut_qpaf129
crossref_primary_10_1093_zoolinnean_zlae094
crossref_primary_10_1111_1755_0998_13226
crossref_primary_10_1093_g3journal_jkae021
crossref_primary_10_1111_1755_0998_13108
crossref_primary_10_1093_aob_mcad180
crossref_primary_10_1007_s10530_023_03017_3
crossref_primary_10_1038_s41598_022_14358_9
crossref_primary_10_1002_ece3_70162
crossref_primary_10_1016_j_pld_2022_07_002
crossref_primary_10_1016_j_ympev_2020_107046
crossref_primary_10_1111_maec_12625
crossref_primary_10_1007_s11295_020_01485_5
crossref_primary_10_1371_journal_pone_0243446
crossref_primary_10_3390_agronomy14020380
crossref_primary_10_1002_ps_8893
crossref_primary_10_1007_s10641_025_01727_2
crossref_primary_10_1111_mec_15604
crossref_primary_10_1111_1755_0998_13597
crossref_primary_10_1111_1755_0998_13477
crossref_primary_10_1163_18759866_bja10035
crossref_primary_10_1111_age_70038
crossref_primary_10_1002_aqc_3434
crossref_primary_10_1111_jeb_14223
crossref_primary_10_3389_fpls_2021_730258
crossref_primary_10_1007_s10592_022_01488_w
crossref_primary_10_1093_ismejo_wrae045
crossref_primary_10_1093_evolut_qpae160
crossref_primary_10_3389_fpls_2023_1145858
crossref_primary_10_1016_j_marenvres_2024_106408
crossref_primary_10_1111_mec_16922
crossref_primary_10_1002_nafm_10717
crossref_primary_10_1016_j_psj_2025_105193
crossref_primary_10_1111_mec_15836
crossref_primary_10_1038_s41598_023_43537_5
crossref_primary_10_1093_evolinnean_kzae014
crossref_primary_10_1111_1755_0998_13163
crossref_primary_10_1111_fwb_14317
crossref_primary_10_1016_j_scitotenv_2024_176772
crossref_primary_10_3390_plants13141987
crossref_primary_10_1111_jbi_13932
crossref_primary_10_5194_aab_68_161_2025
crossref_primary_10_3390_genes12111656
crossref_primary_10_3390_plants14010007
crossref_primary_10_1002_aff2_70111
crossref_primary_10_1093_evolut_qpaf069
crossref_primary_10_1002_pld3_575
crossref_primary_10_1016_j_biocon_2022_109784
crossref_primary_10_1038_s41598_022_20947_5
crossref_primary_10_1093_jhered_esad083
crossref_primary_10_1016_j_aqrep_2024_102345
crossref_primary_10_3389_fevo_2023_1125134
crossref_primary_10_3389_fgene_2021_708871
crossref_primary_10_1038_s41559_024_02547_w
crossref_primary_10_1016_j_jenvman_2024_123085
crossref_primary_10_1007_s10722_024_01889_5
crossref_primary_10_1016_j_ympev_2022_107465
crossref_primary_10_1002_ece3_9179
crossref_primary_10_1002_ece3_10934
crossref_primary_10_1007_s00606_024_01902_5
crossref_primary_10_1080_01584197_2021_1915163
crossref_primary_10_1093_molbev_msz260
crossref_primary_10_1007_s11295_023_01620_y
crossref_primary_10_7717_peerj_10896
crossref_primary_10_1016_j_biocon_2025_111084
crossref_primary_10_1093_zoolinnean_zlae163
crossref_primary_10_1111_eva_13186
crossref_primary_10_1038_s41598_025_17666_y
crossref_primary_10_1080_10495398_2023_2235600
crossref_primary_10_1038_s41598_020_75984_9
crossref_primary_10_1016_j_meegid_2023_105501
crossref_primary_10_1111_btp_70088
crossref_primary_10_1111_eva_70040
crossref_primary_10_1002_ps_8712
crossref_primary_10_1111_ddi_13461
crossref_primary_10_3389_fpls_2022_997521
crossref_primary_10_1111_ddi_13460
crossref_primary_10_1111_jpy_13179
crossref_primary_10_3390_genes12081110
crossref_primary_10_1038_s41598_025_09050_7
crossref_primary_10_1038_s42003_022_04407_4
crossref_primary_10_1093_isd_ixac009
crossref_primary_10_1111_1755_0998_13140
crossref_primary_10_12782_specdiv_30_193
crossref_primary_10_1371_journal_pone_0277107
crossref_primary_10_1111_eva_70007
crossref_primary_10_1111_1755_0998_14114
crossref_primary_10_1111_eva_13291
crossref_primary_10_1111_1755_0998_70019
crossref_primary_10_1093_evolut_qpae076
crossref_primary_10_1186_s12864_021_07917_3
crossref_primary_10_1016_j_cub_2024_03_029
crossref_primary_10_1111_age_13361
crossref_primary_10_1007_s10228_025_01032_z
crossref_primary_10_1093_jhered_esad062
crossref_primary_10_1093_botlinnean_boaf034
crossref_primary_10_1016_j_jglr_2023_06_005
crossref_primary_10_1038_s41467_024_49792_y
crossref_primary_10_1111_imb_12815
crossref_primary_10_1093_jhered_esae033
crossref_primary_10_3390_genes14071323
crossref_primary_10_1016_j_ympev_2023_107883
crossref_primary_10_4039_tce_2023_13
crossref_primary_10_1002_ece3_9078
crossref_primary_10_1016_j_jglr_2022_05_020
crossref_primary_10_1093_evolinnean_kzae021
crossref_primary_10_1111_imb_12940
crossref_primary_10_1093_evolinnean_kzae024
crossref_primary_10_1111_jse_12923
crossref_primary_10_1111_1755_0998_13275
crossref_primary_10_1002_ajb2_1601
crossref_primary_10_1007_s10340_021_01443_7
crossref_primary_10_3389_fgene_2021_717200
crossref_primary_10_3389_fpls_2023_1187663
crossref_primary_10_3897_neobiota_92_117430
crossref_primary_10_1002_ece3_6802
crossref_primary_10_3389_fpls_2022_999964
crossref_primary_10_1002_ece3_6927
crossref_primary_10_3389_fmars_2023_1294509
crossref_primary_10_1007_s11295_023_01589_8
crossref_primary_10_1093_jhered_esad057
crossref_primary_10_3390_d15030344
crossref_primary_10_3390_jmse10070958
crossref_primary_10_1016_j_ympev_2023_107997
crossref_primary_10_1111_age_13378
crossref_primary_10_1016_j_aqrep_2024_102495
crossref_primary_10_1371_journal_pone_0318951
crossref_primary_10_1002_aps3_11611
crossref_primary_10_1007_s10265_024_01537_0
crossref_primary_10_1093_g3journal_jkad242
crossref_primary_10_1111_fwb_70004
crossref_primary_10_4039_tce_2023_24
crossref_primary_10_1016_j_anbehav_2021_04_021
crossref_primary_10_1093_sysbio_syad019
crossref_primary_10_1093_jhered_esab019
crossref_primary_10_3389_fgene_2023_1166385
crossref_primary_10_1038_s41598_024_59157_6
crossref_primary_10_3897_phytokeys_211_89452
crossref_primary_10_1111_fme_12682
crossref_primary_10_1111_mec_16200
crossref_primary_10_3106_ms2024_0045
crossref_primary_10_1111_mec_16204
crossref_primary_10_1038_s41437_024_00710_4
crossref_primary_10_1111_1440_1703_12270
crossref_primary_10_1111_mec_16569
crossref_primary_10_1111_mec_17415
crossref_primary_10_1186_s13104_025_07336_7
crossref_primary_10_3389_fgene_2024_1368760
crossref_primary_10_1111_1755_0998_13646
crossref_primary_10_1007_s10336_020_01782_9
crossref_primary_10_1093_biolinnean_blad002
crossref_primary_10_1111_1755_0998_13528
crossref_primary_10_1093_jeb_voae048
crossref_primary_10_1139_cjfas_2022_0232
crossref_primary_10_1111_mec_17770
crossref_primary_10_1186_s12862_022_02100_y
crossref_primary_10_1038_s41437_023_00629_2
crossref_primary_10_1111_jbi_15083
crossref_primary_10_1111_mec_70095
crossref_primary_10_2989_00306525_2024_2432292
crossref_primary_10_3390_plants12203597
crossref_primary_10_1007_s10126_025_10468_3
crossref_primary_10_1002_ece3_8560
crossref_primary_10_1016_j_ympev_2022_107671
crossref_primary_10_1111_mec_15349
crossref_primary_10_1111_mec_16438
crossref_primary_10_1111_eva_13700
crossref_primary_10_1016_j_scitotenv_2024_170244
crossref_primary_10_1111_eva_12972
crossref_primary_10_1093_sysbio_syaa094
crossref_primary_10_1111_mec_16430
crossref_primary_10_3390_d15060746
crossref_primary_10_1111_1755_0998_13893
crossref_primary_10_1111_mec_17763
crossref_primary_10_1093_sysbio_syac034
crossref_primary_10_1111_mec_17644
crossref_primary_10_1111_mec_17765
crossref_primary_10_3389_fpls_2024_1336461
crossref_primary_10_1093_biolinnean_blae110
crossref_primary_10_1002_ece3_70355
crossref_primary_10_1002_ece3_70476
crossref_primary_10_3897_imafungus_16_138888
crossref_primary_10_1016_j_ympev_2025_108341
crossref_primary_10_1016_j_ympev_2022_107677
crossref_primary_10_1007_s00265_022_03270_x
crossref_primary_10_1007_s11418_023_01742_6
crossref_primary_10_1093_evolut_qpad010
crossref_primary_10_1126_science_abn1593
crossref_primary_10_1038_s41598_022_05856_x
crossref_primary_10_1016_j_ympev_2025_108339
crossref_primary_10_1111_ddi_13397
crossref_primary_10_1016_j_ympev_2021_107121
crossref_primary_10_1038_s43247_023_01066_z
crossref_primary_10_1038_s41598_023_48571_x
crossref_primary_10_1111_mec_16422
crossref_primary_10_1007_s10592_022_01469_z
crossref_primary_10_1111_mec_16666
crossref_primary_10_1007_s10750_024_05729_6
crossref_primary_10_1038_s44185_024_00060_8
crossref_primary_10_1111_mec_17515
crossref_primary_10_1007_s10499_021_00747_w
crossref_primary_10_1007_s10126_023_10255_y
crossref_primary_10_1111_1755_0998_13624
crossref_primary_10_1111_mec_70077
crossref_primary_10_1111_icad_12626
crossref_primary_10_1016_j_biocon_2024_110686
crossref_primary_10_1016_j_jembe_2023_151942
crossref_primary_10_1111_mec_16660
crossref_primary_10_1002_aqc_3849
crossref_primary_10_1016_j_ympev_2022_107405
crossref_primary_10_1111_fwb_70033
crossref_primary_10_1111_jbi_15181
crossref_primary_10_1007_s10530_023_03123_2
crossref_primary_10_1111_ddi_13288
crossref_primary_10_1111_mec_16658
crossref_primary_10_1643_i2023043
crossref_primary_10_1002_eap_2764
crossref_primary_10_3389_fgene_2021_673697
crossref_primary_10_1111_1755_0998_13870
crossref_primary_10_1371_journal_pone_0277535
crossref_primary_10_3390_ani13152528
crossref_primary_10_1002_ece3_8467
crossref_primary_10_1002_ece3_8103
crossref_primary_10_1002_ece3_70216
crossref_primary_10_1093_biolinnean_blac023
crossref_primary_10_1093_ve_veaf055
crossref_primary_10_1111_mec_17622
crossref_primary_10_3354_meps14367
crossref_primary_10_1093_jeb_voae133
crossref_primary_10_1111_mec_16535
crossref_primary_10_1111_mec_16898
crossref_primary_10_1111_mec_17624
crossref_primary_10_1007_s10592_022_01445_7
crossref_primary_10_1007_s00338_021_02072_3
crossref_primary_10_1111_1365_2664_14155
crossref_primary_10_1007_s10592_024_01625_7
crossref_primary_10_1002_tax_13323
crossref_primary_10_3897_zookeys_1158_94152
crossref_primary_10_1093_ornithapp_duab019
crossref_primary_10_1016_j_ympev_2025_108441
crossref_primary_10_3390_ani12111464
crossref_primary_10_3390_d16040209
crossref_primary_10_1111_mec_70082
crossref_primary_10_1016_j_smallrumres_2025_107570
crossref_primary_10_1093_aobpla_plab012
crossref_primary_10_1111_mec_16407
crossref_primary_10_1186_s12870_025_06876_1
crossref_primary_10_1093_molbev_msab311
crossref_primary_10_1002_ece3_71240
crossref_primary_10_1534_g3_120_401295
crossref_primary_10_3897_phytokeys_188_64259
crossref_primary_10_1038_s41598_022_24498_7
crossref_primary_10_3389_fpls_2023_1119625
crossref_primary_10_1002_ajb2_16027
crossref_primary_10_1111_1755_0998_13324
crossref_primary_10_1002_ece3_70027
crossref_primary_10_1111_mec_16887
crossref_primary_10_1007_s10592_022_01433_x
crossref_primary_10_1016_j_ympev_2022_107509
crossref_primary_10_1016_j_ympev_2024_108030
crossref_primary_10_1093_evolut_qpad047
crossref_primary_10_3897_phytokeys_235_99140
crossref_primary_10_1270_jsbbs_20159
crossref_primary_10_1038_s41437_025_00776_8
crossref_primary_10_1093_jhered_esac036
crossref_primary_10_1093_jhered_esac035
crossref_primary_10_1111_mec_17605
crossref_primary_10_1016_j_smallrumres_2024_107285
crossref_primary_10_1111_mec_16759
crossref_primary_10_3390_genes13091661
crossref_primary_10_1111_tpj_17028
crossref_primary_10_1111_mec_16871
crossref_primary_10_1111_mec_16991
crossref_primary_10_1016_j_isci_2024_111097
crossref_primary_10_1111_mec_16872
crossref_primary_10_1111_mec_16993
crossref_primary_10_3389_fpls_2022_1010577
crossref_primary_10_1002_ece3_71596
crossref_primary_10_1111_mec_16632
crossref_primary_10_1111_mec_17724
crossref_primary_10_1080_00071668_2025_2528239
crossref_primary_10_1002_ajb2_16374
crossref_primary_10_1093_evolut_qpaf110
crossref_primary_10_1111_icad_12678
crossref_primary_10_3389_fpls_2021_626405
crossref_primary_10_1007_s10228_025_01041_y
crossref_primary_10_1016_j_ympev_2022_107519
crossref_primary_10_1111_icad_12432
crossref_primary_10_1007_s10265_022_01422_8
crossref_primary_10_1016_j_ympev_2024_108163
crossref_primary_10_1038_s41598_022_25619_y
crossref_primary_10_1007_s10592_022_01467_1
crossref_primary_10_1007_s00606_025_01943_4
crossref_primary_10_1093_jhered_esac025
crossref_primary_10_1002_ece3_9343
crossref_primary_10_1002_ece3_8250
crossref_primary_10_1007_s10980_023_01774_z
crossref_primary_10_3398_064_085_0212
crossref_primary_10_1111_jipb_70031
crossref_primary_10_1111_mec_17718
crossref_primary_10_1111_mec_16740
crossref_primary_10_1002_ece3_9346
crossref_primary_10_1371_journal_pgen_1009364
crossref_primary_10_3389_fpls_2024_1395676
crossref_primary_10_1093_genetics_iyae094
crossref_primary_10_1111_2041_210X_13937
crossref_primary_10_1111_eva_12919
crossref_primary_10_1093_evolut_qpae112
crossref_primary_10_1017_S0025315425000189
crossref_primary_10_1016_j_ympev_2023_107804
crossref_primary_10_1016_j_ympev_2023_107925
crossref_primary_10_1111_jzs_12566
crossref_primary_10_1016_j_tig_2023_01_005
crossref_primary_10_1111_ddi_13072
crossref_primary_10_1111_zsc_12634
crossref_primary_10_1016_j_ympev_2023_107801
crossref_primary_10_1111_zsc_12633
crossref_primary_10_3389_fgene_2021_688323
crossref_primary_10_1007_s10126_022_10183_3
crossref_primary_10_1080_14772000_2024_2436684
crossref_primary_10_1111_jbi_14291
crossref_primary_10_1093_jhered_esac014
crossref_primary_10_1111_gcb_17571
crossref_primary_10_1111_mec_16856
crossref_primary_10_1111_mec_17706
crossref_primary_10_1111_een_13149
crossref_primary_10_1111_mec_16616
crossref_primary_10_1002_ece3_9591
crossref_primary_10_1007_s00338_025_02616_x
crossref_primary_10_3390_plants11223015
crossref_primary_10_1093_evolut_qpae009
crossref_primary_10_1093_sysbio_syad065
crossref_primary_10_1111_mec_15885
crossref_primary_10_1016_j_egg_2022_100135
crossref_primary_10_1111_1755_0998_13314
crossref_primary_10_1002_ajb2_16275
crossref_primary_10_1007_s42398_025_00362_y
crossref_primary_10_1038_s41598_021_85909_9
crossref_primary_10_3390_f16081233
crossref_primary_10_1007_s10531_024_02791_3
crossref_primary_10_3389_fpls_2024_1442807
crossref_primary_10_3390_fishes9120481
crossref_primary_10_3390_plants13010090
crossref_primary_10_1007_s12686_025_01399_1
crossref_primary_10_1007_s10592_025_01706_1
crossref_primary_10_1007_s12686_021_01225_4
crossref_primary_10_1111_eva_13558
crossref_primary_10_1098_rspb_2025_0574
crossref_primary_10_1111_eva_13314
crossref_primary_10_1111_eva_13313
crossref_primary_10_1073_pnas_2312371121
crossref_primary_10_1111_mec_70008
crossref_primary_10_3390_genes13020255
crossref_primary_10_1111_mec_16169
crossref_primary_10_1002_ece3_7625
crossref_primary_10_1093_beheco_arac110
crossref_primary_10_1111_1755_0998_13800
crossref_primary_10_3389_fmars_2021_714662
crossref_primary_10_1111_mec_17491
crossref_primary_10_1002_ece3_71847
crossref_primary_10_1371_journal_pone_0250452
crossref_primary_10_1111_evo_14001
crossref_primary_10_1007_s10592_021_01412_8
crossref_primary_10_3389_fpls_2021_737111
crossref_primary_10_3390_genes13050913
crossref_primary_10_1016_j_cub_2023_08_066
crossref_primary_10_1007_s10592_023_01544_z
crossref_primary_10_1111_jeb_13948
crossref_primary_10_1186_s13007_025_01415_3
crossref_primary_10_1111_eva_13547
crossref_primary_10_3390_horticulturae8050405
crossref_primary_10_1139_cjfas_2024_0075
crossref_primary_10_1002_ece3_6664
crossref_primary_10_1111_mec_17247
crossref_primary_10_1016_j_pld_2024_12_006
crossref_primary_10_1186_s12864_024_10770_9
crossref_primary_10_3389_fgene_2022_824424
crossref_primary_10_1007_s11295_023_01618_6
crossref_primary_10_1186_s12870_023_04164_4
crossref_primary_10_1186_s12864_025_11449_5
crossref_primary_10_1007_s00338_023_02456_7
crossref_primary_10_3390_genes13122263
crossref_primary_10_1093_molbev_msac104
crossref_primary_10_1111_eva_13535
crossref_primary_10_1186_s12711_022_00698_7
crossref_primary_10_1093_iob_obab020
crossref_primary_10_3390_ani13203256
crossref_primary_10_1007_s12686_024_01351_9
crossref_primary_10_1111_jzs_12484
crossref_primary_10_1111_mec_17237
crossref_primary_10_1002_ece3_70721
crossref_primary_10_1002_ece3_7767
crossref_primary_10_1038_s41437_021_00472_3
crossref_primary_10_1002_ece3_8739
crossref_primary_10_1007_s11033_024_09866_y
crossref_primary_10_1111_1365_2656_13801
crossref_primary_10_1111_mec_17591
crossref_primary_10_1111_mec_17590
crossref_primary_10_1016_j_aquaculture_2024_740679
crossref_primary_10_1111_mec_17474
crossref_primary_10_1111_mec_16022
crossref_primary_10_1111_mec_17231
crossref_primary_10_3389_fevo_2023_1093321
crossref_primary_10_1186_s12870_021_03312_y
crossref_primary_10_7717_peerj_12212
crossref_primary_10_1111_eva_13765
crossref_primary_10_1007_s12686_021_01215_6
crossref_primary_10_1111_ibi_13207
crossref_primary_10_1186_s12870_023_04285_w
crossref_primary_10_1111_mec_17222
crossref_primary_10_1111_mec_17464
crossref_primary_10_1038_s41598_024_67992_w
crossref_primary_10_1111_mec_17224
crossref_primary_10_1111_mec_17469
crossref_primary_10_1016_j_aquaculture_2024_740786
crossref_primary_10_1016_j_aquaculture_2024_741997
crossref_primary_10_1111_1440_1703_12463
crossref_primary_10_1002_tax_13288
crossref_primary_10_3390_biology10080734
crossref_primary_10_1002_ps_6915
crossref_primary_10_1111_mec_17340
crossref_primary_10_1111_mec_16130
crossref_primary_10_1111_mec_16492
crossref_primary_10_1111_mec_17462
crossref_primary_10_1111_eva_13639
crossref_primary_10_1098_rsos_240490
crossref_primary_10_1111_eva_13637
crossref_primary_10_1111_jbi_14362
crossref_primary_10_1002_ajb2_70062
crossref_primary_10_1111_eva_13515
crossref_primary_10_1038_s41598_024_71617_7
crossref_primary_10_1093_jhered_esaa006
crossref_primary_10_3390_ani11030899
crossref_primary_10_1007_s00338_021_02078_x
crossref_primary_10_1093_molbev_msab278
crossref_primary_10_1111_mec_16244
crossref_primary_10_1111_mec_17575
crossref_primary_10_1111_acv_12971
crossref_primary_10_1111_mec_16485
crossref_primary_10_1111_mec_17577
crossref_primary_10_1111_mec_16245
crossref_primary_10_1111_mec_16369
crossref_primary_10_7717_peerj_17852
crossref_primary_10_1016_j_cub_2023_07_057
crossref_primary_10_1002_ece3_9843
crossref_primary_10_1111_1755_0998_13843
crossref_primary_10_1111_1440_1703_12472
crossref_primary_10_1111_jeb_13740
crossref_primary_10_4003_006_041_0104
crossref_primary_10_1111_eva_13749
crossref_primary_10_1111_eva_13629
crossref_primary_10_1111_evo_14448
crossref_primary_10_1038_s41467_024_54954_z
crossref_primary_10_1111_eva_13740
crossref_primary_10_1017_S0031182023000641
crossref_primary_10_3389_fmicb_2022_800061
crossref_primary_10_1093_evolut_qpac008
crossref_primary_10_1093_molbev_msab141
crossref_primary_10_1126_science_ado5331
crossref_primary_10_1038_s42003_021_01725_x
crossref_primary_10_3390_d13080372
crossref_primary_10_1371_journal_pone_0297987
crossref_primary_10_1098_rsos_241046
crossref_primary_10_1007_s10592_021_01392_9
crossref_primary_10_1038_s41598_025_02703_7
crossref_primary_10_1111_mec_16353
crossref_primary_10_1111_mec_17200
crossref_primary_10_3897_phytokeys_206_85635
crossref_primary_10_1111_mec_16234
crossref_primary_10_1002_ece3_10254
crossref_primary_10_1093_biolinnean_blab033
crossref_primary_10_1111_mec_16357
crossref_primary_10_1111_jfb_15195
crossref_primary_10_1111_mec_17207
crossref_primary_10_1002_ece3_8888
crossref_primary_10_1111_1755_0998_13853
crossref_primary_10_1111_mec_17448
crossref_primary_10_1002_ece3_70795
crossref_primary_10_1186_s12864_025_11296_4
crossref_primary_10_1016_j_gecco_2025_e03732
crossref_primary_10_1111_1755_0998_13618
crossref_primary_10_1111_mec_17681
crossref_primary_10_1111_1755_0998_13859
crossref_primary_10_1111_jwas_13035
crossref_primary_10_1111_jeb_13874
crossref_primary_10_1016_j_aquaculture_2025_743178
crossref_primary_10_1111_eva_13615
crossref_primary_10_1111_eva_13736
crossref_primary_10_1111_evo_14576
crossref_primary_10_1007_s10228_025_01029_8
crossref_primary_10_1051_alr_2024018
crossref_primary_10_1093_jhered_esaa001
crossref_primary_10_1007_s10745_023_00442_9
crossref_primary_10_1111_tpj_70027
crossref_primary_10_1111_eva_13613
crossref_primary_10_1002_ece3_9746
crossref_primary_10_1002_ajb2_16327
crossref_primary_10_2108_zs230121
crossref_primary_10_7717_peerj_12382
crossref_primary_10_3390_ani13071243
crossref_primary_10_1111_mec_17558
crossref_primary_10_1016_j_cub_2022_05_035
crossref_primary_10_1002_ece3_71746
crossref_primary_10_1111_jeb_13724
crossref_primary_10_1002_1438_390X_12093
crossref_primary_10_1111_mec_17791
crossref_primary_10_1111_1755_0998_13947
crossref_primary_10_1007_s10592_023_01589_0
crossref_primary_10_1007_s10841_024_00618_8
crossref_primary_10_1111_eva_13603
crossref_primary_10_1016_j_aqrep_2022_101234
crossref_primary_10_3389_fpls_2022_772621
crossref_primary_10_1016_j_ympev_2025_108404
crossref_primary_10_1111_mec_16339
crossref_primary_10_1002_ece3_10399
crossref_primary_10_1093_sysbio_syac018
crossref_primary_10_1093_evlett_qrae034
crossref_primary_10_1093_evlett_qrae035
crossref_primary_10_3389_fpls_2022_936761
crossref_primary_10_1007_s10531_024_02829_6
crossref_primary_10_1111_mec_16213
crossref_primary_10_1002_ece3_8422
crossref_primary_10_7717_peerj_9291
crossref_primary_10_1002_ece3_11484
crossref_primary_10_1002_ece3_8668
crossref_primary_10_1111_mec_17305
crossref_primary_10_1098_rsos_231226
crossref_primary_10_1016_j_pld_2025_09_001
crossref_primary_10_1002_ece3_71618
crossref_primary_10_1656_045_031_0412
crossref_primary_10_1038_s41598_025_86305_3
crossref_primary_10_1007_s11104_025_07714_x
crossref_primary_10_3390_f15040576
Cites_doi 10.1534/genetics.109.100479
10.1038/nrg3054
10.1016/0022-2836(70)90149-X
10.1111/mec.12350
10.1111/1755-0998.12677
10.1371/journal.pone.0151651
10.1126/science.aan4380
10.1111/1755-0998.12404
10.1534/g3.117.039008
10.1371/journal.pone.0001172
10.1534/genetics.115.183665
10.1086/BBLv227n2p146
10.1101/SQB.1974.039.01.056
10.1098/rsos.171589
10.1038/nrg1249
10.1111/j.1365-294X.2006.02908.x
10.7717/peerj.203
10.1111/mec.12796
10.1038/nmeth.1923
10.1371/journal.pone.0003376
10.1111/mec.14977
10.1089/cmb.2014.0157
10.1111/1755-0998.12669
10.1093/bioinformatics/btp324
10.1093/bioinformatics/btl158
10.1111/1755-0998.12649
10.1534/genetics.117.300610
10.1371/journal.pone.0019379
10.1534/genetics.109.108977
10.1016/0022-2836(70)90150-6
10.1002/evl3.37
10.1038/sj.jim.2900537
10.1093/bioinformatics/bts482
10.1093/bioinformatics/btp352
10.1007/978-1-61779-870-2_5
10.1093/bioinformatics/btt593
10.1093/molbev/msy023
10.1038/nrg2611
10.1093/nar/gkr217
10.1186/s12859-014-0356-4
10.1534/genetics.115.179077
10.1111/j.0014-3820.2006.tb01874.x
10.2307/2531534
10.1111/j.1558-5646.1984.tb05657.x
10.1038/nrg.2015.28
10.1371/journal.pone.0037135
10.1016/j.ympev.2018.09.001
10.1038/nrg3012
10.2307/2532296
10.7717/peerj.431
10.1111/mec.12354
10.1101/gr.5681207
10.1101/gr.9.9.868
10.1098/rspb.2014.0528
10.1093/genetics/131.2.479
10.1371/journal.pgen.1000862
10.1038/nprot.2017.123
10.1111/mec.12239
10.1534/g3.111.000240
10.1017/CBO9780511574931
10.1534/genetics.111.127324
10.1038/nmeth.2023
10.1038/ng.806
10.1111/1755-0998.12314
10.1111/eva.12274
10.1111/mec.13550
10.1111/mec.14709
10.1101/gr.074492.107
10.1201/b11113-4
10.1111/2041-210X.12775
10.1093/sysbio/syy084
10.1371/journal.pone.0018561
ContentType Journal Article
Copyright 2019 John Wiley & Sons Ltd
2019 John Wiley & Sons Ltd.
Copyright © 2019 John Wiley & Sons Ltd
Copyright_xml – notice: 2019 John Wiley & Sons Ltd
– notice: 2019 John Wiley & Sons Ltd.
– notice: Copyright © 2019 John Wiley & Sons Ltd
DBID AAYXX
CITATION
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/mec.15253
DatabaseName CrossRef
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
CrossRef
Entomology Abstracts

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1365-294X
EndPage 4754
ExternalDocumentID 31550391
10_1111_mec_15253
MEC15253
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: NSF
  funderid: 1645087
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29M
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c3863-d385a753a33fa249e13f5bfa1a31ec453889de86ac38b61146929f9c6a1f3b463
IEDL.DBID DRFUL
ISICitedReferencesCount 853
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000490719000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0962-1083
1365-294X
IngestDate Fri Sep 05 17:19:20 EDT 2025
Fri Sep 05 14:47:56 EDT 2025
Wed Aug 13 04:04:26 EDT 2025
Thu Apr 03 07:10:53 EDT 2025
Tue Nov 18 21:22:59 EST 2025
Sat Nov 29 05:23:26 EST 2025
Wed Jan 22 16:37:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords population genetics
genotype calling
restriction-site associated DNA sequencing
bioinformatics
conservation genetics
haplotype phasing
Language English
License 2019 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3863-d385a753a33fa249e13f5bfa1a31ec453889de86ac38b61146929f9c6a1f3b463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4798-660X
0000-0001-9097-3241
0000-0003-1899-1765
PMID 31550391
PQID 2312756051
PQPubID 31465
PageCount 18
ParticipantIDs proquest_miscellaneous_2374165928
proquest_miscellaneous_2297126708
proquest_journals_2312756051
pubmed_primary_31550391
crossref_primary_10_1111_mec_15253
crossref_citationtrail_10_1111_mec_15253
wiley_primary_10_1111_mec_15253_MEC15253
PublicationCentury 2000
PublicationDate November 2019
2019-11-00
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Molecular ecology
PublicationTitleAlternate Mol Ecol
PublicationYear 2019
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2017; 7
2017; 8
2013; 1
2013; 22
2018; 129
2004; 5
2018; 209
2011; 12
2008; 3
2014; 23
2012; 888
2006; 60
1987; 43
2018; 2
2009; 10
2018; 5
2014; 2
2006; 22
2019; 68
1980; 32
2019; 28
1987
2014; 15
2012; 28
1992; 48
2007; 2
2014; 281
2010; 6
2018; 35
2007; 17
2015; 15
2009; 25
2011; 1
2012
2011
2009; 182
2015; 201
2008; 18
1997
1996
1970; 51
2016; 202
2011; 39
2016; 17
1998; 21
2015; 8
2011; 6
2018; 27
1974; 39
1999; 9
2016; 11
2014; 227
2018; 359
1992; 131
2017; 17
1984; 38
2015; 22
2017; 12
2019
2011; 43
2009; 183
2013
2014; 30
2012; 7
2018; 201178
2016; 25
2011; 188
2012; 9
Li H. (e_1_2_8_41_1) 2013
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Garrison E. (e_1_2_8_28_1) 2012
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
Rivera-Colón A. G. (e_1_2_8_64_1) 2019
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
Aronesty E. (e_1_2_8_5_1) 2011
e_1_2_8_29_1
Weir B. S. (e_1_2_8_77_1) 1996
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
Poplin R. (e_1_2_8_62_1) 2018; 201178
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
Botstein D. (e_1_2_8_11_1) 1980; 32
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – year: 2011
– year: 2013
  article-title: Aligning sequence reads, clone sequences and assembly contigs with BWA‐MEM
  publication-title: ArXiv
– volume: 183
  start-page: 1431
  issue: 4
  year: 2009
  end-page: 1441
  article-title: Exact tests for Hardy‐Weinberg proportions
  publication-title: Genetics
– volume: 15
  start-page: 329
  issue: 2
  year: 2015
  end-page: 336
  article-title: Degenerate adaptor sequences for detecting PCR duplicates in reduced representation sequencing data improve genotype calling accuracy
  publication-title: Molecular Ecology Resources
– volume: 201178
  year: 2018
  article-title: Scaling accurate genetic variant discovery to tens of thousands of samples
  publication-title: BioRxiv
– volume: 15
  start-page: 356
  year: 2014
  article-title: : Analysis of next generation sequencing data
  publication-title: BMC Bioinformatics
– volume: 17
  start-page: 366
  issue: 3
  year: 2017
  end-page: 369
  article-title: Responsible RAD: Striving for best practices in population genomic studies of adaptation
  publication-title: Molecular Ecology Resources
– volume: 39
  start-page: 439
  year: 1974
  end-page: 446
  article-title: Physical mapping of temperature‐sensitive mutations of adenoviruses
  publication-title: Cold Spring Harbor Symposia on Quantitative Biology
– volume: 359
  start-page: 83
  issue: 6371
  year: 2018
  end-page: 86
  article-title: Genomic signals of selection predict climate‐driven population declines in a migratory bird
  publication-title: Science
– volume: 30
  start-page: 614
  issue: 5
  year: 2014
  end-page: 620
  article-title: : A fast and accurate Illumina Paired‐End reAd mergeR
  publication-title: Bioinformatics
– volume: 23
  start-page: 3133
  issue: 13
  year: 2014
  end-page: 3157
  article-title: Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow
  publication-title: Molecular Ecology
– volume: 51
  start-page: 379
  issue: 2
  year: 1970
  end-page: 391
  article-title: A Restriction enzyme from
  publication-title: Journal of Molecular Biology
– volume: 17
  start-page: 81
  issue: 2
  year: 2016
  end-page: 92
  article-title: Harnessing the power of RADseq for ecological and evolutionary genomics
  publication-title: Nature Reviews Genetics
– volume: 22
  start-page: 2841
  issue: 11
  year: 2013
  end-page: 2847
  article-title: Genotyping‐by‐sequencing in ecological and conservation genomics
  publication-title: Molecular Ecology
– volume: 2
  year: 2014
  article-title: : A RADseq, variant‐calling pipeline designed for population genomics of non‐model organisms
  publication-title: PeerJ
– volume: 888
  start-page: 67
  year: 2012
  end-page: 89
  article-title: Diversity arrays technology: A generic genome profiling technology on open platforms
  publication-title: Methods in Molecular Biology (Clifton, N.J.)
– volume: 60
  start-page: 2399
  issue: 11
  year: 2006
  end-page: 2402
  article-title: Using the AMOVA framework to estimate a standardized genetic differentiation measure
  publication-title: Evolution; International Journal of Organic Evolution
– volume: 201
  start-page: 473
  issue: 2
  year: 2015
  end-page: 486
  article-title: Genotype‐frequency estimation from high‐throughput sequencing data
  publication-title: Genetics
– volume: 11
  issue: 3
  year: 2016
  article-title: Hybridization capture using RAD probes (hyRAD), a new tool for performing genomic analyses on collection specimens
  publication-title: PLoS ONE
– volume: 188
  start-page: 799
  issue: 4
  year: 2011
  end-page: 808
  article-title: Genome evolution and meiotic maps by massively parallel DNA sequencing: Spotted gar, an outgroup for the teleost genome duplication
  publication-title: Genetics
– start-page: 775239
  year: 2019
  article-title: Simulation with RADinitio improves RADseq experimental design and sheds light on sources of missing data
  publication-title: BioRxiv
– volume: 209
  start-page: 921
  issue: 3
  year: 2018
  end-page: 939
  article-title: Repeated selection of alternatively adapted haplotypes creates sweeping genomic remodeling in stickleback
  publication-title: Genetics
– volume: 2
  issue: 11
  year: 2007
  article-title: Complexity reduction of polymorphic sequences (CRoPS): A novel approach for large‐scale polymorphism discovery in complex genomes
  publication-title: PLoS ONE
– volume: 6
  issue: 5
  year: 2011
  article-title: A robust, simple genotyping‐by‐sequencing (GBS) approach for high diversity species
  publication-title: PLoS ONE
– year: 1997
– volume: 6
  issue: 4
  year: 2011
  article-title: Local de novo assembly of RAD paired‐end contigs using short sequencing reads
  publication-title: PLoS ONE
– volume: 12
  start-page: 499
  issue: 7
  year: 2011
  end-page: 510
  article-title: Genome‐wide genetic marker discovery and genotyping using next‐generation sequencing
  publication-title: Nature Reviews Genetics
– volume: 9
  start-page: 868
  issue: 9
  year: 1999
  end-page: 877
  article-title: CAP3: A DNA sequence assembly program
  publication-title: Genome Research
– volume: 17
  start-page: 356
  issue: 3
  year: 2017
  end-page: 361
  article-title: RADseq provides unprecedented insights into molecular ecology and evolutionary genetics: Comment on breaking RAD by Lowry et al. (2016)
  publication-title: Molecular Ecology Resources
– volume: 9
  start-page: 808
  issue: 8
  year: 2012
  end-page: 810
  article-title: 2b‐RAD: A simple and flexible method for genome‐wide genotyping
  publication-title: Nature Methods
– volume: 43
  start-page: 805
  issue: 4
  year: 1987
  end-page: 811
  article-title: An exact test for Hardy‐Weinberg and multiple alleles
  publication-title: Biometrics
– volume: 6
  issue: 2
  year: 2010
  article-title: Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags
  publication-title: PLOS Genetics
– volume: 7
  start-page: 1393
  year: 2017
  end-page: 1404
  article-title: Genotype calling from population‐genomic sequencing data
  publication-title: G3: Genes, Genomes, Genetics
– volume: 51
  start-page: 393
  issue: 2
  year: 1970
  end-page: 409
  article-title: A restriction enzyme from
  publication-title: Journal of Molecular Biology
– volume: 227
  start-page: 146
  issue: 2
  year: 2014
  end-page: 160
  article-title: Detection and removal of PCR duplicates in population genomic ddRAD studies by addition of a degenerate base region (DBR) in sequencing adapters
  publication-title: The Biological Bulletin
– volume: 18
  start-page: 821
  issue: 5
  year: 2008
  end-page: 829
  article-title: Velvet: Algorithms for de novo short read assembly using de Bruijn graphs
  publication-title: Genome Research
– volume: 21
  start-page: 99
  issue: 3
  year: 1998
  end-page: 114
  article-title: Amplified fragment length polymorphism (AFLP): A review of the procedure and its applications
  publication-title: Journal of Industrial Microbiology and Biotechnology
– volume: 39
  issue: 12
  year: 2011
  article-title: A method for counting PCR template molecules with application to next‐generation sequencing
  publication-title: Nucleic Acids Research
– volume: 8
  start-page: 1360
  issue: 10
  year: 2017
  end-page: 1373
  article-title: Lost in parameter space: A road map for stacks
  publication-title: Methods in Ecology and Evolution
– volume: 25
  start-page: 2078
  issue: 16
  year: 2009
  end-page: 2079
  article-title: The sequence alignment/map format and
  publication-title: Bioinformatics
– year: 1987
– volume: 28
  start-page: 615
  issue: 3
  year: 2019
  end-page: 629
  article-title: Genomic insights into the vulnerability of sympatric whitefish species flocks
  publication-title: Molecular Ecology
– volume: 8
  start-page: 662
  issue: 7
  year: 2015
  end-page: 678
  article-title: Morphological and genomic comparisons of Hawaiian and Japanese Black‐footed Albatrosses ( ) using double digest RADseq: Implications for conservation
  publication-title: Evolutionary Applications
– volume: 7
  issue: 5
  year: 2012
  article-title: Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non‐model species
  publication-title: PLoS ONE
– year: 1996
– volume: 1
  year: 2013
  article-title: ezRAD: A simplified method for genomic genotyping in non‐model organisms
  publication-title: PeerJ
– volume: 25
  start-page: 1697
  issue: 8
  year: 2016
  end-page: 1713
  article-title: BsRADseq: Screening DNA methylation in natural populations of non‐model species
  publication-title: Molecular Ecology
– volume: 17
  start-page: 362
  issue: 3
  year: 2017
  end-page: 365
  article-title: Unbroken: RADseq remains a powerful tool for understanding the genetics of adaptation in natural populations
  publication-title: Molecular Ecology Resources
– volume: 48
  start-page: 361
  issue: 2
  year: 1992
  end-page: 372
  article-title: Performing the exact test of Hardy‐Weinberg proportion for multiple alleles
  publication-title: Biometrics
– volume: 10
  start-page: 639
  issue: 9
  year: 2009
  end-page: 650
  article-title: Genetics in geographically structured populations: Defining, estimating and interpreting F(ST)
  publication-title: Nature Reviews Genetics
– volume: 182
  start-page: 295
  issue: 1
  year: 2009
  end-page: 301
  article-title: Estimation of allele frequencies from high‐coverage genome‐sequencing projects
  publication-title: Genetics
– volume: 5
  start-page: 63
  issue: 1
  year: 2004
  end-page: 69
  article-title: The evolution of molecular markers—Just a matter of fashion?
  publication-title: Nature Reviews Genetics
– volume: 202
  start-page: 389
  issue: 2
  year: 2016
  end-page: 400
  article-title: RAD capture (Rapture): Flexible and efficient sequence‐based genotyping
  publication-title: Genetics
– volume: 15
  start-page: 1304
  issue: 6
  year: 2015
  end-page: 1315
  article-title: Impacts of degraded DNA on restriction enzyme associated DNA sequencing (RADSeq)
  publication-title: Molecular Ecology Resources
– volume: 1
  start-page: 171
  issue: 3
  year: 2011
  end-page: 182
  article-title: Stacks: Building and genotyping Loci de novo from short‐read sequences
  publication-title: G3 (Bethesda)
– volume: 129
  start-page: 268
  year: 2018
  end-page: 279
  article-title: Phylogenetic analysis of Antarctic notothenioids illuminates the utility of RADseq for resolving Cenozoic adaptive radiations
  publication-title: Molecular Phylogenetics and Evolution
– volume: 9
  start-page: 357
  issue: 4
  year: 2012
  end-page: 359
  article-title: Fast gapped‐read alignment with Bowtie 2
  publication-title: Nature Methods
– volume: 17
  start-page: 240
  issue: 2
  year: 2007
  end-page: 248
  article-title: Rapid and cost‐effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers
  publication-title: Genome Research
– year: 2012
  article-title: Haplotype‐based variant detection from short‐read sequencing
  publication-title: ArXiv
– volume: 28
  start-page: 2732
  issue: 21
  year: 2012
  end-page: 2737
  article-title: : An integrated tool for efficient clustering and assembling RAD‐seq reads
  publication-title: Bioinformatics
– volume: 12
  start-page: 2640
  issue: 12
  year: 2017
  end-page: 2659
  article-title: Deriving genotypes from RAD‐seq short‐read data using Stacks
  publication-title: Nature Protocols
– volume: 281
  issue: 1787
  year: 2014
  article-title: King penguin demography since the last glaciation inferred from genome‐wide data
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 68
  start-page: 187
  issue: 2
  year: 2019
  end-page: 203
  article-title: Restriction‐site‐associated DNA sequencing reveals a cryptic Viburnum species on the North American Coastal Plain
  publication-title: Systematic Biology
– volume: 27
  start-page: 2576
  issue: 11
  year: 2018
  end-page: 2593
  article-title: Signatures of local adaptation along environmental gradients in a range‐expanding damselfly ( )
  publication-title: Molecular Ecology
– volume: 22
  start-page: 1658
  issue: 13
  year: 2006
  end-page: 1659
  article-title: Cd‐hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences
  publication-title: Bioinformatics
– volume: 22
  start-page: 3002
  issue: 11
  year: 2013
  end-page: 3013
  article-title: Genomic patterns of introgression in rainbow and westslope cutthroat trout illuminated by overlapping paired‐end RAD sequencing
  publication-title: Molecular Ecology
– volume: 38
  start-page: 1358
  issue: 6
  year: 1984
  end-page: 1370
  article-title: Estimating F‐statistics for the analysis of population structure
  publication-title: Evolution; International Journal of Organic Evolution
– volume: 32
  start-page: 314
  issue: 3
  year: 1980
  end-page: 331
  article-title: Construction of a genetic linkage map in man using restriction fragment length polymorphisms
  publication-title: American Journal of Human Genetics
– volume: 2
  start-page: 9
  issue: 1
  year: 2018
  end-page: 21
  article-title: Ancient genomic variation underlies repeated ecological adaptation in young stickleback populations
  publication-title: Evolution Letters
– volume: 12
  start-page: 703
  issue: 10
  year: 2011
  end-page: 714
  article-title: Haplotype phasing: Existing methods and new developments
  publication-title: Nature Reviews Genetics
– volume: 43
  start-page: 491
  issue: 5
  year: 2011
  end-page: 498
  article-title: A framework for variation discovery and genotyping using next‐generation DNA sequencing data
  publication-title: Nature Genetics
– volume: 131
  start-page: 479
  issue: 2
  year: 1992
  end-page: 491
  article-title: Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data
  publication-title: Genetics
– volume: 35
  start-page: 1284
  issue: 5
  year: 2018
  end-page: 1290
  article-title: and : Population inference from RADseq data
  publication-title: Molecular Biology and Evolution
– volume: 3
  issue: 10
  year: 2008
  article-title: Rapid SNP discovery and genetic mapping using sequenced RAD markers
  publication-title: PLoS ONE
– volume: 25
  start-page: 1754
  issue: 14
  year: 2009
  end-page: 1760
  article-title: Fast and accurate short read alignment with Burrows‐Wheeler transform
  publication-title: Bioinformatics
– volume: 22
  start-page: 498
  issue: 6
  year: 2015
  end-page: 509
  article-title: WhatsHap: Weighted haplotype assembly for future‐generation sequencing reads
  publication-title: Journal of Computational Biology
– start-page: 31
  year: 2011
  end-page: 55
– volume: 5
  start-page: 171589
  issue: 2
  year: 2018
  article-title: An optimized approach for local de novo assembly of overlapping paired‐end RAD reads from multiple individuals
  publication-title: Royal Society Open Science
– volume: 22
  start-page: 3124
  issue: 11
  year: 2013
  end-page: 3140
  article-title: Stacks: An analysis tool set for population genomics
  publication-title: Molecular Ecology
– ident: e_1_2_8_48_1
  doi: 10.1534/genetics.109.100479
– ident: e_1_2_8_12_1
  doi: 10.1038/nrg3054
– ident: e_1_2_8_68_1
  doi: 10.1016/0022-2836(70)90149-X
– ident: e_1_2_8_55_1
  doi: 10.1111/mec.12350
– start-page: 775239
  year: 2019
  ident: e_1_2_8_64_1
  article-title: Simulation with RADinitio improves RADseq experimental design and sheds light on sources of missing data
  publication-title: BioRxiv
– ident: e_1_2_8_47_1
  doi: 10.1111/1755-0998.12677
– ident: e_1_2_8_70_1
  doi: 10.1371/journal.pone.0151651
– ident: e_1_2_8_8_1
  doi: 10.1126/science.aan4380
– ident: e_1_2_8_29_1
  doi: 10.1111/1755-0998.12404
– ident: e_1_2_8_51_1
  doi: 10.1534/g3.117.039008
– ident: e_1_2_8_75_1
  doi: 10.1371/journal.pone.0001172
– year: 2012
  ident: e_1_2_8_28_1
  article-title: Haplotype‐based variant detection from short‐read sequencing
  publication-title: ArXiv
– ident: e_1_2_8_2_1
  doi: 10.1534/genetics.115.183665
– ident: e_1_2_8_67_1
  doi: 10.1086/BBLv227n2p146
– ident: e_1_2_8_30_1
  doi: 10.1101/SQB.1974.039.01.056
– ident: e_1_2_8_45_1
  doi: 10.1098/rsos.171589
– ident: e_1_2_8_66_1
  doi: 10.1038/nrg1249
– ident: e_1_2_8_57_1
  doi: 10.1111/j.1365-294X.2006.02908.x
– ident: e_1_2_8_72_1
  doi: 10.7717/peerj.203
– volume: 32
  start-page: 314
  issue: 3
  year: 1980
  ident: e_1_2_8_11_1
  article-title: Construction of a genetic linkage map in man using restriction fragment length polymorphisms
  publication-title: American Journal of Human Genetics
– ident: e_1_2_8_18_1
  doi: 10.1111/mec.12796
– ident: e_1_2_8_40_1
  doi: 10.1038/nmeth.1923
– ident: e_1_2_8_6_1
  doi: 10.1371/journal.pone.0003376
– ident: e_1_2_8_27_1
  doi: 10.1111/mec.14977
– ident: e_1_2_8_60_1
  doi: 10.1089/cmb.2014.0157
– ident: e_1_2_8_16_1
  doi: 10.1111/1755-0998.12669
– ident: e_1_2_8_42_1
  doi: 10.1093/bioinformatics/btp324
– ident: e_1_2_8_44_1
  doi: 10.1093/bioinformatics/btl158
– ident: e_1_2_8_52_1
  doi: 10.1111/1755-0998.12649
– ident: e_1_2_8_7_1
  doi: 10.1534/genetics.117.300610
– ident: e_1_2_8_23_1
  doi: 10.1371/journal.pone.0019379
– ident: e_1_2_8_24_1
  doi: 10.1534/genetics.109.108977
– ident: e_1_2_8_37_1
  doi: 10.1016/0022-2836(70)90150-6
– ident: e_1_2_8_58_1
  doi: 10.1002/evl3.37
– ident: e_1_2_8_10_1
  doi: 10.1038/sj.jim.2900537
– ident: e_1_2_8_17_1
  doi: 10.1093/bioinformatics/bts482
– ident: e_1_2_8_43_1
  doi: 10.1093/bioinformatics/btp352
– ident: e_1_2_8_38_1
  doi: 10.1007/978-1-61779-870-2_5
– ident: e_1_2_8_80_1
  doi: 10.1093/bioinformatics/btt593
– volume-title: Genetic data analysis II: Methods for discrete population genetic data
  year: 1996
  ident: e_1_2_8_77_1
– volume: 201178
  year: 2018
  ident: e_1_2_8_62_1
  article-title: Scaling accurate genetic variant discovery to tens of thousands of samples
  publication-title: BioRxiv
– ident: e_1_2_8_49_1
  doi: 10.1093/molbev/msy023
– ident: e_1_2_8_35_1
  doi: 10.1038/nrg2611
– ident: e_1_2_8_13_1
  doi: 10.1093/nar/gkr217
– ident: e_1_2_8_39_1
  doi: 10.1186/s12859-014-0356-4
– ident: e_1_2_8_50_1
  doi: 10.1534/genetics.115.179077
– ident: e_1_2_8_53_1
  doi: 10.1111/j.0014-3820.2006.tb01874.x
– ident: e_1_2_8_46_1
  doi: 10.2307/2531534
– ident: e_1_2_8_78_1
  doi: 10.1111/j.1558-5646.1984.tb05657.x
– ident: e_1_2_8_4_1
  doi: 10.1038/nrg.2015.28
– ident: e_1_2_8_61_1
  doi: 10.1371/journal.pone.0037135
– year: 2013
  ident: e_1_2_8_41_1
  article-title: Aligning sequence reads, clone sequences and assembly contigs with BWA‐MEM
  publication-title: ArXiv
– ident: e_1_2_8_56_1
  doi: 10.1016/j.ympev.2018.09.001
– ident: e_1_2_8_19_1
  doi: 10.1038/nrg3012
– ident: e_1_2_8_31_1
  doi: 10.2307/2532296
– ident: e_1_2_8_63_1
  doi: 10.7717/peerj.431
– ident: e_1_2_8_15_1
  doi: 10.1111/mec.12354
– ident: e_1_2_8_54_1
  doi: 10.1101/gr.5681207
– ident: e_1_2_8_36_1
  doi: 10.1101/gr.9.9.868
– ident: e_1_2_8_73_1
  doi: 10.1098/rspb.2014.0528
– ident: e_1_2_8_26_1
  doi: 10.1093/genetics/131.2.479
– ident: e_1_2_8_33_1
  doi: 10.1371/journal.pgen.1000862
– ident: e_1_2_8_65_1
  doi: 10.1038/nprot.2017.123
– ident: e_1_2_8_34_1
  doi: 10.1111/mec.12239
– volume-title: ea-utils: Command‐line tools for processing biological sequencing data
  year: 2011
  ident: e_1_2_8_5_1
– ident: e_1_2_8_14_1
  doi: 10.1534/g3.111.000240
– ident: e_1_2_8_32_1
  doi: 10.1017/CBO9780511574931
– ident: e_1_2_8_3_1
  doi: 10.1534/genetics.111.127324
– ident: e_1_2_8_76_1
  doi: 10.1038/nmeth.2023
– ident: e_1_2_8_20_1
  doi: 10.1038/ng.806
– ident: e_1_2_8_71_1
  doi: 10.1111/1755-0998.12314
– ident: e_1_2_8_21_1
  doi: 10.1111/eva.12274
– ident: e_1_2_8_74_1
  doi: 10.1111/mec.13550
– ident: e_1_2_8_22_1
  doi: 10.1111/mec.14709
– ident: e_1_2_8_79_1
  doi: 10.1101/gr.074492.107
– ident: e_1_2_8_9_1
  doi: 10.1201/b11113-4
– ident: e_1_2_8_59_1
  doi: 10.1111/2041-210X.12775
– ident: e_1_2_8_69_1
  doi: 10.1093/sysbio/syy084
– ident: e_1_2_8_25_1
  doi: 10.1371/journal.pone.0018561
SSID ssj0013255
Score 2.7207987
Snippet For half a century population genetics studies have put type II restriction endonucleases to work. Now, coupled with massively‐parallel, short‐read sequencing,...
For half a century population genetics studies have put type II restriction endonucleases to work. Now, coupled with massively-parallel, short-read sequencing,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4737
SubjectTerms Algorithms
analytical methods
Bayesian analysis
Bayesian theory
bioinformatics
Computer programs
Computer simulation
computer software
conservation genetics
data collection
Datasets
Empirical analysis
Genetics
genotype calling
Genotypes
Genotyping
Graph theory
haplotype phasing
Haplotypes
Loci
metagenomics
Metapopulations
Population genetics
Population studies
restriction endonucleases
restriction‐site associated DNA sequencing
Single-nucleotide polymorphism
Software
Stacks
Title Stacks 2: Analytical methods for paired‐end sequencing improve RADseq‐based population genomics
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.15253
https://www.ncbi.nlm.nih.gov/pubmed/31550391
https://www.proquest.com/docview/2312756051
https://www.proquest.com/docview/2297126708
https://www.proquest.com/docview/2374165928
Volume 28
WOSCitedRecordID wos000490719000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-294X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013255
  issn: 0962-1083
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fSyMxEB-0euDL6empvaslig--FLo73d3k7km0xQdPRBT6tmTzB8qd29JtBd_8CH5GP8lNsttF8TwE38JmAtlk_vwmycwAHHJU2hhyU0VC4tazNupksdQk7kJrDJXWsfLFJpKLCz4cissl-LmIhSnzQ9QHbk4yvL52Ai6z4pmQ3xrli_fgMqyExLdRA1ZOrwY3588uEXzRUwLpIWkbjlViIfeQpx780hy9wpgvIau3OYP1D812Az5XUJMdl7zxBZZMvgmfyuKT99Tq-4TV91ugCHGq3wULfzCfo8Qfb7OytnTBCNWyiSTNqJ8eHk2uWfX6mmweG_kjCcOujk_pK_U7o6jZpK4KxlwO2NuRKr7CzaB_fXLWqYovdBTyGDsaeSTJl5GIVpKPZgK0UWZlIDEwqkd6kgtteCyJPItdbDMBLStULAOLWS_GbWjk49zsAlM6lMp0VRdpIOpepoQLfkCbWdQ2C5pwtNiDVFWZyV2BjD_pwkOh1Uv96jXhoCadlOk4_kXUWmxkWklkkRKOdZnuSQc1Yb_uJllyFyQyN-M50YQiCcI46fL_0KDDsJEIiWanZJJ6Juj8PRTuhzwvvD3F9Ff_xDe-vZ_0O6wRWhNlIGQLGrPp3OzBqrqbjYppG5aTIW9XIvAXQ_QJ3A
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB58ohffj_qM4sFLobvTbjfiRbRFsRYRBW9LNg8o2rW4reDNn-Bv9Jc4yW4XxQeCt7CZQDaZmXwzycwA7IUoldZkpvI6iVvVmFo5DoQicedKoS-VCqQrNlFvt8PbW345AofDWJgsP0ThcLOS4fS1FXDrkP4g5V0tXfUeHIXxKrER8ff4yVXzpvXhFsFVPSWU7pO6CTHPLGRf8hSDP59HX0DmZ8zqDp3m7P-mOwczOdhkRxl3zMOIThZgMis_-UythktZ_bwIkjCnvEuZf8BclhLn4GZZdemUEa5lPUG6Ub29vOpEsfz9NZ16rOOcEppdHZ3QV-q3x6JivaIuGLNZYLsdmS7BTbNxfXxazssvlCUtJpYVhjVB1oxANIKsNO2hqcVGeAI9LaukKUOudBgIIo8DG91MUMtwGQjPYEw7sgxjyUOiV4FJ5QupK7KCNBBVNZbchj-giQ0qE3sl2B9uQiTz3OS2RMZ9NLRRaPUit3ol2C1Ie1lCju-INoY7GeUymUaEZG2ue9JCJdgpukma7BWJSPTDgGh8Xvf8oF4Jf6FBi2Jr3CealYxLipmgtfiQ2x9yzPDzFKOLxrFrrP2ddBumTq8vWlHrrH2-DtOE3XgWFrkBY_3Hgd6ECfnU76SPW7kkvAPhZwzk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB4cuym9NI--3LjJtvTQi8HSSLK25BJim4Q4xpgGchOrfYBpoxjLLvjWn9Df2F_S2ZUsbNqEQm-LdhZWuzsz3-xjPoCPMUqlNYWpvEvqFhgTttNIKFJ3rhT6UqlIOrKJ7mgU397ycQ1O129hivwQ1Yab1Qxnr62C65kyG1p-p6Vj78EdaASWRKYOjd5kcDPcOEVwrKeE0n0yNzGWmYXsTZ6q8bY_-gNkbmNW53QGe__X3X14XoJNdlasjgOo6ewQdgv6yRWV-i5l9eoFSMKc8mvO_M_MZSlxG9ysYJfOGeFaNhNkG9WvHz91plh5_5q8Hpu6TQnNJmc9-kr11i0qNqt4wZjNAns3lflLuBn0v5xftEv6hbbEOMK2wjgUFM0IRCMoStMemjA1whPoaRmQpYy50nEkSDyN7OtmglqGy0h4BtMgwldQz-4z_QaYVL6QuiM7SA1RBank9vkDmtSgMqnXhE_rSUhkmZvcUmR8S9YxCo1e4kavCR8q0VmRkONvQq31TCalTuYJIVmb656sUBPeV9WkTfaIRGT6fkkyPu96ftTtxI_IoEWxIfdJ5nWxSqqeoI34kNsfcovh4S4m1_1zV3j776In8HTcGyTDy9HVETwj6BYW98dbUF_Ml_odPJHfF9N8flwqwm9Z-wxb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacks+2%3A+Analytical+methods+for+paired%E2%80%90end+sequencing+improve+RADseq%E2%80%90based+population+genomics&rft.jtitle=Molecular+ecology&rft.au=Rochette%2C+Nicolas+C&rft.au=Angel+G+Rivera%E2%80%90Col%C3%B3n&rft.au=Catchen%2C+Julian+M&rft.date=2019-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0962-1083&rft.eissn=1365-294X&rft.volume=28&rft.issue=21&rft.spage=4737&rft.epage=4754&rft_id=info:doi/10.1111%2Fmec.15253&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon