A proof‐of‐concept study of an automated solution for clinical metagenomic next‐generation sequencing

Aims Metagenomic next‐generation sequencing (mNGS) has been utilized for diagnosing infectious diseases. It is a culture‐free and hypothesis‐free nucleic acid test for diagnosing all pathogens with known genomic sequences, including bacteria, fungi, viruses and parasites. While this technique greatl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of applied microbiology Ročník 131; číslo 2; s. 1007 - 1016
Hlavní autoři: Luan, Y., Hu, H., Liu, C., Chen, B., Liu, X., Xu, Y., Luo, X., Chen, J., Ye, B., Huang, F., Wang, J., Duan, C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Oxford University Press 01.08.2021
Témata:
ISSN:1364-5072, 1365-2672, 1365-2672
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Aims Metagenomic next‐generation sequencing (mNGS) has been utilized for diagnosing infectious diseases. It is a culture‐free and hypothesis‐free nucleic acid test for diagnosing all pathogens with known genomic sequences, including bacteria, fungi, viruses and parasites. While this technique greatly expands the clinical capacity of pathogen detection, it is a second‐line choice due to lengthy procedures and microbial contaminations introduced from wet‐lab processes. As a result, we aimed to reduce the hands‐on time and exogenous contaminations in mNGS. Methods and Results We developed a device (NGSmaster) that automates the wet‐lab workflow, including nucleic acid extraction, PCR‐free library preparation and purification. It shortens the sample‐to‐results time to 16 and 18·5 h for DNA and RNA sequencing respectively. We used it to test cultured bacteria for validation of the workflow and bioinformatic pipeline. We also compared PCR‐free with PCR‐based library prep and discovered no differences in microbial reads. Moreover we analysed results by automation and manual testing and found that automation can significantly reduce microbial contaminations. Finally, we tested artificial and clinical samples and showed mNGS results were concordant with traditional culture. Conclusion NGSmaster can fulfil the microbiological diagnostic needs in a variety of sample types. Significance and Impact of the Study This study opens up an opportunity of performing in‐house mNGS to reduce turnaround time and workload, instead of transferring potentially contagious specimen to a third‐party laboratory.
AbstractList Aims Metagenomic next‐generation sequencing (mNGS) has been utilized for diagnosing infectious diseases. It is a culture‐free and hypothesis‐free nucleic acid test for diagnosing all pathogens with known genomic sequences, including bacteria, fungi, viruses and parasites. While this technique greatly expands the clinical capacity of pathogen detection, it is a second‐line choice due to lengthy procedures and microbial contaminations introduced from wet‐lab processes. As a result, we aimed to reduce the hands‐on time and exogenous contaminations in mNGS. Methods and Results We developed a device (NGSmaster) that automates the wet‐lab workflow, including nucleic acid extraction, PCR‐free library preparation and purification. It shortens the sample‐to‐results time to 16 and 18·5 h for DNA and RNA sequencing respectively. We used it to test cultured bacteria for validation of the workflow and bioinformatic pipeline. We also compared PCR‐free with PCR‐based library prep and discovered no differences in microbial reads. Moreover we analysed results by automation and manual testing and found that automation can significantly reduce microbial contaminations. Finally, we tested artificial and clinical samples and showed mNGS results were concordant with traditional culture. Conclusion NGSmaster can fulfil the microbiological diagnostic needs in a variety of sample types. Significance and Impact of the Study This study opens up an opportunity of performing in‐house mNGS to reduce turnaround time and workload, instead of transferring potentially contagious specimen to a third‐party laboratory.
Metagenomic next-generation sequencing (mNGS) has been utilized for diagnosing infectious diseases. It is a culture-free and hypothesis-free nucleic acid test for diagnosing all pathogens with known genomic sequences, including bacteria, fungi, viruses and parasites. While this technique greatly expands the clinical capacity of pathogen detection, it is a second-line choice due to lengthy procedures and microbial contaminations introduced from wet-lab processes. As a result, we aimed to reduce the hands-on time and exogenous contaminations in mNGS.AIMSMetagenomic next-generation sequencing (mNGS) has been utilized for diagnosing infectious diseases. It is a culture-free and hypothesis-free nucleic acid test for diagnosing all pathogens with known genomic sequences, including bacteria, fungi, viruses and parasites. While this technique greatly expands the clinical capacity of pathogen detection, it is a second-line choice due to lengthy procedures and microbial contaminations introduced from wet-lab processes. As a result, we aimed to reduce the hands-on time and exogenous contaminations in mNGS.We developed a device (NGSmaster) that automates the wet-lab workflow, including nucleic acid extraction, PCR-free library preparation and purification. It shortens the sample-to-results time to 16 and 18·5 h for DNA and RNA sequencing respectively. We used it to test cultured bacteria for validation of the workflow and bioinformatic pipeline. We also compared PCR-free with PCR-based library prep and discovered no differences in microbial reads. Moreover we analysed results by automation and manual testing and found that automation can significantly reduce microbial contaminations. Finally, we tested artificial and clinical samples and showed mNGS results were concordant with traditional culture.METHODS AND RESULTSWe developed a device (NGSmaster) that automates the wet-lab workflow, including nucleic acid extraction, PCR-free library preparation and purification. It shortens the sample-to-results time to 16 and 18·5 h for DNA and RNA sequencing respectively. We used it to test cultured bacteria for validation of the workflow and bioinformatic pipeline. We also compared PCR-free with PCR-based library prep and discovered no differences in microbial reads. Moreover we analysed results by automation and manual testing and found that automation can significantly reduce microbial contaminations. Finally, we tested artificial and clinical samples and showed mNGS results were concordant with traditional culture.NGSmaster can fulfil the microbiological diagnostic needs in a variety of sample types.CONCLUSIONNGSmaster can fulfil the microbiological diagnostic needs in a variety of sample types.This study opens up an opportunity of performing in-house mNGS to reduce turnaround time and workload, instead of transferring potentially contagious specimen to a third-party laboratory.SIGNIFICANCE AND IMPACT OF THE STUDYThis study opens up an opportunity of performing in-house mNGS to reduce turnaround time and workload, instead of transferring potentially contagious specimen to a third-party laboratory.
Metagenomic next-generation sequencing (mNGS) has been utilized for diagnosing infectious diseases. It is a culture-free and hypothesis-free nucleic acid test for diagnosing all pathogens with known genomic sequences, including bacteria, fungi, viruses and parasites. While this technique greatly expands the clinical capacity of pathogen detection, it is a second-line choice due to lengthy procedures and microbial contaminations introduced from wet-lab processes. As a result, we aimed to reduce the hands-on time and exogenous contaminations in mNGS. We developed a device (NGSmaster) that automates the wet-lab workflow, including nucleic acid extraction, PCR-free library preparation and purification. It shortens the sample-to-results time to 16 and 18·5 h for DNA and RNA sequencing respectively. We used it to test cultured bacteria for validation of the workflow and bioinformatic pipeline. We also compared PCR-free with PCR-based library prep and discovered no differences in microbial reads. Moreover we analysed results by automation and manual testing and found that automation can significantly reduce microbial contaminations. Finally, we tested artificial and clinical samples and showed mNGS results were concordant with traditional culture. NGSmaster can fulfil the microbiological diagnostic needs in a variety of sample types. This study opens up an opportunity of performing in-house mNGS to reduce turnaround time and workload, instead of transferring potentially contagious specimen to a third-party laboratory.
AIMS: Metagenomic next‐generation sequencing (mNGS) has been utilized for diagnosing infectious diseases. It is a culture‐free and hypothesis‐free nucleic acid test for diagnosing all pathogens with known genomic sequences, including bacteria, fungi, viruses and parasites. While this technique greatly expands the clinical capacity of pathogen detection, it is a second‐line choice due to lengthy procedures and microbial contaminations introduced from wet‐lab processes. As a result, we aimed to reduce the hands‐on time and exogenous contaminations in mNGS. METHODS AND RESULTS: We developed a device (NGSmaster) that automates the wet‐lab workflow, including nucleic acid extraction, PCR‐free library preparation and purification. It shortens the sample‐to‐results time to 16 and 18·5 h for DNA and RNA sequencing respectively. We used it to test cultured bacteria for validation of the workflow and bioinformatic pipeline. We also compared PCR‐free with PCR‐based library prep and discovered no differences in microbial reads. Moreover we analysed results by automation and manual testing and found that automation can significantly reduce microbial contaminations. Finally, we tested artificial and clinical samples and showed mNGS results were concordant with traditional culture. CONCLUSION: NGSmaster can fulfil the microbiological diagnostic needs in a variety of sample types. SIGNIFICANCE AND IMPACT OF THE STUDY: This study opens up an opportunity of performing in‐house mNGS to reduce turnaround time and workload, instead of transferring potentially contagious specimen to a third‐party laboratory.
AimsMetagenomic next‐generation sequencing (mNGS) has been utilized for diagnosing infectious diseases. It is a culture‐free and hypothesis‐free nucleic acid test for diagnosing all pathogens with known genomic sequences, including bacteria, fungi, viruses and parasites. While this technique greatly expands the clinical capacity of pathogen detection, it is a second‐line choice due to lengthy procedures and microbial contaminations introduced from wet‐lab processes. As a result, we aimed to reduce the hands‐on time and exogenous contaminations in mNGS.Methods and ResultsWe developed a device (NGSmaster) that automates the wet‐lab workflow, including nucleic acid extraction, PCR‐free library preparation and purification. It shortens the sample‐to‐results time to 16 and 18·5 h for DNA and RNA sequencing respectively. We used it to test cultured bacteria for validation of the workflow and bioinformatic pipeline. We also compared PCR‐free with PCR‐based library prep and discovered no differences in microbial reads. Moreover we analysed results by automation and manual testing and found that automation can significantly reduce microbial contaminations. Finally, we tested artificial and clinical samples and showed mNGS results were concordant with traditional culture.ConclusionNGSmaster can fulfil the microbiological diagnostic needs in a variety of sample types.Significance and Impact of the StudyThis study opens up an opportunity of performing in‐house mNGS to reduce turnaround time and workload, instead of transferring potentially contagious specimen to a third‐party laboratory.
Author Luo, X.
Huang, F.
Luan, Y.
Chen, J.
Hu, H.
Liu, X.
Xu, Y.
Liu, C.
Chen, B.
Wang, J.
Duan, C.
Ye, B.
Author_xml – sequence: 1
  givenname: Y.
  surname: Luan
  fullname: Luan, Y.
  organization: Sun Yat‐Sen University
– sequence: 2
  givenname: H.
  surname: Hu
  fullname: Hu, H.
  organization: Sun Yat‐Sen University
– sequence: 3
  givenname: C.
  surname: Liu
  fullname: Liu, C.
  organization: Matridx Biotechnology Co., Ltd
– sequence: 4
  givenname: B.
  surname: Chen
  fullname: Chen, B.
  organization: Matridx Biotechnology Co., Ltd
– sequence: 5
  givenname: X.
  surname: Liu
  fullname: Liu, X.
  organization: Sun Yat‐Sen University
– sequence: 6
  givenname: Y.
  surname: Xu
  fullname: Xu, Y.
  organization: Sun Yat‐Sen University
– sequence: 7
  givenname: X.
  surname: Luo
  fullname: Luo, X.
  organization: Sun Yat‐Sen University
– sequence: 8
  givenname: J.
  surname: Chen
  fullname: Chen, J.
  organization: Matridx Biotechnology Co., Ltd
– sequence: 9
  givenname: B.
  surname: Ye
  fullname: Ye, B.
  organization: Matridx Biotechnology Co., Ltd
– sequence: 10
  givenname: F.
  surname: Huang
  fullname: Huang, F.
  organization: Matridx Biotechnology Co., Ltd
– sequence: 11
  givenname: J.
  orcidid: 0000-0001-9308-663X
  surname: Wang
  fullname: Wang, J.
  email: wangjun@matridx.com
  organization: Matridx Biotechnology Co., Ltd
– sequence: 12
  givenname: C.
  surname: Duan
  fullname: Duan, C.
  email: 1725012289@qq.com, wangjun@matridx.com
  organization: Sun Yat‐Sen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33440055$$D View this record in MEDLINE/PubMed
BookMark eNqNkctu1DAYhS3Uil5gwQsgS2xgkdb3NMtRRbmoFRtYW47zu_KQ2IPtqMyOR-gz8iS4mdJFJVC98EX6zrH-c47QXogBEHpFyQmt63RtphMqCeHP0CHlSjZMtWxvuYtGkpYdoKOc14RQTqR6jg44F4IQKQ_R9xXepBjd71-3y2ZjsLApOJd52OLosAnYzCVOpsCAcxzn4mPALiZsRx-8NSOeoJhrCHHyFgf4WapNfUIyC5rhxwzB-nD9Au07M2Z4eX8eo28X77-ef2wuv3z4dL66bCw_U7zpLemNo50D0fbSOGFdz0EN1rrWCAdOiY5ayjqhzMAsp0wMwppBgqm6TvBj9HbnWyerf-eiJ58tjKMJEOesmaq5cNKpJ6CiPSNcEHaHvnmEruOcQh1EMym5UKqlslKv76m5n2DQm-Qnk7b6b-IVeLcDbIo5J3APCCX6rk1d29RLm5U9fcRaX5ZUSzJ-_J_ixo-w_be1_ry62in-ADettIg
CitedBy_id crossref_primary_10_2147_IDR_S483684
crossref_primary_10_1186_s12879_021_06790_5
crossref_primary_10_1016_j_heliyon_2023_e23484
crossref_primary_10_3389_fmicb_2022_855988
crossref_primary_10_1016_j_heliyon_2024_e24399
crossref_primary_10_1016_j_jinf_2021_09_018
crossref_primary_10_1016_j_diagmicrobio_2024_116651
crossref_primary_10_1128_spectrum_01779_22
crossref_primary_10_1186_s13018_024_04745_5
crossref_primary_10_3389_fcimb_2023_1138174
crossref_primary_10_3389_fmicb_2022_1002460
crossref_primary_10_3390_ijms25063333
crossref_primary_10_3389_fmed_2025_1525100
crossref_primary_10_1080_01616412_2023_2247299
crossref_primary_10_2147_IDR_S422345
crossref_primary_10_3389_fcimb_2023_1184245
crossref_primary_10_1128_spectrum_00922_25
crossref_primary_10_3389_fcimb_2024_1320831
crossref_primary_10_3389_fcimb_2023_1211732
crossref_primary_10_1016_j_heliyon_2023_e20562
crossref_primary_10_3389_fcimb_2022_922996
crossref_primary_10_3389_fmicb_2022_819467
crossref_primary_10_1097_MD_0000000000039268
crossref_primary_10_2147_IJGM_S437800
crossref_primary_10_1016_j_heliyon_2024_e32816
crossref_primary_10_1007_s44197_025_00455_1
crossref_primary_10_1016_j_cca_2022_10_008
crossref_primary_10_1111_jac_70048
crossref_primary_10_1515_biol_2022_1048
crossref_primary_10_1097_CM9_0000000000003175
crossref_primary_10_1186_s12931_024_02887_y
crossref_primary_10_1186_s12931_024_02903_1
crossref_primary_10_1038_s41598_023_31974_1
crossref_primary_10_1080_23744235_2024_2402921
crossref_primary_10_3389_fcimb_2022_892087
crossref_primary_10_1007_s11046_024_00866_x
crossref_primary_10_1111_hiv_13634
Cites_doi 10.1146/annurev-pathmechdis-012418-012751
10.1017/S0031182014000134
10.7150/thno.45554
10.1038/s41564-018-0349-6
10.3390/genes10090661
10.1038/nrmicro2537
10.1111/ajt.13031
10.3389/fmicb.2016.00459
10.1099/jmm.0.000968
10.1080/1040841X.2019.1681933
10.1038/s41576-019-0113-7
10.1016/j.yexcr.2014.01.008
10.1101/gr.238170.118
10.1016/j.csbj.2018.02.006
10.1056/NEJMoa1401268
10.1093/cid/ciy693
ContentType Journal Article
Copyright 2021 The Society for Applied Microbiology
2021 The Society for Applied Microbiology.
Copyright © 2021 The Society for Applied Microbiology
Copyright_xml – notice: 2021 The Society for Applied Microbiology
– notice: 2021 The Society for Applied Microbiology.
– notice: Copyright © 2021 The Society for Applied Microbiology
DBID AAYXX
CITATION
NPM
7QL
7QO
7T7
7TM
7U7
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/jam.15003
DatabaseName CrossRef
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
AGRICOLA
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1365-2672
EndPage 1016
ExternalDocumentID 33440055
10_1111_jam_15003
JAM15003
Genre article
Journal Article
GrantInformation_xml – fundername: National Key Program of the Ministry of Science and Technology Foundation
  funderid: 2020YFC2004505
– fundername: Guangzhou City Science and Technology Project Plan Foundation
  funderid: 202002030149
– fundername: Natural Science Foundation of Guangdong Province
  funderid: 2020A1515011467
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2020A1515011467
– fundername: National Key Program of the Ministry of Science and Technology Foundation
  grantid: 2020YFC2004505
– fundername: Guangzhou City Science and Technology Project Plan Foundation
  grantid: 202002030149
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
24P
29J
2WC
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
5WD
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAONW
AAPXW
AARHZ
AASGY
AAUAY
AAXRX
AAZKR
ABCQN
ABCUV
ABDFA
ABEJV
ABEML
ABJNI
ABMNT
ABPVW
ABXVV
ABXZS
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADOZA
ADQBN
ADVOB
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFFNX
AFGKR
AFPWT
AFRAH
AFZJQ
AHEFC
AI.
AIAGR
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATGXG
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BCRHZ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
EMOBN
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
H13
HF~
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
KOP
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NU-
O66
O9-
OBC
OBOKY
OBS
OIG
OJZSN
OK1
OVD
OWPYF
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RJQFR
ROL
ROX
RX1
SUPJJ
TEORI
UB1
V8K
VH1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WYISQ
XG1
Y6R
YF5
YFH
YUY
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
ABGNP
ABPQP
ABVGC
ADNBA
AEFGJ
AGXDD
AHGBF
AIDQK
AIDYY
AIQQE
AJBYB
AJNCP
ALXQX
CITATION
O8X
WIN
NPM
7QL
7QO
7T7
7TM
7U7
8FD
AGORE
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c3863-bc0baf19fe47b5af4cfb3e6dccf7a4fef6491c12946ad2c3124d4cad5eabaf943
IEDL.DBID WIN
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000613801900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1364-5072
1365-2672
IngestDate Fri Oct 03 00:05:26 EDT 2025
Wed Oct 01 07:37:07 EDT 2025
Wed Aug 13 11:27:41 EDT 2025
Wed Feb 19 02:30:16 EST 2025
Tue Nov 18 21:40:00 EST 2025
Sat Nov 29 01:38:06 EST 2025
Wed Jan 22 16:29:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords diagnosis of infectious diseases
PCR-free library preparation
metagenomic next-generation sequencing
automation
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
http://onlinelibrary.wiley.com/termsAndConditions#vor
2021 The Society for Applied Microbiology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3863-bc0baf19fe47b5af4cfb3e6dccf7a4fef6491c12946ad2c3124d4cad5eabaf943
Notes Yi Luan, Huiling Hu and Chao Liu, contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9308-663X
PMID 33440055
PQID 2553466715
PQPubID 37662
PageCount 10
ParticipantIDs proquest_miscellaneous_2636430964
proquest_miscellaneous_2478034024
proquest_journals_2553466715
pubmed_primary_33440055
crossref_primary_10_1111_jam_15003
crossref_citationtrail_10_1111_jam_15003
wiley_primary_10_1111_jam_15003_JAM15003
PublicationCentury 2000
PublicationDate August 2021
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Journal of applied microbiology
PublicationTitleAlternate J Appl Microbiol
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 2015; 15
2016; 7
2019; 4
2019; 20
2020
2019; 10
2019; 68
2019; 45
2019; 14
2015; 43
2019; 29
2014; 370
2020; 10
2018; 67
2014; 141
2018; 16
2014; 322
2011; 9
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Hogan C.A. (e_1_2_8_10_1) 2020
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
Seitz V. (e_1_2_8_17_1) 2015; 43
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – volume: 14
  start-page: 319
  year: 2019
  end-page: 338
  article-title: Clinical metagenomic next‐generation sequencing for pathogen detection
  publication-title: Annu Rev Pathol
– volume: 16
  start-page: 108
  year: 2018
  end-page: 120
  article-title: Highlighting clinical metagenomics for enhanced diagnostic decision‐making: a step towards wider implementation
  publication-title: Comput Struct Biotechnol J
– volume: 43
  start-page: e135
  year: 2015
  article-title: A new method to prevent carry‐over contaminations in two‐step PCR NGS library preparations
  publication-title: Nucleic Acids Res
– volume: 45
  start-page: 668
  year: 2019
  end-page: 685
  article-title: mNGS in clinical microbiology laboratories: on the road to maturity
  publication-title: Crit Rev Microbiol
– year: 2020
  article-title: Clinical impact of metagenomic next‐generation sequencing of plasma cell‐free DNA for the diagnosis of infectious diseases: a multicenter retrospective cohort study
  publication-title: Clin Infect Dis
– volume: 68
  start-page: 996
  year: 2019
  end-page: 1002
  article-title: Detection of respiratory pathogens in clinical samples using metagenomic shotgun sequencing
  publication-title: J Med Microbiol
– volume: 9
  start-page: 244
  year: 2011
  end-page: 253
  article-title: The skin microbiome
  publication-title: Nat Rev Microbiol
– volume: 15
  start-page: 200
  year: 2015
  end-page: 209
  article-title: Viral metagenomics reveal blooms of anelloviruses in the respiratory tract of lung transplant recipients
  publication-title: Am J Transplant
– volume: 322
  start-page: 12
  year: 2014
  end-page: 20
  article-title: Library preparation methods for next‐generation sequencing: tone down the bias
  publication-title: Exp Cell Res
– volume: 141
  start-page: 1856
  year: 2014
  end-page: 1862
  article-title: Diagnostic metagenomics: potential applications to bacterial, viral and parasitic infections
  publication-title: Parasitology
– volume: 67
  start-page: S231
  year: 2018
  end-page: S240
  article-title: Microbiological diagnostic performance of metagenomic next‐generation sequencing when applied to clinical practice
  publication-title: Clin Infect Dis
– volume: 7
  start-page: 459
  year: 2016
  article-title: Characterization of the gut microbiome using 16s or shotgun metagenomics
  publication-title: Front Microbiol
– volume: 29
  start-page: 831
  year: 2019
  end-page: 842
  article-title: Laboratory validation of a clinical metagenomic sequencing assay for pathogen detection in cerebrospinal fluid
  publication-title: Genome Res
– volume: 4
  start-page: 663
  year: 2019
  end-page: 674
  article-title: Analytical and clinical validation of a microbial cell‐free DNA sequencing test for infectious disease
  publication-title: Nat Microbiol
– volume: 20
  start-page: 341
  year: 2019
  end-page: 355
  article-title: Clinical metagenomics
  publication-title: Nat Rev Genet
– volume: 10
  start-page: 5501
  year: 2020
  end-page: 5513
  article-title: Liquid biopsy for infectious diseases: a focus on microbial cell‐free DNA sequencing
  publication-title: Theranostics
– volume: 10
  year: 2019
  article-title: Two years of viral metagenomics in a tertiary diagnostics unit: evaluation of the first 105 cases
  publication-title: Genes (Basel)
– volume: 370
  start-page: 2408
  year: 2014
  end-page: 2417
  article-title: Actionable diagnosis of neuroleptospirosis by next‐generation sequencing
  publication-title: N Engl J Med
– ident: e_1_2_8_7_1
  doi: 10.1146/annurev-pathmechdis-012418-012751
– ident: e_1_2_8_15_1
  doi: 10.1017/S0031182014000134
– ident: e_1_2_8_8_1
  doi: 10.7150/thno.45554
– ident: e_1_2_8_2_1
  doi: 10.1038/s41564-018-0349-6
– ident: e_1_2_8_12_1
  doi: 10.3390/genes10090661
– ident: e_1_2_8_6_1
  doi: 10.1038/nrmicro2537
– ident: e_1_2_8_19_1
  doi: 10.1111/ajt.13031
– year: 2020
  ident: e_1_2_8_10_1
  article-title: Clinical impact of metagenomic next‐generation sequencing of plasma cell‐free DNA for the diagnosis of infectious diseases: a multicenter retrospective cohort study
  publication-title: Clin Infect Dis
– ident: e_1_2_8_11_1
  doi: 10.3389/fmicb.2016.00459
– ident: e_1_2_8_16_1
  doi: 10.1099/jmm.0.000968
– volume: 43
  start-page: e135
  year: 2015
  ident: e_1_2_8_17_1
  article-title: A new method to prevent carry‐over contaminations in two‐step PCR NGS library preparations
  publication-title: Nucleic Acids Res
– ident: e_1_2_8_9_1
  doi: 10.1080/1040841X.2019.1681933
– ident: e_1_2_8_3_1
  doi: 10.1038/s41576-019-0113-7
– ident: e_1_2_8_4_1
  doi: 10.1016/j.yexcr.2014.01.008
– ident: e_1_2_8_14_1
  doi: 10.1101/gr.238170.118
– ident: e_1_2_8_5_1
  doi: 10.1016/j.csbj.2018.02.006
– ident: e_1_2_8_18_1
  doi: 10.1056/NEJMoa1401268
– ident: e_1_2_8_13_1
  doi: 10.1093/cid/ciy693
SSID ssj0013056
Score 2.5136392
Snippet Aims Metagenomic next‐generation sequencing (mNGS) has been utilized for diagnosing infectious diseases. It is a culture‐free and hypothesis‐free nucleic acid...
Metagenomic next-generation sequencing (mNGS) has been utilized for diagnosing infectious diseases. It is a culture-free and hypothesis-free nucleic acid test...
AimsMetagenomic next‐generation sequencing (mNGS) has been utilized for diagnosing infectious diseases. It is a culture‐free and hypothesis‐free nucleic acid...
AIMS: Metagenomic next‐generation sequencing (mNGS) has been utilized for diagnosing infectious diseases. It is a culture‐free and hypothesis‐free nucleic acid...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1007
SubjectTerms Automation
Bacteria
bioinformatics
Contamination
Deoxyribonucleic acid
diagnosis of infectious diseases
DNA
DNA sequencing
Infectious diseases
Libraries
metagenomic next‐generation sequencing
Metagenomics
Microbial contamination
microbial detection
Microorganisms
Nucleic acids
Parasites
Pathogens
PCR‐free library preparation
Polymerase chain reaction
RNA
Workflow
Title A proof‐of‐concept study of an automated solution for clinical metagenomic next‐generation sequencing
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjam.15003
https://www.ncbi.nlm.nih.gov/pubmed/33440055
https://www.proquest.com/docview/2553466715
https://www.proquest.com/docview/2478034024
https://www.proquest.com/docview/2636430964
Volume 131
WOSCitedRecordID wos000613801900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1365-2672
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0013056
  issn: 1364-5072
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2672
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013056
  issn: 1364-5072
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS9xAEB-sbcGX2lqrV_VYxYe-RJLsZJPgk9geCnKUonhvYf8WaS8R767Qt36EfsZ-kk42f1ppFcGXEMhsmGRnMr_Jzv4GYD-MMmdNFAfGqjBAo3mQoZOBUUliKXxo3TabSMfjbDLJPy7BYbcXpuGH6H-41Z7hv9e1g0s1-9vJ5fSA0Ixn-ozQO-Xl6fjPCkLoO7dGXGBAmCduWYV8FU838nYs-gdg3sarPuCMVh-l6kt40eJMdtQYxitYsuUaPG86T35_DV-OGClSuV8_fvqDbnYvMs82yyrHZMnkYl4RnrWGdfbJCOGybi8lm9q5rClep1ealfSNp9t89iTWXrSt0abIuA4Xow_nxydB23ch0DwTPFA6VNJFubOYqkQ61E5xK4zWLpXorBOYR5qAAgppYs0JIhjU0iRW0rgc-RtYLqvSbgJTYc5dzfejjEGnpFJOpDIxJonDxFo-gHfdDBS6JSWve2N8LfrkRE4L_-4GsNeLXjdMHP8T2u6msWidcVZQ1sRRiDRKBrDbXyY3qtdGZGmrBclgmoWckmm8R0aQMXHK-UhmozGRXhPOEWs-M3ogbwl3q1hQNPUnbx8uugUrcV1L4wsPt2F5frOwO_BMf5tfzW6G8CSdZEN4-v7T6OJs6N3gN0IsDdo
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VWxBceD-WFjCIA5dUSTx2EqmXClgVsawQaqXeIj9RBZugdhept_4EfiO_hLHzgIqHkLhEkTKOnHjG8409_gbgWZqV3tksT6zTaYLW8KRErxKrhXDkPozpi00Ui0V5dFS924Dd4SxMxw8xLrgFy4jzdTDwsCD9s5Wr5Q7BmUD1uYmkRmICmy_fzw7nP3YR0li9NeMSE8I9ec8sFDN5hsYX_dEvIPMiZo1OZ3b9_7p7A671YJPtddpxEzZccwsud-Unz27Dxz1GPWn9t_Ov8WK6I4wsUs6y1jPVMLVetQRqnWWDkjKCuWw4UMmWbqUCz-vy2LCGJnp6zYfIZB1F-0Rtco934HD26uDFftIXX0gMLyVPtEm18lnlHRZaKI_Ga-6kNcYXCr3zEqvMEFpAqWxuOOEEi0ZZ4RS1q5DfhUnTNu4-MJ1W3AfSH20teq209rJQwlqRp8I5PoXnwxDUpmcmDwUyPtVjhKKWdfx3U3g6in7u6Dh-J7Q9jGPdW-RpTaETRymLTEzhyfiYbClskKjGtWuSwaJMOUXU-BcZSdrEKfAjmXudjow94RwxkJrRB0VV-HMXa3Kp8ebBv4s-hiv7B2_n9fz14s0WXM1Dck3MRNyGyepk7R7CJfNldXx68qi3g-9vVRCe
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9VAEB5Kq-KLWq9HW7uKD76kJNnZTQK-FNuD0nIoxULfwl6l6ElKe47gmz_B3-gvcXZzscUqgi8hkNkwyc5kvsnOfgPwKs1K72yWJ9bpNEFreFKiV4nVQjgKH8b0zSaK2aw8OakOV-DNsBem44cYf7gFz4jf6-Dg7sz6y16u5tsEZwLV5xqKSpJbru0eTY8Pfq0ipLF7a8YlJoR78p5ZKFbyDIOvxqPfQOZVzBqDzvTu_6l7D-70YJPtdNaxDiuuuQ83u_aTXx_Apx1GmrT-x7fv8WC6LYwsUs6y1jPVMLVctARqnWWDkTKCuWzYUMnmbqECz-v81LCGPvR0m4-RyTqK9oXaFB4fwvF078Pbd0nffCExvJQ80SbVymeVd1hooTwar7mT1hhfKPTOS6wyQ2gBpbK54YQTLBplhVM0rkL-CFabtnFPgOm04j6Q_mhr0WultZeFEtaKPBXO8Qm8HqagNj0zeWiQ8bkeMxQ1r-O7m8DLUfSso-O4TmhjmMe698iLmlInjlIWmZjAi_Ey-VJYIFGNa5ckg0WZcsqo8S8ykqyJU-JHMo87Gxk14RwxkJrRA0VT-LOKNYXUePL030W34Nbh7rQ-eD_bfwa381BbEwsRN2B1cb50m3DDfFmcXpw_793gJ-TuEBk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+proof%E2%80%90of%E2%80%90concept+study+of+an+automated+solution+for+clinical+metagenomic+next%E2%80%90generation+sequencing&rft.jtitle=Journal+of+applied+microbiology&rft.au=Luan%2C+Y&rft.au=Hu%2C+H.&rft.au=Liu%2C+C&rft.au=Chen%2C+B&rft.date=2021-08-01&rft.issn=1364-5072&rft.volume=131&rft.issue=2+p.1007-1016&rft.spage=1007&rft.epage=1016&rft_id=info:doi/10.1111%2Fjam.15003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-5072&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-5072&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-5072&client=summon