Stacks 2: Analytical methods for paired‐end sequencing improve RADseq‐based population genomics
For half a century population genetics studies have put type II restriction endonucleases to work. Now, coupled with massively‐parallel, short‐read sequencing, the family of RAD protocols that wields these enzymes has generated vast genetic knowledge from the natural world. Here, we describe the fir...
Uložené v:
| Vydané v: | Molecular ecology Ročník 28; číslo 21; s. 4737 - 4754 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Blackwell Publishing Ltd
01.11.2019
|
| Predmet: | |
| ISSN: | 0962-1083, 1365-294X, 1365-294X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | For half a century population genetics studies have put type II restriction endonucleases to work. Now, coupled with massively‐parallel, short‐read sequencing, the family of RAD protocols that wields these enzymes has generated vast genetic knowledge from the natural world. Here, we describe the first software natively capable of using paired‐end sequencing to derive short contigs from de novo RAD data. Stacks version 2 employs a de Bruijn graph assembler to build and connect contigs from forward and reverse reads for each de novo RAD locus, which it then uses as a reference for read alignments. The new architecture allows all the individuals in a metapopulation to be considered at the same time as each RAD locus is processed. This enables a Bayesian genotype caller to provide precise SNPs, and a robust algorithm to phase those SNPs into long haplotypes, generating RAD loci that are 400–800 bp in length. To prove its recall and precision, we tested the software with simulated data and compared reference‐aligned and de novo analyses of three empirical data sets. Our study shows that the latest version of Stacks is highly accurate and outperforms other software in assembling and genotyping paired‐end de novo data sets. |
|---|---|
| AbstractList | For half a century population genetics studies have put type II restriction endonucleases to work. Now, coupled with massively-parallel, short-read sequencing, the family of RAD protocols that wields these enzymes has generated vast genetic knowledge from the natural world. Here, we describe the first software natively capable of using paired-end sequencing to derive short contigs from de novo RAD data. Stacks version 2 employs a de Bruijn graph assembler to build and connect contigs from forward and reverse reads for each de novo RAD locus, which it then uses as a reference for read alignments. The new architecture allows all the individuals in a metapopulation to be considered at the same time as each RAD locus is processed. This enables a Bayesian genotype caller to provide precise SNPs, and a robust algorithm to phase those SNPs into long haplotypes, generating RAD loci that are 400-800 bp in length. To prove its recall and precision, we tested the software with simulated data and compared reference-aligned and de novo analyses of three empirical data sets. Our study shows that the latest version of Stacks is highly accurate and outperforms other software in assembling and genotyping paired-end de novo data sets. For half a century population genetics studies have put type II restriction endonucleases to work. Now, coupled with massively‐parallel, short‐read sequencing, the family of RAD protocols that wields these enzymes has generated vast genetic knowledge from the natural world. Here, we describe the first software natively capable of using paired‐end sequencing to derive short contigs from de novo RAD data. Stacks version 2 employs a de Bruijn graph assembler to build and connect contigs from forward and reverse reads for each de novo RAD locus, which it then uses as a reference for read alignments. The new architecture allows all the individuals in a metapopulation to be considered at the same time as each RAD locus is processed. This enables a Bayesian genotype caller to provide precise SNPs, and a robust algorithm to phase those SNPs into long haplotypes, generating RAD loci that are 400–800 bp in length. To prove its recall and precision, we tested the software with simulated data and compared reference‐aligned and de novo analyses of three empirical data sets. Our study shows that the latest version of Stacks is highly accurate and outperforms other software in assembling and genotyping paired‐end de novo data sets. For half a century population genetics studies have put type II restriction endonucleases to work. Now, coupled with massively-parallel, short-read sequencing, the family of RAD protocols that wields these enzymes has generated vast genetic knowledge from the natural world. Here, we describe the first software natively capable of using paired-end sequencing to derive short contigs from de novo RAD data. Stacks version 2 employs a de Bruijn graph assembler to build and connect contigs from forward and reverse reads for each de novo RAD locus, which it then uses as a reference for read alignments. The new architecture allows all the individuals in a metapopulation to be considered at the same time as each RAD locus is processed. This enables a Bayesian genotype caller to provide precise SNPs, and a robust algorithm to phase those SNPs into long haplotypes, generating RAD loci that are 400-800 bp in length. To prove its recall and precision, we tested the software with simulated data and compared reference-aligned and de novo analyses of three empirical data sets. Our study shows that the latest version of Stacks is highly accurate and outperforms other software in assembling and genotyping paired-end de novo data sets.For half a century population genetics studies have put type II restriction endonucleases to work. Now, coupled with massively-parallel, short-read sequencing, the family of RAD protocols that wields these enzymes has generated vast genetic knowledge from the natural world. Here, we describe the first software natively capable of using paired-end sequencing to derive short contigs from de novo RAD data. Stacks version 2 employs a de Bruijn graph assembler to build and connect contigs from forward and reverse reads for each de novo RAD locus, which it then uses as a reference for read alignments. The new architecture allows all the individuals in a metapopulation to be considered at the same time as each RAD locus is processed. This enables a Bayesian genotype caller to provide precise SNPs, and a robust algorithm to phase those SNPs into long haplotypes, generating RAD loci that are 400-800 bp in length. To prove its recall and precision, we tested the software with simulated data and compared reference-aligned and de novo analyses of three empirical data sets. Our study shows that the latest version of Stacks is highly accurate and outperforms other software in assembling and genotyping paired-end de novo data sets. |
| Author | Catchen, Julian M. Rivera‐Colón, Angel G. Rochette, Nicolas C. |
| Author_xml | – sequence: 1 givenname: Nicolas C. orcidid: 0000-0003-1899-1765 surname: Rochette fullname: Rochette, Nicolas C. organization: University of Illinois at Urbana‐Champaign – sequence: 2 givenname: Angel G. orcidid: 0000-0001-9097-3241 surname: Rivera‐Colón fullname: Rivera‐Colón, Angel G. organization: University of Illinois at Urbana‐Champaign – sequence: 3 givenname: Julian M. orcidid: 0000-0002-4798-660X surname: Catchen fullname: Catchen, Julian M. email: jcatchen@illinois.edu organization: University of Illinois at Urbana‐Champaign |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31550391$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0c1u1DAQB3ALFdFt4cALIEtc4JDWY8dOzG21lA-pCIkPiVvkOJPiktipnYD2xiPwjDwJ3m7hUAnwxZL9m9HoP0fkwAePhDwEdgL5nI5oT0ByKe6QFQglC67LTwdkxbTiBbBaHJKjlC4ZA8GlvEcOBUjJhIYVse9nY78kyp_RtTfDdnbWDHTE-XPoEu1DpJNxEbuf33-g72jCqwW9df6CunGK4SvSd-vn-TX_tyZhR6cwLYOZXfD0An0YnU33yd3eDAkf3NzH5OOLsw-bV8X525evN-vzwopaiaITtTSVFEaI3vBSI4hetr0BIwBtKUVd6w5rZTJvFUCpNNe9tspAL9pSiWPyZN83D5bHTHMzumRxGIzHsKSGi6oEJTWv_0-5roCriu3o41v0MiwxZ7VrCLySiknI6tGNWtoRu2aKbjRx2_xOOoOne2BjSCli_4cAa3ZbbPIWm-stZnt6y1o3X2c6R-OGf1V8cwNu_966eXO22Vf8AsMJrcc |
| CitedBy_id | crossref_primary_10_1002_ece3_10721 crossref_primary_10_1111_nph_18550 crossref_primary_10_1016_j_cub_2021_06_051 crossref_primary_10_1093_isd_ixac027 crossref_primary_10_1002_tax_12818 crossref_primary_10_3389_fpls_2022_1099705 crossref_primary_10_1093_jmammal_gyae151 crossref_primary_10_1002_aqc_4153 crossref_primary_10_1186_s12862_024_02308_0 crossref_primary_10_1111_ddi_13811 crossref_primary_10_1111_eva_70066 crossref_primary_10_3390_plants14010051 crossref_primary_10_1186_s12915_024_01907_z crossref_primary_10_1111_1365_2656_13545 crossref_primary_10_3389_fpls_2021_677009 crossref_primary_10_1016_j_aquaculture_2021_737592 crossref_primary_10_1111_eva_70071 crossref_primary_10_3390_biology12020303 crossref_primary_10_1093_icesjms_fsae059 crossref_primary_10_1016_j_foreco_2023_121370 crossref_primary_10_1111_eva_13267 crossref_primary_10_1038_s41598_023_44534_4 crossref_primary_10_1093_molbev_msac279 crossref_primary_10_1111_1365_2745_14309 crossref_primary_10_3389_fpls_2022_857016 crossref_primary_10_1002_ece3_70913 crossref_primary_10_1128_aem_00987_24 crossref_primary_10_1007_s10530_024_03268_8 crossref_primary_10_70322_ecoldivers_2025_10007 crossref_primary_10_1007_s10592_025_01691_5 crossref_primary_10_1111_eva_13261 crossref_primary_10_1038_s41598_025_08085_0 crossref_primary_10_3390_agronomy15010022 crossref_primary_10_1016_j_biocontrol_2022_105102 crossref_primary_10_1371_journal_pone_0317768 crossref_primary_10_1038_s41437_021_00466_1 crossref_primary_10_1111_mec_17085 crossref_primary_10_3389_fpls_2024_1392990 crossref_primary_10_1007_s11295_023_01588_9 crossref_primary_10_1111_cla_70005 crossref_primary_10_1016_j_pld_2021_04_003 crossref_primary_10_1111_2041_210X_13562 crossref_primary_10_1111_evo_14538 crossref_primary_10_1007_s13595_021_01051_6 crossref_primary_10_1038_s41437_024_00708_y crossref_primary_10_1111_mec_17080 crossref_primary_10_1016_j_fishres_2022_106499 crossref_primary_10_1111_eva_13135 crossref_primary_10_1002_ece3_10861 crossref_primary_10_1007_s10592_025_01701_6 crossref_primary_10_1111_eva_13133 crossref_primary_10_1016_j_ygeno_2020_08_036 crossref_primary_10_1007_s10722_024_02020_4 crossref_primary_10_1007_s10265_023_01448_6 crossref_primary_10_1007_s10592_024_01640_8 crossref_primary_10_1080_14772000_2023_2237050 crossref_primary_10_7717_peerj_16302 crossref_primary_10_1007_s12686_024_01370_6 crossref_primary_10_1093_jhered_esae073 crossref_primary_10_1111_2041_210X_14429 crossref_primary_10_1111_eva_70050 crossref_primary_10_1093_jhered_esae072 crossref_primary_10_1111_jbi_14774 crossref_primary_10_1111_2041_210X_13454 crossref_primary_10_1016_j_fishres_2023_106857 crossref_primary_10_1038_s41598_024_69782_w crossref_primary_10_3389_fpls_2020_588354 crossref_primary_10_1007_s10641_025_01686_8 crossref_primary_10_1111_eva_13367 crossref_primary_10_1093_molbev_msad029 crossref_primary_10_3389_fpls_2024_1335715 crossref_primary_10_1111_nph_18645 crossref_primary_10_1111_eva_13248 crossref_primary_10_1038_s41437_023_00657_y crossref_primary_10_1038_s41467_024_49025_2 crossref_primary_10_1038_s41598_022_14100_5 crossref_primary_10_1111_eva_70058 crossref_primary_10_1111_jbi_14516 crossref_primary_10_1038_s41598_025_09432_x crossref_primary_10_1016_j_gecco_2025_e03437 crossref_primary_10_1038_s41598_024_67764_6 crossref_primary_10_1111_mec_17188 crossref_primary_10_1088_1755_1315_777_1_012026 crossref_primary_10_1270_jsbbs_23050 crossref_primary_10_1093_molbev_msab092 crossref_primary_10_1038_s42003_023_05498_3 crossref_primary_10_1270_jsbbs_23053 crossref_primary_10_1111_jbi_70014 crossref_primary_10_1111_rec_14283 crossref_primary_10_1186_s12862_024_02209_2 crossref_primary_10_1002_ece3_10523 crossref_primary_10_1111_nph_20432 crossref_primary_10_1111_eva_13475 crossref_primary_10_1111_eva_13359 crossref_primary_10_1038_s41588_020_00717_7 crossref_primary_10_1111_nph_19325 crossref_primary_10_1007_s11273_024_10012_5 crossref_primary_10_1111_eva_13593 crossref_primary_10_1093_sysbio_syaa101 crossref_primary_10_1111_plb_13713 crossref_primary_10_1111_mec_17293 crossref_primary_10_3389_frish_2024_1356313 crossref_primary_10_3390_genes14101870 crossref_primary_10_1093_aob_mcad120 crossref_primary_10_3390_plants12071579 crossref_primary_10_1038_s41437_023_00642_5 crossref_primary_10_1016_j_funeco_2022_101165 crossref_primary_10_1093_botlinnean_boad032 crossref_primary_10_3897_phytokeys_212_91536 crossref_primary_10_1111_eva_13466 crossref_primary_10_1093_genetics_iyab236 crossref_primary_10_1111_eva_13344 crossref_primary_10_1111_eva_13584 crossref_primary_10_7717_peerj_15029 crossref_primary_10_1111_eva_13469 crossref_primary_10_1111_jbi_14739 crossref_primary_10_1093_zoolinnean_zlab051 crossref_primary_10_1007_s10592_024_01652_4 crossref_primary_10_1111_mec_17169 crossref_primary_10_1002_ece3_6503 crossref_primary_10_1038_s41559_023_02265_9 crossref_primary_10_1111_eva_13460 crossref_primary_10_1111_1442_1984_12502 crossref_primary_10_1007_s10722_023_01683_9 crossref_primary_10_1111_jbi_14623 crossref_primary_10_1007_s10592_024_01665_z crossref_primary_10_3897_neobiota_82_97881 crossref_primary_10_1007_s10592_020_01329_8 crossref_primary_10_1016_j_cub_2023_11_046 crossref_primary_10_1111_jbi_14861 crossref_primary_10_1111_1365_2745_14340 crossref_primary_10_3390_plants12040829 crossref_primary_10_1111_eva_13334 crossref_primary_10_3390_f16020217 crossref_primary_10_3390_plants13020221 crossref_primary_10_1111_eva_13338 crossref_primary_10_1186_s12915_023_01722_y crossref_primary_10_1111_mec_16189 crossref_primary_10_1007_s10530_023_03117_0 crossref_primary_10_1111_eva_13330 crossref_primary_10_3389_fmars_2023_1113870 crossref_primary_10_1002_ece3_71903 crossref_primary_10_1038_s41576_024_00738_6 crossref_primary_10_1093_molbev_msaf021 crossref_primary_10_3390_genes11040462 crossref_primary_10_1111_eva_13209 crossref_primary_10_1111_eva_70090 crossref_primary_10_1186_s12859_020_03701_4 crossref_primary_10_1007_s10592_025_01710_5 crossref_primary_10_1111_eva_13202 crossref_primary_10_1093_jue_juac009 crossref_primary_10_1111_eva_13321 crossref_primary_10_3389_fgene_2019_01269 crossref_primary_10_1111_1755_0998_14085 crossref_primary_10_1111_eva_13325 crossref_primary_10_1111_eva_13567 crossref_primary_10_1126_science_adj7430 crossref_primary_10_1093_icesjms_fsae019 crossref_primary_10_1007_s10071_025_01962_1 crossref_primary_10_3389_fmars_2021_683528 crossref_primary_10_1016_j_avrs_2023_100078 crossref_primary_10_3390_horticulturae10121325 crossref_primary_10_3897_evolsyst_8_124491 crossref_primary_10_1101_gr_279066_124 crossref_primary_10_34133_plantphenomics_0063 crossref_primary_10_1038_s41559_025_02838_w crossref_primary_10_1016_j_biocon_2023_110332 crossref_primary_10_3389_fmars_2023_1057206 crossref_primary_10_1007_s10228_024_00976_y crossref_primary_10_1007_s12237_023_01296_6 crossref_primary_10_1111_eva_13439 crossref_primary_10_1002_ece3_10319 crossref_primary_10_1016_j_aquaculture_2024_741310 crossref_primary_10_1016_j_ympev_2023_107781 crossref_primary_10_1038_s41598_022_19790_5 crossref_primary_10_1111_mec_15758 crossref_primary_10_1186_s12864_024_11160_x crossref_primary_10_4039_tce_2020_83 crossref_primary_10_1007_s00606_025_01957_y crossref_primary_10_1111_1755_0998_70034 crossref_primary_10_1111_eva_70105 crossref_primary_10_1016_j_ijpara_2025_08_005 crossref_primary_10_1111_1755_0998_13487 crossref_primary_10_1093_sysbio_syaf033 crossref_primary_10_1111_eva_70104 crossref_primary_10_1111_jbi_14709 crossref_primary_10_1534_g3_120_401497 crossref_primary_10_1111_1755_0998_13369 crossref_primary_10_1111_ecog_07117 crossref_primary_10_3390_plants11172274 crossref_primary_10_1186_s12864_024_11096_2 crossref_primary_10_1093_evolut_qpaf147 crossref_primary_10_1093_aob_mcaf100 crossref_primary_10_1093_molbev_msaf163 crossref_primary_10_1093_jhered_esae011 crossref_primary_10_1093_jhered_esae013 crossref_primary_10_1007_s00227_023_04361_7 crossref_primary_10_3390_microorganisms8101569 crossref_primary_10_1016_j_ympev_2023_107893 crossref_primary_10_1093_molbev_msaf024 crossref_primary_10_1038_s41598_024_82462_z crossref_primary_10_1371_journal_pone_0291202 crossref_primary_10_1093_mollus_eyae029 crossref_primary_10_1038_s41437_022_00512_6 crossref_primary_10_1093_sysbio_syaf023 crossref_primary_10_1111_1755_0998_13498 crossref_primary_10_1111_mec_15860 crossref_primary_10_1111_eva_70115 crossref_primary_10_1111_jav_03034 crossref_primary_10_1016_j_isci_2025_113493 crossref_primary_10_1111_eva_70113 crossref_primary_10_1534_g3_120_401485 crossref_primary_10_1016_j_cub_2024_07_098 crossref_primary_10_1093_molbev_msad095 crossref_primary_10_1111_csp2_13204 crossref_primary_10_1002_ps_6577 crossref_primary_10_3390_agronomy14020350 crossref_primary_10_1093_jhered_esac064 crossref_primary_10_1002_ece3_8050 crossref_primary_10_1016_j_cois_2023_101084 crossref_primary_10_1016_j_ygeno_2022_110329 crossref_primary_10_1038_s41598_025_90274_y crossref_primary_10_1093_aob_mcad151 crossref_primary_10_1093_g3journal_jkae110 crossref_primary_10_1016_j_genrep_2023_101800 crossref_primary_10_1093_ornithapp_duae009 crossref_primary_10_1093_evolut_qpae039 crossref_primary_10_1002_ece3_71263 crossref_primary_10_1093_evolut_qpaf129 crossref_primary_10_1093_zoolinnean_zlae094 crossref_primary_10_1111_1755_0998_13226 crossref_primary_10_1093_g3journal_jkae021 crossref_primary_10_1111_1755_0998_13108 crossref_primary_10_1093_aob_mcad180 crossref_primary_10_1007_s10530_023_03017_3 crossref_primary_10_1038_s41598_022_14358_9 crossref_primary_10_1002_ece3_70162 crossref_primary_10_1016_j_pld_2022_07_002 crossref_primary_10_1016_j_ympev_2020_107046 crossref_primary_10_1111_maec_12625 crossref_primary_10_1007_s11295_020_01485_5 crossref_primary_10_1371_journal_pone_0243446 crossref_primary_10_3390_agronomy14020380 crossref_primary_10_1002_ps_8893 crossref_primary_10_1007_s10641_025_01727_2 crossref_primary_10_1111_mec_15604 crossref_primary_10_1111_1755_0998_13597 crossref_primary_10_1111_1755_0998_13477 crossref_primary_10_1163_18759866_bja10035 crossref_primary_10_1111_age_70038 crossref_primary_10_1002_aqc_3434 crossref_primary_10_1111_jeb_14223 crossref_primary_10_3389_fpls_2021_730258 crossref_primary_10_1007_s10592_022_01488_w crossref_primary_10_1093_ismejo_wrae045 crossref_primary_10_1093_evolut_qpae160 crossref_primary_10_3389_fpls_2023_1145858 crossref_primary_10_1016_j_marenvres_2024_106408 crossref_primary_10_1111_mec_16922 crossref_primary_10_1002_nafm_10717 crossref_primary_10_1016_j_psj_2025_105193 crossref_primary_10_1111_mec_15836 crossref_primary_10_1038_s41598_023_43537_5 crossref_primary_10_1093_evolinnean_kzae014 crossref_primary_10_1111_1755_0998_13163 crossref_primary_10_1111_fwb_14317 crossref_primary_10_1016_j_scitotenv_2024_176772 crossref_primary_10_3390_plants13141987 crossref_primary_10_1111_jbi_13932 crossref_primary_10_5194_aab_68_161_2025 crossref_primary_10_3390_genes12111656 crossref_primary_10_3390_plants14010007 crossref_primary_10_1002_aff2_70111 crossref_primary_10_1093_evolut_qpaf069 crossref_primary_10_1002_pld3_575 crossref_primary_10_1016_j_biocon_2022_109784 crossref_primary_10_1038_s41598_022_20947_5 crossref_primary_10_1093_jhered_esad083 crossref_primary_10_1016_j_aqrep_2024_102345 crossref_primary_10_3389_fevo_2023_1125134 crossref_primary_10_3389_fgene_2021_708871 crossref_primary_10_1038_s41559_024_02547_w crossref_primary_10_1016_j_jenvman_2024_123085 crossref_primary_10_1007_s10722_024_01889_5 crossref_primary_10_1016_j_ympev_2022_107465 crossref_primary_10_1002_ece3_9179 crossref_primary_10_1002_ece3_10934 crossref_primary_10_1007_s00606_024_01902_5 crossref_primary_10_1080_01584197_2021_1915163 crossref_primary_10_1093_molbev_msz260 crossref_primary_10_1007_s11295_023_01620_y crossref_primary_10_7717_peerj_10896 crossref_primary_10_1016_j_biocon_2025_111084 crossref_primary_10_1093_zoolinnean_zlae163 crossref_primary_10_1111_eva_13186 crossref_primary_10_1038_s41598_025_17666_y crossref_primary_10_1080_10495398_2023_2235600 crossref_primary_10_1038_s41598_020_75984_9 crossref_primary_10_1016_j_meegid_2023_105501 crossref_primary_10_1111_btp_70088 crossref_primary_10_1111_eva_70040 crossref_primary_10_1002_ps_8712 crossref_primary_10_1111_ddi_13461 crossref_primary_10_3389_fpls_2022_997521 crossref_primary_10_1111_ddi_13460 crossref_primary_10_1111_jpy_13179 crossref_primary_10_3390_genes12081110 crossref_primary_10_1038_s41598_025_09050_7 crossref_primary_10_1038_s42003_022_04407_4 crossref_primary_10_1093_isd_ixac009 crossref_primary_10_1111_1755_0998_13140 crossref_primary_10_12782_specdiv_30_193 crossref_primary_10_1371_journal_pone_0277107 crossref_primary_10_1111_eva_70007 crossref_primary_10_1111_1755_0998_14114 crossref_primary_10_1111_eva_13291 crossref_primary_10_1111_1755_0998_70019 crossref_primary_10_1093_evolut_qpae076 crossref_primary_10_1186_s12864_021_07917_3 crossref_primary_10_1016_j_cub_2024_03_029 crossref_primary_10_1111_age_13361 crossref_primary_10_1007_s10228_025_01032_z crossref_primary_10_1093_jhered_esad062 crossref_primary_10_1093_botlinnean_boaf034 crossref_primary_10_1016_j_jglr_2023_06_005 crossref_primary_10_1038_s41467_024_49792_y crossref_primary_10_1111_imb_12815 crossref_primary_10_1093_jhered_esae033 crossref_primary_10_3390_genes14071323 crossref_primary_10_1016_j_ympev_2023_107883 crossref_primary_10_4039_tce_2023_13 crossref_primary_10_1002_ece3_9078 crossref_primary_10_1016_j_jglr_2022_05_020 crossref_primary_10_1093_evolinnean_kzae021 crossref_primary_10_1111_imb_12940 crossref_primary_10_1093_evolinnean_kzae024 crossref_primary_10_1111_jse_12923 crossref_primary_10_1111_1755_0998_13275 crossref_primary_10_1002_ajb2_1601 crossref_primary_10_1007_s10340_021_01443_7 crossref_primary_10_3389_fgene_2021_717200 crossref_primary_10_3389_fpls_2023_1187663 crossref_primary_10_3897_neobiota_92_117430 crossref_primary_10_1002_ece3_6802 crossref_primary_10_3389_fpls_2022_999964 crossref_primary_10_1002_ece3_6927 crossref_primary_10_3389_fmars_2023_1294509 crossref_primary_10_1007_s11295_023_01589_8 crossref_primary_10_1093_jhered_esad057 crossref_primary_10_3390_d15030344 crossref_primary_10_3390_jmse10070958 crossref_primary_10_1016_j_ympev_2023_107997 crossref_primary_10_1111_age_13378 crossref_primary_10_1016_j_aqrep_2024_102495 crossref_primary_10_1371_journal_pone_0318951 crossref_primary_10_1002_aps3_11611 crossref_primary_10_1007_s10265_024_01537_0 crossref_primary_10_1093_g3journal_jkad242 crossref_primary_10_1111_fwb_70004 crossref_primary_10_4039_tce_2023_24 crossref_primary_10_1016_j_anbehav_2021_04_021 crossref_primary_10_1093_sysbio_syad019 crossref_primary_10_1093_jhered_esab019 crossref_primary_10_3389_fgene_2023_1166385 crossref_primary_10_1038_s41598_024_59157_6 crossref_primary_10_3897_phytokeys_211_89452 crossref_primary_10_1111_fme_12682 crossref_primary_10_1111_mec_16200 crossref_primary_10_3106_ms2024_0045 crossref_primary_10_1111_mec_16204 crossref_primary_10_1038_s41437_024_00710_4 crossref_primary_10_1111_1440_1703_12270 crossref_primary_10_1111_mec_16569 crossref_primary_10_1111_mec_17415 crossref_primary_10_1186_s13104_025_07336_7 crossref_primary_10_3389_fgene_2024_1368760 crossref_primary_10_1111_1755_0998_13646 crossref_primary_10_1007_s10336_020_01782_9 crossref_primary_10_1093_biolinnean_blad002 crossref_primary_10_1111_1755_0998_13528 crossref_primary_10_1093_jeb_voae048 crossref_primary_10_1139_cjfas_2022_0232 crossref_primary_10_1111_mec_17770 crossref_primary_10_1186_s12862_022_02100_y crossref_primary_10_1038_s41437_023_00629_2 crossref_primary_10_1111_jbi_15083 crossref_primary_10_1111_mec_70095 crossref_primary_10_2989_00306525_2024_2432292 crossref_primary_10_3390_plants12203597 crossref_primary_10_1007_s10126_025_10468_3 crossref_primary_10_1002_ece3_8560 crossref_primary_10_1016_j_ympev_2022_107671 crossref_primary_10_1111_mec_15349 crossref_primary_10_1111_mec_16438 crossref_primary_10_1111_eva_13700 crossref_primary_10_1016_j_scitotenv_2024_170244 crossref_primary_10_1111_eva_12972 crossref_primary_10_1093_sysbio_syaa094 crossref_primary_10_1111_mec_16430 crossref_primary_10_3390_d15060746 crossref_primary_10_1111_1755_0998_13893 crossref_primary_10_1111_mec_17763 crossref_primary_10_1093_sysbio_syac034 crossref_primary_10_1111_mec_17644 crossref_primary_10_1111_mec_17765 crossref_primary_10_3389_fpls_2024_1336461 crossref_primary_10_1093_biolinnean_blae110 crossref_primary_10_1002_ece3_70355 crossref_primary_10_1002_ece3_70476 crossref_primary_10_3897_imafungus_16_138888 crossref_primary_10_1016_j_ympev_2025_108341 crossref_primary_10_1016_j_ympev_2022_107677 crossref_primary_10_1007_s00265_022_03270_x crossref_primary_10_1007_s11418_023_01742_6 crossref_primary_10_1093_evolut_qpad010 crossref_primary_10_1126_science_abn1593 crossref_primary_10_1038_s41598_022_05856_x crossref_primary_10_1016_j_ympev_2025_108339 crossref_primary_10_1111_ddi_13397 crossref_primary_10_1016_j_ympev_2021_107121 crossref_primary_10_1038_s43247_023_01066_z crossref_primary_10_1038_s41598_023_48571_x crossref_primary_10_1111_mec_16422 crossref_primary_10_1007_s10592_022_01469_z crossref_primary_10_1111_mec_16666 crossref_primary_10_1007_s10750_024_05729_6 crossref_primary_10_1038_s44185_024_00060_8 crossref_primary_10_1111_mec_17515 crossref_primary_10_1007_s10499_021_00747_w crossref_primary_10_1007_s10126_023_10255_y crossref_primary_10_1111_1755_0998_13624 crossref_primary_10_1111_mec_70077 crossref_primary_10_1111_icad_12626 crossref_primary_10_1016_j_biocon_2024_110686 crossref_primary_10_1016_j_jembe_2023_151942 crossref_primary_10_1111_mec_16660 crossref_primary_10_1002_aqc_3849 crossref_primary_10_1016_j_ympev_2022_107405 crossref_primary_10_1111_fwb_70033 crossref_primary_10_1111_jbi_15181 crossref_primary_10_1007_s10530_023_03123_2 crossref_primary_10_1111_ddi_13288 crossref_primary_10_1111_mec_16658 crossref_primary_10_1643_i2023043 crossref_primary_10_1002_eap_2764 crossref_primary_10_3389_fgene_2021_673697 crossref_primary_10_1111_1755_0998_13870 crossref_primary_10_1371_journal_pone_0277535 crossref_primary_10_3390_ani13152528 crossref_primary_10_1002_ece3_8467 crossref_primary_10_1002_ece3_8103 crossref_primary_10_1002_ece3_70216 crossref_primary_10_1093_biolinnean_blac023 crossref_primary_10_1093_ve_veaf055 crossref_primary_10_1111_mec_17622 crossref_primary_10_3354_meps14367 crossref_primary_10_1093_jeb_voae133 crossref_primary_10_1111_mec_16535 crossref_primary_10_1111_mec_16898 crossref_primary_10_1111_mec_17624 crossref_primary_10_1007_s10592_022_01445_7 crossref_primary_10_1007_s00338_021_02072_3 crossref_primary_10_1111_1365_2664_14155 crossref_primary_10_1007_s10592_024_01625_7 crossref_primary_10_1002_tax_13323 crossref_primary_10_3897_zookeys_1158_94152 crossref_primary_10_1093_ornithapp_duab019 crossref_primary_10_1016_j_ympev_2025_108441 crossref_primary_10_3390_ani12111464 crossref_primary_10_3390_d16040209 crossref_primary_10_1111_mec_70082 crossref_primary_10_1016_j_smallrumres_2025_107570 crossref_primary_10_1093_aobpla_plab012 crossref_primary_10_1111_mec_16407 crossref_primary_10_1186_s12870_025_06876_1 crossref_primary_10_1093_molbev_msab311 crossref_primary_10_1002_ece3_71240 crossref_primary_10_1534_g3_120_401295 crossref_primary_10_3897_phytokeys_188_64259 crossref_primary_10_1038_s41598_022_24498_7 crossref_primary_10_3389_fpls_2023_1119625 crossref_primary_10_1002_ajb2_16027 crossref_primary_10_1111_1755_0998_13324 crossref_primary_10_1002_ece3_70027 crossref_primary_10_1111_mec_16887 crossref_primary_10_1007_s10592_022_01433_x crossref_primary_10_1016_j_ympev_2022_107509 crossref_primary_10_1016_j_ympev_2024_108030 crossref_primary_10_1093_evolut_qpad047 crossref_primary_10_3897_phytokeys_235_99140 crossref_primary_10_1270_jsbbs_20159 crossref_primary_10_1038_s41437_025_00776_8 crossref_primary_10_1093_jhered_esac036 crossref_primary_10_1093_jhered_esac035 crossref_primary_10_1111_mec_17605 crossref_primary_10_1016_j_smallrumres_2024_107285 crossref_primary_10_1111_mec_16759 crossref_primary_10_3390_genes13091661 crossref_primary_10_1111_tpj_17028 crossref_primary_10_1111_mec_16871 crossref_primary_10_1111_mec_16991 crossref_primary_10_1016_j_isci_2024_111097 crossref_primary_10_1111_mec_16872 crossref_primary_10_1111_mec_16993 crossref_primary_10_3389_fpls_2022_1010577 crossref_primary_10_1002_ece3_71596 crossref_primary_10_1111_mec_16632 crossref_primary_10_1111_mec_17724 crossref_primary_10_1080_00071668_2025_2528239 crossref_primary_10_1002_ajb2_16374 crossref_primary_10_1093_evolut_qpaf110 crossref_primary_10_1111_icad_12678 crossref_primary_10_3389_fpls_2021_626405 crossref_primary_10_1007_s10228_025_01041_y crossref_primary_10_1016_j_ympev_2022_107519 crossref_primary_10_1111_icad_12432 crossref_primary_10_1007_s10265_022_01422_8 crossref_primary_10_1016_j_ympev_2024_108163 crossref_primary_10_1038_s41598_022_25619_y crossref_primary_10_1007_s10592_022_01467_1 crossref_primary_10_1007_s00606_025_01943_4 crossref_primary_10_1093_jhered_esac025 crossref_primary_10_1002_ece3_9343 crossref_primary_10_1002_ece3_8250 crossref_primary_10_1007_s10980_023_01774_z crossref_primary_10_3398_064_085_0212 crossref_primary_10_1111_jipb_70031 crossref_primary_10_1111_mec_17718 crossref_primary_10_1111_mec_16740 crossref_primary_10_1002_ece3_9346 crossref_primary_10_1371_journal_pgen_1009364 crossref_primary_10_3389_fpls_2024_1395676 crossref_primary_10_1093_genetics_iyae094 crossref_primary_10_1111_2041_210X_13937 crossref_primary_10_1111_eva_12919 crossref_primary_10_1093_evolut_qpae112 crossref_primary_10_1017_S0025315425000189 crossref_primary_10_1016_j_ympev_2023_107804 crossref_primary_10_1016_j_ympev_2023_107925 crossref_primary_10_1111_jzs_12566 crossref_primary_10_1016_j_tig_2023_01_005 crossref_primary_10_1111_ddi_13072 crossref_primary_10_1111_zsc_12634 crossref_primary_10_1016_j_ympev_2023_107801 crossref_primary_10_1111_zsc_12633 crossref_primary_10_3389_fgene_2021_688323 crossref_primary_10_1007_s10126_022_10183_3 crossref_primary_10_1080_14772000_2024_2436684 crossref_primary_10_1111_jbi_14291 crossref_primary_10_1093_jhered_esac014 crossref_primary_10_1111_gcb_17571 crossref_primary_10_1111_mec_16856 crossref_primary_10_1111_mec_17706 crossref_primary_10_1111_een_13149 crossref_primary_10_1111_mec_16616 crossref_primary_10_1002_ece3_9591 crossref_primary_10_1007_s00338_025_02616_x crossref_primary_10_3390_plants11223015 crossref_primary_10_1093_evolut_qpae009 crossref_primary_10_1093_sysbio_syad065 crossref_primary_10_1111_mec_15885 crossref_primary_10_1016_j_egg_2022_100135 crossref_primary_10_1111_1755_0998_13314 crossref_primary_10_1002_ajb2_16275 crossref_primary_10_1007_s42398_025_00362_y crossref_primary_10_1038_s41598_021_85909_9 crossref_primary_10_3390_f16081233 crossref_primary_10_1007_s10531_024_02791_3 crossref_primary_10_3389_fpls_2024_1442807 crossref_primary_10_3390_fishes9120481 crossref_primary_10_3390_plants13010090 crossref_primary_10_1007_s12686_025_01399_1 crossref_primary_10_1007_s10592_025_01706_1 crossref_primary_10_1007_s12686_021_01225_4 crossref_primary_10_1111_eva_13558 crossref_primary_10_1098_rspb_2025_0574 crossref_primary_10_1111_eva_13314 crossref_primary_10_1111_eva_13313 crossref_primary_10_1073_pnas_2312371121 crossref_primary_10_1111_mec_70008 crossref_primary_10_3390_genes13020255 crossref_primary_10_1111_mec_16169 crossref_primary_10_1002_ece3_7625 crossref_primary_10_1093_beheco_arac110 crossref_primary_10_1111_1755_0998_13800 crossref_primary_10_3389_fmars_2021_714662 crossref_primary_10_1111_mec_17491 crossref_primary_10_1002_ece3_71847 crossref_primary_10_1371_journal_pone_0250452 crossref_primary_10_1111_evo_14001 crossref_primary_10_1007_s10592_021_01412_8 crossref_primary_10_3389_fpls_2021_737111 crossref_primary_10_3390_genes13050913 crossref_primary_10_1016_j_cub_2023_08_066 crossref_primary_10_1007_s10592_023_01544_z crossref_primary_10_1111_jeb_13948 crossref_primary_10_1186_s13007_025_01415_3 crossref_primary_10_1111_eva_13547 crossref_primary_10_3390_horticulturae8050405 crossref_primary_10_1139_cjfas_2024_0075 crossref_primary_10_1002_ece3_6664 crossref_primary_10_1111_mec_17247 crossref_primary_10_1016_j_pld_2024_12_006 crossref_primary_10_1186_s12864_024_10770_9 crossref_primary_10_3389_fgene_2022_824424 crossref_primary_10_1007_s11295_023_01618_6 crossref_primary_10_1186_s12870_023_04164_4 crossref_primary_10_1186_s12864_025_11449_5 crossref_primary_10_1007_s00338_023_02456_7 crossref_primary_10_3390_genes13122263 crossref_primary_10_1093_molbev_msac104 crossref_primary_10_1111_eva_13535 crossref_primary_10_1186_s12711_022_00698_7 crossref_primary_10_1093_iob_obab020 crossref_primary_10_3390_ani13203256 crossref_primary_10_1007_s12686_024_01351_9 crossref_primary_10_1111_jzs_12484 crossref_primary_10_1111_mec_17237 crossref_primary_10_1002_ece3_70721 crossref_primary_10_1002_ece3_7767 crossref_primary_10_1038_s41437_021_00472_3 crossref_primary_10_1002_ece3_8739 crossref_primary_10_1007_s11033_024_09866_y crossref_primary_10_1111_1365_2656_13801 crossref_primary_10_1111_mec_17591 crossref_primary_10_1111_mec_17590 crossref_primary_10_1016_j_aquaculture_2024_740679 crossref_primary_10_1111_mec_17474 crossref_primary_10_1111_mec_16022 crossref_primary_10_1111_mec_17231 crossref_primary_10_3389_fevo_2023_1093321 crossref_primary_10_1186_s12870_021_03312_y crossref_primary_10_7717_peerj_12212 crossref_primary_10_1111_eva_13765 crossref_primary_10_1007_s12686_021_01215_6 crossref_primary_10_1111_ibi_13207 crossref_primary_10_1186_s12870_023_04285_w crossref_primary_10_1111_mec_17222 crossref_primary_10_1111_mec_17464 crossref_primary_10_1038_s41598_024_67992_w crossref_primary_10_1111_mec_17224 crossref_primary_10_1111_mec_17469 crossref_primary_10_1016_j_aquaculture_2024_740786 crossref_primary_10_1016_j_aquaculture_2024_741997 crossref_primary_10_1111_1440_1703_12463 crossref_primary_10_1002_tax_13288 crossref_primary_10_3390_biology10080734 crossref_primary_10_1002_ps_6915 crossref_primary_10_1111_mec_17340 crossref_primary_10_1111_mec_16130 crossref_primary_10_1111_mec_16492 crossref_primary_10_1111_mec_17462 crossref_primary_10_1111_eva_13639 crossref_primary_10_1098_rsos_240490 crossref_primary_10_1111_eva_13637 crossref_primary_10_1111_jbi_14362 crossref_primary_10_1002_ajb2_70062 crossref_primary_10_1111_eva_13515 crossref_primary_10_1038_s41598_024_71617_7 crossref_primary_10_1093_jhered_esaa006 crossref_primary_10_3390_ani11030899 crossref_primary_10_1007_s00338_021_02078_x crossref_primary_10_1093_molbev_msab278 crossref_primary_10_1111_mec_16244 crossref_primary_10_1111_mec_17575 crossref_primary_10_1111_acv_12971 crossref_primary_10_1111_mec_16485 crossref_primary_10_1111_mec_17577 crossref_primary_10_1111_mec_16245 crossref_primary_10_1111_mec_16369 crossref_primary_10_7717_peerj_17852 crossref_primary_10_1016_j_cub_2023_07_057 crossref_primary_10_1002_ece3_9843 crossref_primary_10_1111_1755_0998_13843 crossref_primary_10_1111_1440_1703_12472 crossref_primary_10_1111_jeb_13740 crossref_primary_10_4003_006_041_0104 crossref_primary_10_1111_eva_13749 crossref_primary_10_1111_eva_13629 crossref_primary_10_1111_evo_14448 crossref_primary_10_1038_s41467_024_54954_z crossref_primary_10_1111_eva_13740 crossref_primary_10_1017_S0031182023000641 crossref_primary_10_3389_fmicb_2022_800061 crossref_primary_10_1093_evolut_qpac008 crossref_primary_10_1093_molbev_msab141 crossref_primary_10_1126_science_ado5331 crossref_primary_10_1038_s42003_021_01725_x crossref_primary_10_3390_d13080372 crossref_primary_10_1371_journal_pone_0297987 crossref_primary_10_1098_rsos_241046 crossref_primary_10_1007_s10592_021_01392_9 crossref_primary_10_1038_s41598_025_02703_7 crossref_primary_10_1111_mec_16353 crossref_primary_10_1111_mec_17200 crossref_primary_10_3897_phytokeys_206_85635 crossref_primary_10_1111_mec_16234 crossref_primary_10_1002_ece3_10254 crossref_primary_10_1093_biolinnean_blab033 crossref_primary_10_1111_mec_16357 crossref_primary_10_1111_jfb_15195 crossref_primary_10_1111_mec_17207 crossref_primary_10_1002_ece3_8888 crossref_primary_10_1111_1755_0998_13853 crossref_primary_10_1111_mec_17448 crossref_primary_10_1002_ece3_70795 crossref_primary_10_1186_s12864_025_11296_4 crossref_primary_10_1016_j_gecco_2025_e03732 crossref_primary_10_1111_1755_0998_13618 crossref_primary_10_1111_mec_17681 crossref_primary_10_1111_1755_0998_13859 crossref_primary_10_1111_jwas_13035 crossref_primary_10_1111_jeb_13874 crossref_primary_10_1016_j_aquaculture_2025_743178 crossref_primary_10_1111_eva_13615 crossref_primary_10_1111_eva_13736 crossref_primary_10_1111_evo_14576 crossref_primary_10_1007_s10228_025_01029_8 crossref_primary_10_1051_alr_2024018 crossref_primary_10_1093_jhered_esaa001 crossref_primary_10_1007_s10745_023_00442_9 crossref_primary_10_1111_tpj_70027 crossref_primary_10_1111_eva_13613 crossref_primary_10_1002_ece3_9746 crossref_primary_10_1002_ajb2_16327 crossref_primary_10_2108_zs230121 crossref_primary_10_7717_peerj_12382 crossref_primary_10_3390_ani13071243 crossref_primary_10_1111_mec_17558 crossref_primary_10_1016_j_cub_2022_05_035 crossref_primary_10_1002_ece3_71746 crossref_primary_10_1111_jeb_13724 crossref_primary_10_1002_1438_390X_12093 crossref_primary_10_1111_mec_17791 crossref_primary_10_1111_1755_0998_13947 crossref_primary_10_1007_s10592_023_01589_0 crossref_primary_10_1007_s10841_024_00618_8 crossref_primary_10_1111_eva_13603 crossref_primary_10_1016_j_aqrep_2022_101234 crossref_primary_10_3389_fpls_2022_772621 crossref_primary_10_1016_j_ympev_2025_108404 crossref_primary_10_1111_mec_16339 crossref_primary_10_1002_ece3_10399 crossref_primary_10_1093_sysbio_syac018 crossref_primary_10_1093_evlett_qrae034 crossref_primary_10_1093_evlett_qrae035 crossref_primary_10_3389_fpls_2022_936761 crossref_primary_10_1007_s10531_024_02829_6 crossref_primary_10_1111_mec_16213 crossref_primary_10_1002_ece3_8422 crossref_primary_10_7717_peerj_9291 crossref_primary_10_1002_ece3_11484 crossref_primary_10_1002_ece3_8668 crossref_primary_10_1111_mec_17305 crossref_primary_10_1098_rsos_231226 crossref_primary_10_1016_j_pld_2025_09_001 crossref_primary_10_1002_ece3_71618 crossref_primary_10_1656_045_031_0412 crossref_primary_10_1038_s41598_025_86305_3 crossref_primary_10_1007_s11104_025_07714_x crossref_primary_10_3390_f15040576 |
| Cites_doi | 10.1534/genetics.109.100479 10.1038/nrg3054 10.1016/0022-2836(70)90149-X 10.1111/mec.12350 10.1111/1755-0998.12677 10.1371/journal.pone.0151651 10.1126/science.aan4380 10.1111/1755-0998.12404 10.1534/g3.117.039008 10.1371/journal.pone.0001172 10.1534/genetics.115.183665 10.1086/BBLv227n2p146 10.1101/SQB.1974.039.01.056 10.1098/rsos.171589 10.1038/nrg1249 10.1111/j.1365-294X.2006.02908.x 10.7717/peerj.203 10.1111/mec.12796 10.1038/nmeth.1923 10.1371/journal.pone.0003376 10.1111/mec.14977 10.1089/cmb.2014.0157 10.1111/1755-0998.12669 10.1093/bioinformatics/btp324 10.1093/bioinformatics/btl158 10.1111/1755-0998.12649 10.1534/genetics.117.300610 10.1371/journal.pone.0019379 10.1534/genetics.109.108977 10.1016/0022-2836(70)90150-6 10.1002/evl3.37 10.1038/sj.jim.2900537 10.1093/bioinformatics/bts482 10.1093/bioinformatics/btp352 10.1007/978-1-61779-870-2_5 10.1093/bioinformatics/btt593 10.1093/molbev/msy023 10.1038/nrg2611 10.1093/nar/gkr217 10.1186/s12859-014-0356-4 10.1534/genetics.115.179077 10.1111/j.0014-3820.2006.tb01874.x 10.2307/2531534 10.1111/j.1558-5646.1984.tb05657.x 10.1038/nrg.2015.28 10.1371/journal.pone.0037135 10.1016/j.ympev.2018.09.001 10.1038/nrg3012 10.2307/2532296 10.7717/peerj.431 10.1111/mec.12354 10.1101/gr.5681207 10.1101/gr.9.9.868 10.1098/rspb.2014.0528 10.1093/genetics/131.2.479 10.1371/journal.pgen.1000862 10.1038/nprot.2017.123 10.1111/mec.12239 10.1534/g3.111.000240 10.1017/CBO9780511574931 10.1534/genetics.111.127324 10.1038/nmeth.2023 10.1038/ng.806 10.1111/1755-0998.12314 10.1111/eva.12274 10.1111/mec.13550 10.1111/mec.14709 10.1101/gr.074492.107 10.1201/b11113-4 10.1111/2041-210X.12775 10.1093/sysbio/syy084 10.1371/journal.pone.0018561 |
| ContentType | Journal Article |
| Copyright | 2019 John Wiley & Sons Ltd 2019 John Wiley & Sons Ltd. Copyright © 2019 John Wiley & Sons Ltd |
| Copyright_xml | – notice: 2019 John Wiley & Sons Ltd – notice: 2019 John Wiley & Sons Ltd. – notice: Copyright © 2019 John Wiley & Sons Ltd |
| DBID | AAYXX CITATION NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 |
| DOI | 10.1111/mec.15253 |
| DatabaseName | CrossRef PubMed Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | PubMed CrossRef Entomology Abstracts AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Ecology |
| EISSN | 1365-294X |
| EndPage | 4754 |
| ExternalDocumentID | 31550391 10_1111_mec_15253 MEC15253 |
| Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article |
| GrantInformation_xml | – fundername: NSF funderid: 1645087 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29M 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XJT Y6R ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c3863-d385a753a33fa249e13f5bfa1a31ec453889de86ac38b61146929f9c6a1f3b463 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 853 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000490719000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0962-1083 1365-294X |
| IngestDate | Fri Sep 05 17:19:20 EDT 2025 Fri Sep 05 14:47:56 EDT 2025 Wed Aug 13 04:04:26 EDT 2025 Thu Apr 03 07:10:53 EDT 2025 Tue Nov 18 21:22:59 EST 2025 Sat Nov 29 05:23:26 EST 2025 Wed Jan 22 16:37:48 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Keywords | population genetics genotype calling restriction-site associated DNA sequencing bioinformatics conservation genetics haplotype phasing |
| Language | English |
| License | 2019 John Wiley & Sons Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3863-d385a753a33fa249e13f5bfa1a31ec453889de86ac38b61146929f9c6a1f3b463 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4798-660X 0000-0001-9097-3241 0000-0003-1899-1765 |
| PMID | 31550391 |
| PQID | 2312756051 |
| PQPubID | 31465 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_2374165928 proquest_miscellaneous_2297126708 proquest_journals_2312756051 pubmed_primary_31550391 crossref_primary_10_1111_mec_15253 crossref_citationtrail_10_1111_mec_15253 wiley_primary_10_1111_mec_15253_MEC15253 |
| PublicationCentury | 2000 |
| PublicationDate | November 2019 2019-11-00 20191101 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: November 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Molecular ecology |
| PublicationTitleAlternate | Mol Ecol |
| PublicationYear | 2019 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2017; 7 2017; 8 2013; 1 2013; 22 2018; 129 2004; 5 2018; 209 2011; 12 2008; 3 2014; 23 2012; 888 2006; 60 1987; 43 2018; 2 2009; 10 2018; 5 2014; 2 2006; 22 2019; 68 1980; 32 2019; 28 1987 2014; 15 2012; 28 1992; 48 2007; 2 2014; 281 2010; 6 2018; 35 2007; 17 2015; 15 2009; 25 2011; 1 2012 2011 2009; 182 2015; 201 2008; 18 1997 1996 1970; 51 2016; 202 2011; 39 2016; 17 1998; 21 2015; 8 2011; 6 2018; 27 1974; 39 1999; 9 2016; 11 2014; 227 2018; 359 1992; 131 2017; 17 1984; 38 2015; 22 2017; 12 2019 2011; 43 2009; 183 2013 2014; 30 2012; 7 2018; 201178 2016; 25 2011; 188 2012; 9 Li H. (e_1_2_8_41_1) 2013 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Garrison E. (e_1_2_8_28_1) 2012 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 Rivera-Colón A. G. (e_1_2_8_64_1) 2019 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 Aronesty E. (e_1_2_8_5_1) 2011 e_1_2_8_29_1 Weir B. S. (e_1_2_8_77_1) 1996 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 Poplin R. (e_1_2_8_62_1) 2018; 201178 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 Botstein D. (e_1_2_8_11_1) 1980; 32 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
| References_xml | – year: 2011 – year: 2013 article-title: Aligning sequence reads, clone sequences and assembly contigs with BWA‐MEM publication-title: ArXiv – volume: 183 start-page: 1431 issue: 4 year: 2009 end-page: 1441 article-title: Exact tests for Hardy‐Weinberg proportions publication-title: Genetics – volume: 15 start-page: 329 issue: 2 year: 2015 end-page: 336 article-title: Degenerate adaptor sequences for detecting PCR duplicates in reduced representation sequencing data improve genotype calling accuracy publication-title: Molecular Ecology Resources – volume: 201178 year: 2018 article-title: Scaling accurate genetic variant discovery to tens of thousands of samples publication-title: BioRxiv – volume: 15 start-page: 356 year: 2014 article-title: : Analysis of next generation sequencing data publication-title: BMC Bioinformatics – volume: 17 start-page: 366 issue: 3 year: 2017 end-page: 369 article-title: Responsible RAD: Striving for best practices in population genomic studies of adaptation publication-title: Molecular Ecology Resources – volume: 39 start-page: 439 year: 1974 end-page: 446 article-title: Physical mapping of temperature‐sensitive mutations of adenoviruses publication-title: Cold Spring Harbor Symposia on Quantitative Biology – volume: 359 start-page: 83 issue: 6371 year: 2018 end-page: 86 article-title: Genomic signals of selection predict climate‐driven population declines in a migratory bird publication-title: Science – volume: 30 start-page: 614 issue: 5 year: 2014 end-page: 620 article-title: : A fast and accurate Illumina Paired‐End reAd mergeR publication-title: Bioinformatics – volume: 23 start-page: 3133 issue: 13 year: 2014 end-page: 3157 article-title: Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow publication-title: Molecular Ecology – volume: 51 start-page: 379 issue: 2 year: 1970 end-page: 391 article-title: A Restriction enzyme from publication-title: Journal of Molecular Biology – volume: 17 start-page: 81 issue: 2 year: 2016 end-page: 92 article-title: Harnessing the power of RADseq for ecological and evolutionary genomics publication-title: Nature Reviews Genetics – volume: 22 start-page: 2841 issue: 11 year: 2013 end-page: 2847 article-title: Genotyping‐by‐sequencing in ecological and conservation genomics publication-title: Molecular Ecology – volume: 2 year: 2014 article-title: : A RADseq, variant‐calling pipeline designed for population genomics of non‐model organisms publication-title: PeerJ – volume: 888 start-page: 67 year: 2012 end-page: 89 article-title: Diversity arrays technology: A generic genome profiling technology on open platforms publication-title: Methods in Molecular Biology (Clifton, N.J.) – volume: 60 start-page: 2399 issue: 11 year: 2006 end-page: 2402 article-title: Using the AMOVA framework to estimate a standardized genetic differentiation measure publication-title: Evolution; International Journal of Organic Evolution – volume: 201 start-page: 473 issue: 2 year: 2015 end-page: 486 article-title: Genotype‐frequency estimation from high‐throughput sequencing data publication-title: Genetics – volume: 11 issue: 3 year: 2016 article-title: Hybridization capture using RAD probes (hyRAD), a new tool for performing genomic analyses on collection specimens publication-title: PLoS ONE – volume: 188 start-page: 799 issue: 4 year: 2011 end-page: 808 article-title: Genome evolution and meiotic maps by massively parallel DNA sequencing: Spotted gar, an outgroup for the teleost genome duplication publication-title: Genetics – start-page: 775239 year: 2019 article-title: Simulation with RADinitio improves RADseq experimental design and sheds light on sources of missing data publication-title: BioRxiv – volume: 209 start-page: 921 issue: 3 year: 2018 end-page: 939 article-title: Repeated selection of alternatively adapted haplotypes creates sweeping genomic remodeling in stickleback publication-title: Genetics – volume: 2 issue: 11 year: 2007 article-title: Complexity reduction of polymorphic sequences (CRoPS): A novel approach for large‐scale polymorphism discovery in complex genomes publication-title: PLoS ONE – volume: 6 issue: 5 year: 2011 article-title: A robust, simple genotyping‐by‐sequencing (GBS) approach for high diversity species publication-title: PLoS ONE – year: 1997 – volume: 6 issue: 4 year: 2011 article-title: Local de novo assembly of RAD paired‐end contigs using short sequencing reads publication-title: PLoS ONE – volume: 12 start-page: 499 issue: 7 year: 2011 end-page: 510 article-title: Genome‐wide genetic marker discovery and genotyping using next‐generation sequencing publication-title: Nature Reviews Genetics – volume: 9 start-page: 868 issue: 9 year: 1999 end-page: 877 article-title: CAP3: A DNA sequence assembly program publication-title: Genome Research – volume: 17 start-page: 356 issue: 3 year: 2017 end-page: 361 article-title: RADseq provides unprecedented insights into molecular ecology and evolutionary genetics: Comment on breaking RAD by Lowry et al. (2016) publication-title: Molecular Ecology Resources – volume: 9 start-page: 808 issue: 8 year: 2012 end-page: 810 article-title: 2b‐RAD: A simple and flexible method for genome‐wide genotyping publication-title: Nature Methods – volume: 43 start-page: 805 issue: 4 year: 1987 end-page: 811 article-title: An exact test for Hardy‐Weinberg and multiple alleles publication-title: Biometrics – volume: 6 issue: 2 year: 2010 article-title: Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags publication-title: PLOS Genetics – volume: 7 start-page: 1393 year: 2017 end-page: 1404 article-title: Genotype calling from population‐genomic sequencing data publication-title: G3: Genes, Genomes, Genetics – volume: 51 start-page: 393 issue: 2 year: 1970 end-page: 409 article-title: A restriction enzyme from publication-title: Journal of Molecular Biology – volume: 227 start-page: 146 issue: 2 year: 2014 end-page: 160 article-title: Detection and removal of PCR duplicates in population genomic ddRAD studies by addition of a degenerate base region (DBR) in sequencing adapters publication-title: The Biological Bulletin – volume: 18 start-page: 821 issue: 5 year: 2008 end-page: 829 article-title: Velvet: Algorithms for de novo short read assembly using de Bruijn graphs publication-title: Genome Research – volume: 21 start-page: 99 issue: 3 year: 1998 end-page: 114 article-title: Amplified fragment length polymorphism (AFLP): A review of the procedure and its applications publication-title: Journal of Industrial Microbiology and Biotechnology – volume: 39 issue: 12 year: 2011 article-title: A method for counting PCR template molecules with application to next‐generation sequencing publication-title: Nucleic Acids Research – volume: 8 start-page: 1360 issue: 10 year: 2017 end-page: 1373 article-title: Lost in parameter space: A road map for stacks publication-title: Methods in Ecology and Evolution – volume: 25 start-page: 2078 issue: 16 year: 2009 end-page: 2079 article-title: The sequence alignment/map format and publication-title: Bioinformatics – year: 1987 – volume: 28 start-page: 615 issue: 3 year: 2019 end-page: 629 article-title: Genomic insights into the vulnerability of sympatric whitefish species flocks publication-title: Molecular Ecology – volume: 8 start-page: 662 issue: 7 year: 2015 end-page: 678 article-title: Morphological and genomic comparisons of Hawaiian and Japanese Black‐footed Albatrosses ( ) using double digest RADseq: Implications for conservation publication-title: Evolutionary Applications – volume: 7 issue: 5 year: 2012 article-title: Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non‐model species publication-title: PLoS ONE – year: 1996 – volume: 1 year: 2013 article-title: ezRAD: A simplified method for genomic genotyping in non‐model organisms publication-title: PeerJ – volume: 25 start-page: 1697 issue: 8 year: 2016 end-page: 1713 article-title: BsRADseq: Screening DNA methylation in natural populations of non‐model species publication-title: Molecular Ecology – volume: 17 start-page: 362 issue: 3 year: 2017 end-page: 365 article-title: Unbroken: RADseq remains a powerful tool for understanding the genetics of adaptation in natural populations publication-title: Molecular Ecology Resources – volume: 48 start-page: 361 issue: 2 year: 1992 end-page: 372 article-title: Performing the exact test of Hardy‐Weinberg proportion for multiple alleles publication-title: Biometrics – volume: 10 start-page: 639 issue: 9 year: 2009 end-page: 650 article-title: Genetics in geographically structured populations: Defining, estimating and interpreting F(ST) publication-title: Nature Reviews Genetics – volume: 182 start-page: 295 issue: 1 year: 2009 end-page: 301 article-title: Estimation of allele frequencies from high‐coverage genome‐sequencing projects publication-title: Genetics – volume: 5 start-page: 63 issue: 1 year: 2004 end-page: 69 article-title: The evolution of molecular markers—Just a matter of fashion? publication-title: Nature Reviews Genetics – volume: 202 start-page: 389 issue: 2 year: 2016 end-page: 400 article-title: RAD capture (Rapture): Flexible and efficient sequence‐based genotyping publication-title: Genetics – volume: 15 start-page: 1304 issue: 6 year: 2015 end-page: 1315 article-title: Impacts of degraded DNA on restriction enzyme associated DNA sequencing (RADSeq) publication-title: Molecular Ecology Resources – volume: 1 start-page: 171 issue: 3 year: 2011 end-page: 182 article-title: Stacks: Building and genotyping Loci de novo from short‐read sequences publication-title: G3 (Bethesda) – volume: 129 start-page: 268 year: 2018 end-page: 279 article-title: Phylogenetic analysis of Antarctic notothenioids illuminates the utility of RADseq for resolving Cenozoic adaptive radiations publication-title: Molecular Phylogenetics and Evolution – volume: 9 start-page: 357 issue: 4 year: 2012 end-page: 359 article-title: Fast gapped‐read alignment with Bowtie 2 publication-title: Nature Methods – volume: 17 start-page: 240 issue: 2 year: 2007 end-page: 248 article-title: Rapid and cost‐effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers publication-title: Genome Research – year: 2012 article-title: Haplotype‐based variant detection from short‐read sequencing publication-title: ArXiv – volume: 28 start-page: 2732 issue: 21 year: 2012 end-page: 2737 article-title: : An integrated tool for efficient clustering and assembling RAD‐seq reads publication-title: Bioinformatics – volume: 12 start-page: 2640 issue: 12 year: 2017 end-page: 2659 article-title: Deriving genotypes from RAD‐seq short‐read data using Stacks publication-title: Nature Protocols – volume: 281 issue: 1787 year: 2014 article-title: King penguin demography since the last glaciation inferred from genome‐wide data publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 68 start-page: 187 issue: 2 year: 2019 end-page: 203 article-title: Restriction‐site‐associated DNA sequencing reveals a cryptic Viburnum species on the North American Coastal Plain publication-title: Systematic Biology – volume: 27 start-page: 2576 issue: 11 year: 2018 end-page: 2593 article-title: Signatures of local adaptation along environmental gradients in a range‐expanding damselfly ( ) publication-title: Molecular Ecology – volume: 22 start-page: 1658 issue: 13 year: 2006 end-page: 1659 article-title: Cd‐hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences publication-title: Bioinformatics – volume: 22 start-page: 3002 issue: 11 year: 2013 end-page: 3013 article-title: Genomic patterns of introgression in rainbow and westslope cutthroat trout illuminated by overlapping paired‐end RAD sequencing publication-title: Molecular Ecology – volume: 38 start-page: 1358 issue: 6 year: 1984 end-page: 1370 article-title: Estimating F‐statistics for the analysis of population structure publication-title: Evolution; International Journal of Organic Evolution – volume: 32 start-page: 314 issue: 3 year: 1980 end-page: 331 article-title: Construction of a genetic linkage map in man using restriction fragment length polymorphisms publication-title: American Journal of Human Genetics – volume: 2 start-page: 9 issue: 1 year: 2018 end-page: 21 article-title: Ancient genomic variation underlies repeated ecological adaptation in young stickleback populations publication-title: Evolution Letters – volume: 12 start-page: 703 issue: 10 year: 2011 end-page: 714 article-title: Haplotype phasing: Existing methods and new developments publication-title: Nature Reviews Genetics – volume: 43 start-page: 491 issue: 5 year: 2011 end-page: 498 article-title: A framework for variation discovery and genotyping using next‐generation DNA sequencing data publication-title: Nature Genetics – volume: 131 start-page: 479 issue: 2 year: 1992 end-page: 491 article-title: Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data publication-title: Genetics – volume: 35 start-page: 1284 issue: 5 year: 2018 end-page: 1290 article-title: and : Population inference from RADseq data publication-title: Molecular Biology and Evolution – volume: 3 issue: 10 year: 2008 article-title: Rapid SNP discovery and genetic mapping using sequenced RAD markers publication-title: PLoS ONE – volume: 25 start-page: 1754 issue: 14 year: 2009 end-page: 1760 article-title: Fast and accurate short read alignment with Burrows‐Wheeler transform publication-title: Bioinformatics – volume: 22 start-page: 498 issue: 6 year: 2015 end-page: 509 article-title: WhatsHap: Weighted haplotype assembly for future‐generation sequencing reads publication-title: Journal of Computational Biology – start-page: 31 year: 2011 end-page: 55 – volume: 5 start-page: 171589 issue: 2 year: 2018 article-title: An optimized approach for local de novo assembly of overlapping paired‐end RAD reads from multiple individuals publication-title: Royal Society Open Science – volume: 22 start-page: 3124 issue: 11 year: 2013 end-page: 3140 article-title: Stacks: An analysis tool set for population genomics publication-title: Molecular Ecology – ident: e_1_2_8_48_1 doi: 10.1534/genetics.109.100479 – ident: e_1_2_8_12_1 doi: 10.1038/nrg3054 – ident: e_1_2_8_68_1 doi: 10.1016/0022-2836(70)90149-X – ident: e_1_2_8_55_1 doi: 10.1111/mec.12350 – start-page: 775239 year: 2019 ident: e_1_2_8_64_1 article-title: Simulation with RADinitio improves RADseq experimental design and sheds light on sources of missing data publication-title: BioRxiv – ident: e_1_2_8_47_1 doi: 10.1111/1755-0998.12677 – ident: e_1_2_8_70_1 doi: 10.1371/journal.pone.0151651 – ident: e_1_2_8_8_1 doi: 10.1126/science.aan4380 – ident: e_1_2_8_29_1 doi: 10.1111/1755-0998.12404 – ident: e_1_2_8_51_1 doi: 10.1534/g3.117.039008 – ident: e_1_2_8_75_1 doi: 10.1371/journal.pone.0001172 – year: 2012 ident: e_1_2_8_28_1 article-title: Haplotype‐based variant detection from short‐read sequencing publication-title: ArXiv – ident: e_1_2_8_2_1 doi: 10.1534/genetics.115.183665 – ident: e_1_2_8_67_1 doi: 10.1086/BBLv227n2p146 – ident: e_1_2_8_30_1 doi: 10.1101/SQB.1974.039.01.056 – ident: e_1_2_8_45_1 doi: 10.1098/rsos.171589 – ident: e_1_2_8_66_1 doi: 10.1038/nrg1249 – ident: e_1_2_8_57_1 doi: 10.1111/j.1365-294X.2006.02908.x – ident: e_1_2_8_72_1 doi: 10.7717/peerj.203 – volume: 32 start-page: 314 issue: 3 year: 1980 ident: e_1_2_8_11_1 article-title: Construction of a genetic linkage map in man using restriction fragment length polymorphisms publication-title: American Journal of Human Genetics – ident: e_1_2_8_18_1 doi: 10.1111/mec.12796 – ident: e_1_2_8_40_1 doi: 10.1038/nmeth.1923 – ident: e_1_2_8_6_1 doi: 10.1371/journal.pone.0003376 – ident: e_1_2_8_27_1 doi: 10.1111/mec.14977 – ident: e_1_2_8_60_1 doi: 10.1089/cmb.2014.0157 – ident: e_1_2_8_16_1 doi: 10.1111/1755-0998.12669 – ident: e_1_2_8_42_1 doi: 10.1093/bioinformatics/btp324 – ident: e_1_2_8_44_1 doi: 10.1093/bioinformatics/btl158 – ident: e_1_2_8_52_1 doi: 10.1111/1755-0998.12649 – ident: e_1_2_8_7_1 doi: 10.1534/genetics.117.300610 – ident: e_1_2_8_23_1 doi: 10.1371/journal.pone.0019379 – ident: e_1_2_8_24_1 doi: 10.1534/genetics.109.108977 – ident: e_1_2_8_37_1 doi: 10.1016/0022-2836(70)90150-6 – ident: e_1_2_8_58_1 doi: 10.1002/evl3.37 – ident: e_1_2_8_10_1 doi: 10.1038/sj.jim.2900537 – ident: e_1_2_8_17_1 doi: 10.1093/bioinformatics/bts482 – ident: e_1_2_8_43_1 doi: 10.1093/bioinformatics/btp352 – ident: e_1_2_8_38_1 doi: 10.1007/978-1-61779-870-2_5 – ident: e_1_2_8_80_1 doi: 10.1093/bioinformatics/btt593 – volume-title: Genetic data analysis II: Methods for discrete population genetic data year: 1996 ident: e_1_2_8_77_1 – volume: 201178 year: 2018 ident: e_1_2_8_62_1 article-title: Scaling accurate genetic variant discovery to tens of thousands of samples publication-title: BioRxiv – ident: e_1_2_8_49_1 doi: 10.1093/molbev/msy023 – ident: e_1_2_8_35_1 doi: 10.1038/nrg2611 – ident: e_1_2_8_13_1 doi: 10.1093/nar/gkr217 – ident: e_1_2_8_39_1 doi: 10.1186/s12859-014-0356-4 – ident: e_1_2_8_50_1 doi: 10.1534/genetics.115.179077 – ident: e_1_2_8_53_1 doi: 10.1111/j.0014-3820.2006.tb01874.x – ident: e_1_2_8_46_1 doi: 10.2307/2531534 – ident: e_1_2_8_78_1 doi: 10.1111/j.1558-5646.1984.tb05657.x – ident: e_1_2_8_4_1 doi: 10.1038/nrg.2015.28 – ident: e_1_2_8_61_1 doi: 10.1371/journal.pone.0037135 – year: 2013 ident: e_1_2_8_41_1 article-title: Aligning sequence reads, clone sequences and assembly contigs with BWA‐MEM publication-title: ArXiv – ident: e_1_2_8_56_1 doi: 10.1016/j.ympev.2018.09.001 – ident: e_1_2_8_19_1 doi: 10.1038/nrg3012 – ident: e_1_2_8_31_1 doi: 10.2307/2532296 – ident: e_1_2_8_63_1 doi: 10.7717/peerj.431 – ident: e_1_2_8_15_1 doi: 10.1111/mec.12354 – ident: e_1_2_8_54_1 doi: 10.1101/gr.5681207 – ident: e_1_2_8_36_1 doi: 10.1101/gr.9.9.868 – ident: e_1_2_8_73_1 doi: 10.1098/rspb.2014.0528 – ident: e_1_2_8_26_1 doi: 10.1093/genetics/131.2.479 – ident: e_1_2_8_33_1 doi: 10.1371/journal.pgen.1000862 – ident: e_1_2_8_65_1 doi: 10.1038/nprot.2017.123 – ident: e_1_2_8_34_1 doi: 10.1111/mec.12239 – volume-title: ea-utils: Command‐line tools for processing biological sequencing data year: 2011 ident: e_1_2_8_5_1 – ident: e_1_2_8_14_1 doi: 10.1534/g3.111.000240 – ident: e_1_2_8_32_1 doi: 10.1017/CBO9780511574931 – ident: e_1_2_8_3_1 doi: 10.1534/genetics.111.127324 – ident: e_1_2_8_76_1 doi: 10.1038/nmeth.2023 – ident: e_1_2_8_20_1 doi: 10.1038/ng.806 – ident: e_1_2_8_71_1 doi: 10.1111/1755-0998.12314 – ident: e_1_2_8_21_1 doi: 10.1111/eva.12274 – ident: e_1_2_8_74_1 doi: 10.1111/mec.13550 – ident: e_1_2_8_22_1 doi: 10.1111/mec.14709 – ident: e_1_2_8_79_1 doi: 10.1101/gr.074492.107 – ident: e_1_2_8_9_1 doi: 10.1201/b11113-4 – ident: e_1_2_8_59_1 doi: 10.1111/2041-210X.12775 – ident: e_1_2_8_69_1 doi: 10.1093/sysbio/syy084 – ident: e_1_2_8_25_1 doi: 10.1371/journal.pone.0018561 |
| SSID | ssj0013255 |
| Score | 2.7207987 |
| Snippet | For half a century population genetics studies have put type II restriction endonucleases to work. Now, coupled with massively‐parallel, short‐read sequencing,... For half a century population genetics studies have put type II restriction endonucleases to work. Now, coupled with massively-parallel, short-read sequencing,... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4737 |
| SubjectTerms | Algorithms analytical methods Bayesian analysis Bayesian theory bioinformatics Computer programs Computer simulation computer software conservation genetics data collection Datasets Empirical analysis Genetics genotype calling Genotypes Genotyping Graph theory haplotype phasing Haplotypes Loci metagenomics Metapopulations Population genetics Population studies restriction endonucleases restriction‐site associated DNA sequencing Single-nucleotide polymorphism Software Stacks |
| Title | Stacks 2: Analytical methods for paired‐end sequencing improve RADseq‐based population genomics |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.15253 https://www.ncbi.nlm.nih.gov/pubmed/31550391 https://www.proquest.com/docview/2312756051 https://www.proquest.com/docview/2297126708 https://www.proquest.com/docview/2374165928 |
| Volume | 28 |
| WOSCitedRecordID | wos000490719000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-294X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013255 issn: 0962-1083 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fSyMxEB-0euDL6empvaslig--FLo73d3k7km0xQdPRBT6tmTzB8qd29JtBd_8CH5GP8lNsttF8TwE38JmAtlk_vwmycwAHHJU2hhyU0VC4tazNupksdQk7kJrDJXWsfLFJpKLCz4cissl-LmIhSnzQ9QHbk4yvL52Ai6z4pmQ3xrli_fgMqyExLdRA1ZOrwY3588uEXzRUwLpIWkbjlViIfeQpx780hy9wpgvIau3OYP1D812Az5XUJMdl7zxBZZMvgmfyuKT99Tq-4TV91ugCHGq3wULfzCfo8Qfb7OytnTBCNWyiSTNqJ8eHk2uWfX6mmweG_kjCcOujk_pK_U7o6jZpK4KxlwO2NuRKr7CzaB_fXLWqYovdBTyGDsaeSTJl5GIVpKPZgK0UWZlIDEwqkd6kgtteCyJPItdbDMBLStULAOLWS_GbWjk49zsAlM6lMp0VRdpIOpepoQLfkCbWdQ2C5pwtNiDVFWZyV2BjD_pwkOh1Uv96jXhoCadlOk4_kXUWmxkWklkkRKOdZnuSQc1Yb_uJllyFyQyN-M50YQiCcI46fL_0KDDsJEIiWanZJJ6Juj8PRTuhzwvvD3F9Ff_xDe-vZ_0O6wRWhNlIGQLGrPp3OzBqrqbjYppG5aTIW9XIvAXQ_QJ3A |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB58ohffj_qM4sFLobvTbjfiRbRFsRYRBW9LNg8o2rW4reDNn-Bv9Jc4yW4XxQeCt7CZQDaZmXwzycwA7IUoldZkpvI6iVvVmFo5DoQicedKoS-VCqQrNlFvt8PbW345AofDWJgsP0ThcLOS4fS1FXDrkP4g5V0tXfUeHIXxKrER8ff4yVXzpvXhFsFVPSWU7pO6CTHPLGRf8hSDP59HX0DmZ8zqDp3m7P-mOwczOdhkRxl3zMOIThZgMis_-UythktZ_bwIkjCnvEuZf8BclhLn4GZZdemUEa5lPUG6Ub29vOpEsfz9NZ16rOOcEppdHZ3QV-q3x6JivaIuGLNZYLsdmS7BTbNxfXxazssvlCUtJpYVhjVB1oxANIKsNO2hqcVGeAI9LaukKUOudBgIIo8DG91MUMtwGQjPYEw7sgxjyUOiV4FJ5QupK7KCNBBVNZbchj-giQ0qE3sl2B9uQiTz3OS2RMZ9NLRRaPUit3ol2C1Ie1lCju-INoY7GeUymUaEZG2ue9JCJdgpukma7BWJSPTDgGh8Xvf8oF4Jf6FBi2Jr3CealYxLipmgtfiQ2x9yzPDzFKOLxrFrrP2ddBumTq8vWlHrrH2-DtOE3XgWFrkBY_3Hgd6ECfnU76SPW7kkvAPhZwzk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB4cuym9NI--3LjJtvTQi8HSSLK25BJim4Q4xpgGchOrfYBpoxjLLvjWn9Df2F_S2ZUsbNqEQm-LdhZWuzsz3-xjPoCPMUqlNYWpvEvqFhgTttNIKFJ3rhT6UqlIOrKJ7mgU397ycQ1O129hivwQ1Yab1Qxnr62C65kyG1p-p6Vj78EdaASWRKYOjd5kcDPcOEVwrKeE0n0yNzGWmYXsTZ6q8bY_-gNkbmNW53QGe__X3X14XoJNdlasjgOo6ewQdgv6yRWV-i5l9eoFSMKc8mvO_M_MZSlxG9ysYJfOGeFaNhNkG9WvHz91plh5_5q8Hpu6TQnNJmc9-kr11i0qNqt4wZjNAns3lflLuBn0v5xftEv6hbbEOMK2wjgUFM0IRCMoStMemjA1whPoaRmQpYy50nEkSDyN7OtmglqGy0h4BtMgwldQz-4z_QaYVL6QuiM7SA1RBank9vkDmtSgMqnXhE_rSUhkmZvcUmR8S9YxCo1e4kavCR8q0VmRkONvQq31TCalTuYJIVmb656sUBPeV9WkTfaIRGT6fkkyPu96ftTtxI_IoEWxIfdJ5nWxSqqeoI34kNsfcovh4S4m1_1zV3j776In8HTcGyTDy9HVETwj6BYW98dbUF_Ml_odPJHfF9N8flwqwm9Z-wxb |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacks+2%3A+Analytical+methods+for+paired%E2%80%90end+sequencing+improve+RADseq%E2%80%90based+population+genomics&rft.jtitle=Molecular+ecology&rft.au=Rochette%2C+Nicolas+C&rft.au=Angel+G+Rivera%E2%80%90Col%C3%B3n&rft.au=Catchen%2C+Julian+M&rft.date=2019-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0962-1083&rft.eissn=1365-294X&rft.volume=28&rft.issue=21&rft.spage=4737&rft.epage=4754&rft_id=info:doi/10.1111%2Fmec.15253&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon |