WRKY9 transcription factor regulates cytochrome P450 genes CYP94B3 and CYP86B1, leading to increased root suberin and salt tolerance in Arabidopsis
Salinity affects crop productivity worldwide and mangroves growing under high salinity exhibit adaptations such as enhanced root apoplastic barrier to survive under such conditions. We have identified two cytochrome P450 family genes, AoCYP94B3 and AoCYP86B1 from the mangrove tree Avicennia officina...
Gespeichert in:
| Veröffentlicht in: | Physiologia plantarum Jg. 172; H. 3; S. 1673 - 1687 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford, UK
Blackwell Publishing Ltd
01.07.2021
Wiley Subscription Services, Inc |
| Schlagworte: | |
| ISSN: | 0031-9317, 1399-3054, 1399-3054 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Salinity affects crop productivity worldwide and mangroves growing under high salinity exhibit adaptations such as enhanced root apoplastic barrier to survive under such conditions. We have identified two cytochrome P450 family genes, AoCYP94B3 and AoCYP86B1 from the mangrove tree Avicennia officinalis and characterized them using atcyp94b3 and atcyp86b1, which are mutants of their putative Arabidopsis orthologs and the corresponding complemented lines with A. officinalis genes. CYP94B3 and CYP86B1 transcripts were induced upon salt treatment in the roots of both A. officinalis and Arabidopsis. Both AoCYP94B3 and AoCYP86B1 were localized to the endoplasmic reticulum. Heterologous expression of 35S::AoCYP94B3 and 35S::AoCYP86B1 in their respective Arabidopsis mutants (atcyp94b3 and atcyp86b1) increased the salt tolerance of the transgenic seedlings by reducing the amount of Na+ accumulation in the shoots. Moreover, the reduced root suberin phenotype of atcyp94b3 was rescued in the 35S::AoCYP94B3;atcyp94b3 transgenic Arabidopsis seedlings. Gas‐chromatography and mass spectrometry analyses showed that the amount of suberin monomers (C‐16 ω‐hydroxy acids, C‐16 α, ω‐dicarboxylic acids and C‐20 eicosanol) were increased in the roots of 35S::AoCYP94B3;atcyp94b3 Arabidopsis seedlings. Using chromatin immunoprecipitation and electrophoretic mobility shift assays, we identified AtWRKY9 as the upstream regulator of AtCYP94B3 and AtCYP86B1 in Arabidopsis. In addition, atwrky9 showed suppressed expression of AtCYP94B3 and AtCYP86B1 transcripts, and reduced suberin in the roots. These results show that AtWRKY9 controls suberin deposition by regulating AtCYP94B3 and AtCYP86B1, leading to salt tolerance. Our data can be used for generating salt‐tolerant crop plants in the future. |
|---|---|
| AbstractList | Salinity affects crop productivity worldwide and mangroves growing under high salinity exhibit adaptations such as enhanced root apoplastic barrier to survive under such conditions. We have identified two cytochrome P450 family genes,
AoCYP94B3
and
AoCYP86B1
from the mangrove tree
Avicennia officinalis
and characterized them using
atcyp94b3
and
atcyp86b1
, which are mutants of their putative Arabidopsis orthologs and the corresponding complemented lines with
A. officinalis
genes.
CYP94B3
and
CYP86B1
transcripts were induced upon salt treatment in the roots of both
A. officinalis
and Arabidopsis. Both AoCYP94B3 and AoCYP86B1 were localized to the endoplasmic reticulum. Heterologous expression of
35S::AoCYP94B3
and
35S::AoCYP86B1
in their respective Arabidopsis mutants (
atcyp94b3
and
atcyp86b1
) increased the salt tolerance of the transgenic seedlings by reducing the amount of Na
+
accumulation in the shoots. Moreover, the reduced root suberin phenotype of
atcyp94b3
was rescued in the
35S::AoCYP94B3;atcyp94b3
transgenic Arabidopsis seedlings. Gas‐chromatography and mass spectrometry analyses showed that the amount of suberin monomers (C‐16
ω
‐hydroxy acids, C‐16
α
,
ω
‐dicarboxylic acids and C‐20 eicosanol) were increased in the roots of
35S::AoCYP94B3;atcyp94b3
Arabidopsis seedlings. Using chromatin immunoprecipitation and electrophoretic mobility shift assays, we identified AtWRKY9 as the upstream regulator of
AtCYP94B3
and
AtCYP86B1
in Arabidopsis. In addition,
atwrky9
showed suppressed expression of
AtCYP94B3
and
AtCYP86B1
transcripts, and reduced suberin in the roots. These results show that AtWRKY9 controls suberin deposition by regulating
AtCYP94B3
and
AtCYP86B1
, leading to salt tolerance. Our data can be used for generating salt‐tolerant crop plants in the future. Salinity affects crop productivity worldwide and mangroves growing under high salinity exhibit adaptations such as enhanced root apoplastic barrier to survive under such conditions. We have identified two cytochrome P450 family genes, AoCYP94B3 and AoCYP86B1 from the mangrove tree Avicennia officinalis and characterized them using atcyp94b3 and atcyp86b1, which are mutants of their putative Arabidopsis orthologs and the corresponding complemented lines with A. officinalis genes. CYP94B3 and CYP86B1 transcripts were induced upon salt treatment in the roots of both A. officinalis and Arabidopsis. Both AoCYP94B3 and AoCYP86B1 were localized to the endoplasmic reticulum. Heterologous expression of 35S::AoCYP94B3 and 35S::AoCYP86B1 in their respective Arabidopsis mutants (atcyp94b3 and atcyp86b1) increased the salt tolerance of the transgenic seedlings by reducing the amount of Na+ accumulation in the shoots. Moreover, the reduced root suberin phenotype of atcyp94b3 was rescued in the 35S::AoCYP94B3;atcyp94b3 transgenic Arabidopsis seedlings. Gas‐chromatography and mass spectrometry analyses showed that the amount of suberin monomers (C‐16 ω‐hydroxy acids, C‐16 α, ω‐dicarboxylic acids and C‐20 eicosanol) were increased in the roots of 35S::AoCYP94B3;atcyp94b3 Arabidopsis seedlings. Using chromatin immunoprecipitation and electrophoretic mobility shift assays, we identified AtWRKY9 as the upstream regulator of AtCYP94B3 and AtCYP86B1 in Arabidopsis. In addition, atwrky9 showed suppressed expression of AtCYP94B3 and AtCYP86B1 transcripts, and reduced suberin in the roots. These results show that AtWRKY9 controls suberin deposition by regulating AtCYP94B3 and AtCYP86B1, leading to salt tolerance. Our data can be used for generating salt‐tolerant crop plants in the future. Salinity affects crop productivity worldwide and mangroves growing under high salinity exhibit adaptations such as enhanced root apoplastic barrier to survive under such conditions. We have identified two cytochrome P450 family genes, AoCYP94B3 and AoCYP86B1 from the mangrove tree Avicennia officinalis and characterized them using atcyp94b3 and atcyp86b1, which are mutants of their putative Arabidopsis orthologs and the corresponding complemented lines with A. officinalis genes. CYP94B3 and CYP86B1 transcripts were induced upon salt treatment in the roots of both A. officinalis and Arabidopsis. Both AoCYP94B3 and AoCYP86B1 were localized to the endoplasmic reticulum. Heterologous expression of 35S::AoCYP94B3 and 35S::AoCYP86B1 in their respective Arabidopsis mutants (atcyp94b3 and atcyp86b1) increased the salt tolerance of the transgenic seedlings by reducing the amount of Na⁺ accumulation in the shoots. Moreover, the reduced root suberin phenotype of atcyp94b3 was rescued in the 35S::AoCYP94B3;atcyp94b3 transgenic Arabidopsis seedlings. Gas‐chromatography and mass spectrometry analyses showed that the amount of suberin monomers (C‐16 ω‐hydroxy acids, C‐16 α, ω‐dicarboxylic acids and C‐20 eicosanol) were increased in the roots of 35S::AoCYP94B3;atcyp94b3 Arabidopsis seedlings. Using chromatin immunoprecipitation and electrophoretic mobility shift assays, we identified AtWRKY9 as the upstream regulator of AtCYP94B3 and AtCYP86B1 in Arabidopsis. In addition, atwrky9 showed suppressed expression of AtCYP94B3 and AtCYP86B1 transcripts, and reduced suberin in the roots. These results show that AtWRKY9 controls suberin deposition by regulating AtCYP94B3 and AtCYP86B1, leading to salt tolerance. Our data can be used for generating salt‐tolerant crop plants in the future. Salinity affects crop productivity worldwide and mangroves growing under high salinity exhibit adaptations such as enhanced root apoplastic barrier to survive under such conditions. We have identified two cytochrome P450 family genes, AoCYP94B3 and AoCYP86B1 from the mangrove tree Avicennia officinalis and characterized them using atcyp94b3 and atcyp86b1, which are mutants of their putative Arabidopsis orthologs and the corresponding complemented lines with A. officinalis genes. CYP94B3 and CYP86B1 transcripts were induced upon salt treatment in the roots of both A. officinalis and Arabidopsis. Both AoCYP94B3 and AoCYP86B1 were localized to the endoplasmic reticulum. Heterologous expression of 35S::AoCYP94B3 and 35S::AoCYP86B1 in their respective Arabidopsis mutants (atcyp94b3 and atcyp86b1) increased the salt tolerance of the transgenic seedlings by reducing the amount of Na accumulation in the shoots. Moreover, the reduced root suberin phenotype of atcyp94b3 was rescued in the 35S::AoCYP94B3;atcyp94b3 transgenic Arabidopsis seedlings. Gas-chromatography and mass spectrometry analyses showed that the amount of suberin monomers (C-16 ω-hydroxy acids, C-16 α, ω-dicarboxylic acids and C-20 eicosanol) were increased in the roots of 35S::AoCYP94B3;atcyp94b3 Arabidopsis seedlings. Using chromatin immunoprecipitation and electrophoretic mobility shift assays, we identified AtWRKY9 as the upstream regulator of AtCYP94B3 and AtCYP86B1 in Arabidopsis. In addition, atwrky9 showed suppressed expression of AtCYP94B3 and AtCYP86B1 transcripts, and reduced suberin in the roots. These results show that AtWRKY9 controls suberin deposition by regulating AtCYP94B3 and AtCYP86B1, leading to salt tolerance. Our data can be used for generating salt-tolerant crop plants in the future. Salinity affects crop productivity worldwide and mangroves growing under high salinity exhibit adaptations such as enhanced root apoplastic barrier to survive under such conditions. We have identified two cytochrome P450 family genes, AoCYP94B3 and AoCYP86B1 from the mangrove tree Avicennia officinalis and characterized them using atcyp94b3 and atcyp86b1, which are mutants of their putative Arabidopsis orthologs and the corresponding complemented lines with A. officinalis genes. CYP94B3 and CYP86B1 transcripts were induced upon salt treatment in the roots of both A. officinalis and Arabidopsis. Both AoCYP94B3 and AoCYP86B1 were localized to the endoplasmic reticulum. Heterologous expression of 35S::AoCYP94B3 and 35S::AoCYP86B1 in their respective Arabidopsis mutants (atcyp94b3 and atcyp86b1) increased the salt tolerance of the transgenic seedlings by reducing the amount of Na+ accumulation in the shoots. Moreover, the reduced root suberin phenotype of atcyp94b3 was rescued in the 35S::AoCYP94B3;atcyp94b3 transgenic Arabidopsis seedlings. Gas-chromatography and mass spectrometry analyses showed that the amount of suberin monomers (C-16 ω-hydroxy acids, C-16 α, ω-dicarboxylic acids and C-20 eicosanol) were increased in the roots of 35S::AoCYP94B3;atcyp94b3 Arabidopsis seedlings. Using chromatin immunoprecipitation and electrophoretic mobility shift assays, we identified AtWRKY9 as the upstream regulator of AtCYP94B3 and AtCYP86B1 in Arabidopsis. In addition, atwrky9 showed suppressed expression of AtCYP94B3 and AtCYP86B1 transcripts, and reduced suberin in the roots. These results show that AtWRKY9 controls suberin deposition by regulating AtCYP94B3 and AtCYP86B1, leading to salt tolerance. Our data can be used for generating salt-tolerant crop plants in the future.Salinity affects crop productivity worldwide and mangroves growing under high salinity exhibit adaptations such as enhanced root apoplastic barrier to survive under such conditions. We have identified two cytochrome P450 family genes, AoCYP94B3 and AoCYP86B1 from the mangrove tree Avicennia officinalis and characterized them using atcyp94b3 and atcyp86b1, which are mutants of their putative Arabidopsis orthologs and the corresponding complemented lines with A. officinalis genes. CYP94B3 and CYP86B1 transcripts were induced upon salt treatment in the roots of both A. officinalis and Arabidopsis. Both AoCYP94B3 and AoCYP86B1 were localized to the endoplasmic reticulum. Heterologous expression of 35S::AoCYP94B3 and 35S::AoCYP86B1 in their respective Arabidopsis mutants (atcyp94b3 and atcyp86b1) increased the salt tolerance of the transgenic seedlings by reducing the amount of Na+ accumulation in the shoots. Moreover, the reduced root suberin phenotype of atcyp94b3 was rescued in the 35S::AoCYP94B3;atcyp94b3 transgenic Arabidopsis seedlings. Gas-chromatography and mass spectrometry analyses showed that the amount of suberin monomers (C-16 ω-hydroxy acids, C-16 α, ω-dicarboxylic acids and C-20 eicosanol) were increased in the roots of 35S::AoCYP94B3;atcyp94b3 Arabidopsis seedlings. Using chromatin immunoprecipitation and electrophoretic mobility shift assays, we identified AtWRKY9 as the upstream regulator of AtCYP94B3 and AtCYP86B1 in Arabidopsis. In addition, atwrky9 showed suppressed expression of AtCYP94B3 and AtCYP86B1 transcripts, and reduced suberin in the roots. These results show that AtWRKY9 controls suberin deposition by regulating AtCYP94B3 and AtCYP86B1, leading to salt tolerance. Our data can be used for generating salt-tolerant crop plants in the future. |
| Author | Vishal, Bhushan Bhal, Amrit Kumar, Prakash P. Krishnamurthy, Pannaga |
| Author_xml | – sequence: 1 givenname: Pannaga surname: Krishnamurthy fullname: Krishnamurthy, Pannaga organization: National University of Singapore – sequence: 2 givenname: Bhushan surname: Vishal fullname: Vishal, Bhushan organization: Nanyang Technological University – sequence: 3 givenname: Amrit surname: Bhal fullname: Bhal, Amrit organization: National University of Singapore – sequence: 4 givenname: Prakash P. orcidid: 0000-0002-0963-1664 surname: Kumar fullname: Kumar, Prakash P. email: prakash.kumar@nus.edu.sg organization: National University of Singapore |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33619745$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0d1uFCEUB3Biauy2euELGBJvNHFaGGBmuGw3fsVN3BiN6RVhmDMrDQsjMDH7HL6wbHd702jkBnLyO4fA_wyd-OABoeeUXNCyLqfJXVDGWvoILSiTsmJE8BO0IITRSjLanqKzlG4JoU1D6yfolLGGypaLBfr9_cunG4lz1D6ZaKdsg8ejNjlEHGEzO50hYbPLwfyIYQt4zQXBG_ClurxZS37NsPbD_tw11_QNdqAH6zc4B2y9iaATDDiGkHGae4jW3_GkXS7EQbnXQJH4KureDmFKNj1Fj0ftEjw77ufo27u3X5cfqtXn9x-XV6vKsK6h1dgSOXZsGHktgPa9pFq0vO8Jbwx0Y1Nq2kimmYaxI6Luhpp1XIxDB72BxrBz9Oowd4rh5wwpq61NBpzTHsKcVF1-ixAh2ub_lMu95oIV-vIBvQ1z9OUhqhZcdDUTnSjqxVHN_RYGNUW71XGn7pMp4PIATAwpRRiVsVnv4ylZWacoUfvsVcle3WVfOl4_6Lgf-jd7nP7LOtj9G6r1enXo-APFMryf |
| CitedBy_id | crossref_primary_10_1093_plphys_kiac360 crossref_primary_10_1111_tpj_70244 crossref_primary_10_1111_brv_13172 crossref_primary_10_1111_nph_19588 crossref_primary_10_3389_fpls_2023_1118313 crossref_primary_10_3389_fpls_2025_1624136 crossref_primary_10_1007_s11103_022_01312_6 crossref_primary_10_1111_tpj_70469 crossref_primary_10_3390_agriculture15161733 crossref_primary_10_1186_s12862_024_02304_4 crossref_primary_10_3389_fpls_2022_1095602 crossref_primary_10_1093_jxb_eraf161 crossref_primary_10_1111_tpj_15914 crossref_primary_10_1016_j_plantsci_2023_111874 crossref_primary_10_1111_pbi_70199 crossref_primary_10_1016_j_plantsci_2024_112300 crossref_primary_10_1007_s00299_024_03215_w crossref_primary_10_1016_j_postharvbio_2024_113127 crossref_primary_10_3390_jox13030026 crossref_primary_10_1007_s00299_025_03486_x crossref_primary_10_1016_j_pbi_2021_102153 crossref_primary_10_1111_nph_18202 crossref_primary_10_1016_j_foodchem_2023_135847 crossref_primary_10_3390_plants11030392 crossref_primary_10_1007_s12374_025_09471_x crossref_primary_10_1016_j_jplph_2023_153921 crossref_primary_10_1016_j_hpj_2023_01_012 crossref_primary_10_1016_j_isci_2021_103547 crossref_primary_10_1007_s00253_023_12441_3 crossref_primary_10_1016_j_plaphy_2025_110388 crossref_primary_10_1186_s12864_022_08605_6 crossref_primary_10_3390_genes14020240 crossref_primary_10_1016_j_plantsci_2023_111841 crossref_primary_10_1111_ppl_13765 crossref_primary_10_1186_s12870_024_05192_4 crossref_primary_10_1038_s41467_024_54112_5 crossref_primary_10_1186_s12870_023_04393_7 crossref_primary_10_3390_plants12091890 |
| Cites_doi | 10.1038/s41598-017-05170-x 10.1016/j.phytochem.2005.09.027 10.1074/jbc.M111.316364 10.1080/15592324.2015.1046667 10.1002/9780470015902.a0002086.pub2 10.1111/j.1365-3040.2004.01245.x 10.1111/j.1469-8137.2008.02531.x 10.1111/nph.14140 10.1146/annurev-arplant-050718-100005 10.1007/s00344-003-0002-2 10.1111/tpj.14711 10.1104/pp.20.01054 10.1111/pce.12272 10.1023/B:PHYT.0000047810.10706.46 10.1093/jxb/ern101 10.1111/j.1469-8137.2010.03540.x 10.1016/j.pbi.2015.08.004 10.1104/pp.24.1.1 10.1104/pp.109.141408 10.1104/pp.108.127183 10.1104/pp.104.038612 10.4161/psb.6.10.17054 10.1111/nph.15864 10.1038/s41598-017-10795-z 10.1007/s00425-009-0930-6 10.1093/jexbot/50.337.1267 10.1007/s11104-020-04464-w 10.1111/nph.15464 10.1006/bbrc.1998.8156 10.3109/10520299109110562 10.1038/s41598-017-10730-2 10.1073/pnas.1103542108 10.1016/j.tplants.2008.03.003 10.1111/j.1365-3040.2011.02318.x 10.1104/pp.109.144907 10.1007/s11103-008-9408-3 10.1139/b03-042 10.1089/dna.2014.2349 10.3389/fpls.2016.00009 10.1007/s00468-010-0417-x 10.1042/bj3420027 10.1093/jxb/38.7.1141 10.1046/j.1365-313x.1998.00343.x 10.1016/j.pbi.2007.04.004 10.1038/nprot.2007.199 10.1111/j.1742-4658.2010.07948.x 10.1371/journal.pone.0159875 10.1126/science.1086391 10.1093/jxb/erv190 10.3389/fpls.2012.00004 10.1186/s12870-016-0806-4 10.1111/nph.15128 10.4161/psb.5.3.11187 10.1104/pp.16.01614 10.1111/j.1469-8137.2009.03021.x 10.1074/jbc.M114.603084 10.1111/tpj.12624 10.1007/s11103-004-0685-1 10.4161/psb.27700 10.1093/jxb/erq389 10.1093/pcp/pcv006 10.1111/tpj.13784 10.1111/pce.13784 10.1016/j.cell.2015.12.021 10.1139/b84-391 10.1073/pnas.1205726109 10.1105/tpc.16.00681 10.1111/j.1365-313X.2008.03674.x 10.1093/jxb/err135 10.1007/s00438-014-0849-x 10.3390/plants5010004 10.1186/gb-2003-4-3-r20 10.1111/j.1469-8137.2005.01487.x 10.1093/pcp/pcr110 10.1016/j.ecoenv.2004.06.010 10.3389/fpls.2018.00801 10.1371/journal.pone.0143022 |
| ContentType | Journal Article |
| Copyright | 2021 Scandinavian Plant Physiology Society 2021 Scandinavian Plant Physiology Society. |
| Copyright_xml | – notice: 2021 Scandinavian Plant Physiology Society – notice: 2021 Scandinavian Plant Physiology Society. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7ST 8FD C1K FR3 P64 RC3 SOI 7X8 7S9 L.6 |
| DOI | 10.1111/ppl.13371 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Engineering Research Database Ecology Abstracts Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Genetics Abstracts AGRICOLA MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany |
| EISSN | 1399-3054 |
| EndPage | 1687 |
| ExternalDocumentID | 33619745 10_1111_ppl_13371 PPL13371 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: National Water Agency – fundername: National Research Foundation, Singapore |
| GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29O 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBTR ACBWZ ACCFJ ACCZN ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ H~9 IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OHT OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 TWZ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT ZCG ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX ABUFD AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 7SN 7ST 8FD C1K FR3 P64 RC3 SOI 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c3861-f709f83df425e1bb91a574bb046ce8f6e1bac93a3aef80528d23845fd8ebce6c3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000627837900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-9317 1399-3054 |
| IngestDate | Fri Jul 11 18:30:17 EDT 2025 Thu Oct 02 04:38:39 EDT 2025 Fri Jul 25 12:16:51 EDT 2025 Mon Jul 21 06:05:52 EDT 2025 Sat Nov 29 04:19:58 EST 2025 Tue Nov 18 22:17:52 EST 2025 Wed Jan 22 16:28:39 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | 2021 Scandinavian Plant Physiology Society. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3861-f709f83df425e1bb91a574bb046ce8f6e1bac93a3aef80528d23845fd8ebce6c3 |
| Notes | Funding information National Water Agency; National Research Foundation, Singapore Edited by B. Huang ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0963-1664 |
| PMID | 33619745 |
| PQID | 2545823585 |
| PQPubID | 1096353 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_2661005576 proquest_miscellaneous_2492661453 proquest_journals_2545823585 pubmed_primary_33619745 crossref_citationtrail_10_1111_ppl_13371 crossref_primary_10_1111_ppl_13371 wiley_primary_10_1111_ppl_13371_PPL13371 |
| PublicationCentury | 2000 |
| PublicationDate | July 2021 2021-07-00 2021-Jul 20210701 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: Denmark – name: Malden |
| PublicationTitle | Physiologia plantarum |
| PublicationTitleAlternate | Physiol Plant |
| PublicationYear | 2021 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
| References | 1984; 62 2017; 7 2011; 278 2012; 287 2011; 62 2004; 3 2011; 52 2020; 448 2009; 150 2009; 151 2005; 60 2009; 230 2005; 28 2005; 66 1987; 38 1998; 16 2018; 9 1949; 24 2009; 57 2010; 24 2004; 135 2003; 4 2018; 219 2007; 2 1999; 50 2020; 43 2014; 9 1998; 243 2010; 5 2014; 289 2015; 56 2009; 69 2003; 81 2020; 184 2011 2015; 10 2008; 59 2020; 225 2008; 13 2017; 173 2008; 98 2017; 29 2011; 34 2020; 102 1999; 342 2007; 10 2011; 6 2016; 16 2017; 213 2016; 164 2019; 221 2012; 109 2016; 11 2004; 55 2016; 5 2016; 7 2015; 28 2012; 3 2011; 108 2014; 80 1991; 66 2020; 71 2015; 66 2014; 37 2009; 184 2008; 179 2013 2018; 93 2003; 301 2011; 189 2014; 33 2003; 21 2009; 149 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 Nawrath C. (e_1_2_8_55_1) 2013 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
| References_xml | – year: 2011 – volume: 10 year: 2015 article-title: The cotton WRKY gene positively regulates salt and drought stress tolerance in transgenic publication-title: PLoS One – volume: 448 start-page: 603 year: 2020 end-page: 620 article-title: Aliphatic suberin confers salt tolerance to Arabidopsis by limiting Na influx, K efflux and water backflow publication-title: Plant and Soil – volume: 62 start-page: 4215 year: 2011 end-page: 4228 article-title: Root apoplastic barriers block Na transport to shoots in rice ( L.) publication-title: Journal of Experimental Botany – volume: 98 start-page: 1179 year: 2008 end-page: 1189 article-title: Soybean root suberin and partial resistance to root rot caused by Phytophthora sojae publication-title: Phytopathology – volume: 21 start-page: 335 year: 2003 end-page: 351 article-title: Root endodermis and exodermis: structure, function, and responses to the environment publication-title: Journal of Plant Growth Regulation – volume: 80 start-page: 216 year: 2014 end-page: 229 article-title: AtMYB41 activates ectopic suberin synthesis and assembly in multiple palnt species and cell types publication-title: The Plant Journal – volume: 10 year: 2015 article-title: Overexpression of a CYP94 family gene CYP94C2b increases internode length and plant height in rice publication-title: Plant Signaling & Behavior – volume: 135 start-page: 507 year: 2004 end-page: 515 article-title: Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene ‐delta‐cadinene synthase‐a publication-title: Plant Physiology – volume: 52 start-page: 1757 year: 2011 end-page: 1765 article-title: Arabidopsis CYP94B3 encodes jasmonyl‐L‐isoleucine 12‐hydroxylase, a key enzyme in the oxidative catabolism of jasmonate publication-title: Plant & Cell Physiology – volume: 225 start-page: 1072 year: 2020 end-page: 1090 article-title: Energy costs of salt tolerance in crop plants publication-title: The New Phytologist – volume: 342 start-page: 27 issue: Pt 1 year: 1999 end-page: 32 article-title: Production in vitro by the cytochrome P450 CYP94A1 of major C18 cutin monomers and potential messengers in plant‐pathogen interactions: enantioselectivity studies publication-title: The Biochemical Journal – volume: 3 start-page: 4 year: 2012 article-title: Suberin goes genomics: use of a short living plant to investigate a long lasting polymer publication-title: Frontiers in Plant Science – volume: 7 start-page: 4799 year: 2017 article-title: Chrysanthemum WRKY gene DgWRKY5 enhances tolerance to salt stress in transgenic chrysanthemum publication-title: Scientific Reports – volume: 184 start-page: 2199 year: 2020 end-page: 2215 article-title: Regulation of a cytochrome P450 gene CYP94B1 by WRKY33 transcription factor controls apoplastic barrier formation in roots to confer salt tolerance publication-title: Plant Physiology – volume: 164 start-page: 447 year: 2016 end-page: 459 article-title: Adaptation of root function by nutrient‐induced plasticity of endodermal differentiation publication-title: Cell – volume: 13 start-page: 236 year: 2008 end-page: 246 article-title: Building lipid barriers: biosynthesis of cutin and suberin publication-title: Trends in Plant Science – volume: 69 start-page: 91 year: 2009 end-page: 105 article-title: Functional characterization of Arabidopsis NaCl‐inducible WRKY25 and WRKY33 transcription factors in abiotic stresses publication-title: Plant Molecular Biology – volume: 34 start-page: 1223 year: 2011 end-page: 1240 article-title: Stagnant deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice ( L.) roots publication-title: Plant, Cell & Environment – volume: 66 start-page: 3879 year: 2015 end-page: 3892 article-title: CYP94‐mediated jasmonoyl‐isoleucine hormone oxidation shapes jasmonate profiles and attenuates defence responses to infection publication-title: Journal of Experimental Botany – volume: 33 start-page: 503 year: 2014 end-page: 513 article-title: Molecular cloning and characterization of a group II WRKY transcription factor from , an important biofuel crop publication-title: DNA Cell Biol – volume: 278 start-page: 195 year: 2011 end-page: 205 article-title: Cytochrome P450 metabolizing fatty acids in plants: characterization and physiological roles publication-title: The FEBS Journal – volume: 173 start-page: 1045 year: 2017 end-page: 1058 article-title: The MYB107 transcription factor positively regulates suberin biosynthesis publication-title: Plant Physiology – volume: 221 start-page: 1369 year: 2019 end-page: 1386 article-title: OsTPS8 controls yield‐related traits and confers salt stress tolerance in rice by enhancing suberin deposition publication-title: The New Phytologist – volume: 230 start-page: 119 year: 2009 end-page: 134 article-title: The role of root apoplastic transport barriers in salt tolerance of rice ( L.) publication-title: Planta – volume: 3 start-page: 113 year: 2004 end-page: 142 article-title: Oxidases, peroxidases and hydrogen peroxide: the suberin connection publication-title: Phytochemistry Reviews – volume: 50 start-page: 1267 year: 1999 end-page: 1280 article-title: Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls publication-title: Journal of Experimental Botany – volume: 102 start-page: 431 year: 2020 end-page: 447 article-title: SUBERMAN regulates developmental suberization of the Arabidopsis root endodermis publication-title: The Plant Journal – volume: 66 start-page: 111 year: 1991 end-page: 116 article-title: Efficient lipid staining in plant material with Sudan red 7B or Fluorol yellow 088 in polyethylene glycol‐glycerol publication-title: Biotechnic and Histochem – volume: 2 start-page: 1565 year: 2007 end-page: 1572 article-title: Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis publication-title: Nature Protocols – volume: 9 start-page: 801 year: 2018 article-title: The role of tomato WRKY genes in plant responses to combined abiotic and biotic stresses publication-title: Frontiers in Plant Science – volume: 7 year: 2017 article-title: Transcriptomics analysis of salt stress tolerance in the roots of the mangrove publication-title: Scientific Reports – volume: 24 start-page: 1 year: 1949 end-page: 15 article-title: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in publication-title: Plant Physiology – volume: 7 start-page: 9 year: 2016 article-title: Global analysis of WRKY genes and their response to dehydration and Salt stress in soybean publication-title: Frontiers in Plant Science – volume: 38 start-page: 1141 year: 1987 end-page: 1153 article-title: The contribution of an apoplastic pathway to sodium uptake by rice roots in saline conditions publication-title: Journal of Experimental Botany – volume: 213 start-page: 1604 year: 2017 end-page: 1610 article-title: The endodermis as a checkpoint for nutrients publication-title: The New Phytologist – volume: 29 start-page: 20 year: 2017 end-page: 38 article-title: Induced genome‐wide binding of three Arabidopsis WRKY transcription factors during early MAMP‐triggered immunity publication-title: Plant Cell – volume: 62 start-page: 1961 year: 2011 end-page: 1974 article-title: Water and solute permeabilities of Arabidopsis roots in relation to the amount and composition of aliphatic suberin publication-title: Journal of Experimental Botany – volume: 5 start-page: 320 year: 2010 end-page: 324 article-title: The Arabidopsis translatome cell‐specific mRNA atlas: mining suberin and cutin lipid monomer biosynthesis genes as an example for data application publication-title: Plant Signaling & Behavior – volume: 60 start-page: 324 year: 2005 end-page: 349 article-title: Salt tolerance and salinity effects on plants: a review publication-title: Ecotoxicology and Environmental Safety – volume: 5 start-page: 1 year: 2016 end-page: 15 article-title: Dynamics of jasmonate metabolism upon flowering and across leaf stress responses in publication-title: Plants – volume: 6 start-page: 1499 year: 2011 end-page: 1502 article-title: Casparian strip development and its potential function in salt tolerance publication-title: Plant Signaling & Behavior – volume: 37 start-page: 1656 year: 2014 end-page: 1671 article-title: Role of root hydrophobic barriers in salt exclusion of a mangrove plant publication-title: Plant, Cell & Environment – volume: 289 start-page: 765 year: 2014 end-page: 781 article-title: Transcriptome‐wide identification of bread wheat WRKY transcription factors in response to drought stress publication-title: Molecular Genetics and Genomics – volume: 7 year: 2017 article-title: A moso bamboo WRKY gene confers salinity tolerance in transgenic Arabidopsis plants publication-title: Scientific Reports – volume: 301 start-page: 653 year: 2003 end-page: 657 article-title: Genome‐wide insertional mutagenesis of publication-title: Science – volume: 62 start-page: 2918 year: 1984 end-page: 2933 article-title: Biochemistry and function of cutin and suberin publication-title: Canadian Journal of Botany – volume: 151 start-page: 1317 year: 2009 end-page: 1328 article-title: Identification of an Arabidopsis feruloyl‐coenzyme a transferase required for suberin synthesis publication-title: Plant Physiology – volume: 287 start-page: 6296 year: 2012 end-page: 6306 article-title: Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone Jasmonoyl‐isoleucine for catabolic turnover publication-title: The Journal of Biological Chemistry – volume: 4 start-page: R20 year: 2003 article-title: Characterizing the stress/defense transcriptome of Arabidopsis publication-title: General Biology – volume: 66 start-page: 2643 year: 2005 end-page: 2658 article-title: Apoplastic polyesters in Arabidopsis surface tissues‐a typical suberin and a particular cutin publication-title: Phytochemistry – volume: 16 start-page: 116 year: 2016 article-title: Drought‐responsive WRKY transcription factor genes and from wheat confer drought and/or heat resistance in Arabidopsis publication-title: BMC Plant Biology – volume: 150 start-page: 1831 year: 2009 end-page: 1843 article-title: CYP86B1 is required for very long chain omega‐hydroxyacid and alpha, omega ‐dicarboxylic acid synthesis in root and seed suberin polyester publication-title: Plant Physiology – volume: 179 start-page: 945 year: 2008 end-page: 963 article-title: Salinity tolerance in halophytes publication-title: The New Phytologist – volume: 43 start-page: 1925 year: 2020 end-page: 1943 article-title: The R2R3‐MYB transcription factor AtMYB49 modulates salt tolerance in Arabidopsis by modulating the cuticle formation and antioxidant defence publication-title: Plant, Cell & Environment – volume: 9 year: 2014 article-title: WRKY transcription factors: Jack of many trades in plants publication-title: Plant Signaling & Behavior – volume: 81 start-page: 405 year: 2003 end-page: 421 article-title: Current insights into the development, structure and chemistry of the endodermis and exodermis of roots publication-title: Canadian Journal of Botany – volume: 28 start-page: 121 year: 2005 end-page: 133 article-title: Blockage of apoplastic bypass‐flow of water in rice roots by insoluble salt precipitates analogous to a Pfeffer cell publication-title: Plant, Cell & Environment – volume: 184 start-page: 909 year: 2009 end-page: 917 article-title: Apoplastic barriers effectively block oxygen permeability across outer cell layers of rice roots under deoxygenated conditions: roles of apoplastic pores and of respiration publication-title: The New Phytologist – volume: 289 start-page: 29728 year: 2014 end-page: 29738 article-title: Endoplasmic reticulum‐associated inactivation of the hormone jasmonoyl‐L‐isoleucine by multiple members of the cytochrome P450 94 family in Arabidopsis publication-title: The Journal of Biological Chemistry – volume: 11 year: 2016 article-title: Functional characterization of CYP94‐genes and identification of a novel jasmonate catabolite in flowers publication-title: PLoS One – volume: 16 start-page: 735 year: 1998 end-page: 743 article-title: Floral dip: a simplified method for ‐mediated transformation of publication-title: The Plant Journal – volume: 149 start-page: 1050 year: 2009 end-page: 1060 article-title: CYP86A33‐targeted gene silencing in potato tuber alters suberin composition, distorts suberin lamellae, and impairs the periderm's water barrier function publication-title: Plant Physiology – volume: 10 start-page: 252 year: 2007 end-page: 259 article-title: Suberin‐a biopolyester forming apoplastic plant interfaces publication-title: Current Opinnion Plant Biology – volume: 189 start-page: 54 year: 2011 end-page: 81 article-title: Sodium transport in plants: a critical review publication-title: The New Phytologist – volume: 243 start-page: 688 year: 1998 end-page: 693 article-title: CYP86A1 from encodes a cytochrome P450‐dependent fatty acid omega‐hydroxylase publication-title: Biochemical and Biophysical Research Communications – volume: 59 start-page: 2347 year: 2008 end-page: 2360 article-title: The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid omega‐hydroxylase involved in suberin monomer biosynthesis publication-title: Journal of Experimental Botany – volume: 219 start-page: 216 year: 2018 end-page: 229 article-title: A molecular framework to study periderm formation in Arabidopsis publication-title: The New Phytologist – volume: 57 start-page: 80 year: 2009 end-page: 95 article-title: The DAISY gene from encodes a fatty acid elongase condensing enzyme involved in the biosynthesis of aliphatic suberin in roots and the chalaza‐micropyle region of seeds publication-title: The Plant Journal – volume: 59 start-page: 651 year: 2008 end-page: 681 article-title: Mechanisms of salinity tolerance publication-title: Annual Review of Plant Biology – volume: 71 start-page: 403 year: 2020 end-page: 433 article-title: Salt tolerance mechanisms of plants publication-title: Annual Review of Plant Biology – volume: 55 start-page: 327 year: 2004 end-page: 342 article-title: Crosstalk in the responses to abiotic and biotic stresses in : analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray publication-title: Plant Molecular Biology – volume: 28 start-page: 9 year: 2015 end-page: 15 article-title: Suberization ‐ the second life of an endodermal cell publication-title: Current Opinion in Plant Biology – volume: 93 start-page: 399 year: 2018 end-page: 412 article-title: A protocol for combining fluorescent proteins with histological stains for diverse cell wall components publication-title: The Plant Journal – volume: 108 start-page: 9298 year: 2011 end-page: 9303 article-title: Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl‐L‐isoleucine publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 56 start-page: 779 year: 2015 end-page: 789 article-title: Elevated levels of CYP94 family gene expression alleviate the jasmonate response and enhance salt tolerance in rice publication-title: Plant & Cell Physiology – volume: 109 start-page: 10101 year: 2012 end-page: 10106 article-title: Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 24 start-page: 199 year: 2010 end-page: 217 article-title: Salt tolerance mechanisms in mangroves: a review publication-title: Trees – year: 2013 – ident: e_1_2_8_46_1 doi: 10.1038/s41598-017-05170-x – ident: e_1_2_8_24_1 doi: 10.1016/j.phytochem.2005.09.027 – ident: e_1_2_8_29_1 doi: 10.1074/jbc.M111.316364 – ident: e_1_2_8_44_1 doi: 10.1080/15592324.2015.1046667 – ident: e_1_2_8_66_1 doi: 10.1002/9780470015902.a0002086.pub2 – ident: e_1_2_8_65_1 doi: 10.1111/j.1365-3040.2004.01245.x – ident: e_1_2_8_22_1 doi: 10.1111/j.1469-8137.2008.02531.x – ident: e_1_2_8_9_1 doi: 10.1111/nph.14140 – ident: e_1_2_8_71_1 doi: 10.1146/annurev-arplant-050718-100005 – ident: e_1_2_8_21_1 doi: 10.1007/s00344-003-0002-2 – ident: e_1_2_8_19_1 doi: 10.1111/tpj.14711 – ident: e_1_2_8_40_1 doi: 10.1104/pp.20.01054 – ident: e_1_2_8_41_1 doi: 10.1111/pce.12272 – ident: e_1_2_8_12_1 doi: 10.1023/B:PHYT.0000047810.10706.46 – ident: e_1_2_8_30_1 doi: 10.1093/jxb/ern101 – ident: e_1_2_8_43_1 doi: 10.1111/j.1469-8137.2010.03540.x – ident: e_1_2_8_4_1 doi: 10.1016/j.pbi.2015.08.004 – ident: e_1_2_8_5_1 doi: 10.1104/pp.24.1.1 – ident: e_1_2_8_20_1 doi: 10.1104/pp.109.141408 – ident: e_1_2_8_68_1 doi: 10.1104/pp.108.127183 – ident: e_1_2_8_77_1 doi: 10.1104/pp.104.038612 – ident: e_1_2_8_16_1 doi: 10.4161/psb.6.10.17054 – ident: e_1_2_8_51_1 doi: 10.1111/nph.15864 – ident: e_1_2_8_75_1 doi: 10.1038/s41598-017-10795-z – ident: e_1_2_8_39_1 doi: 10.1007/s00425-009-0930-6 – ident: e_1_2_8_67_1 doi: 10.1093/jexbot/50.337.1267 – ident: e_1_2_8_73_1 doi: 10.1007/s11104-020-04464-w – ident: e_1_2_8_72_1 doi: 10.1111/nph.15464 – ident: e_1_2_8_11_1 doi: 10.1006/bbrc.1998.8156 – ident: e_1_2_8_15_1 doi: 10.3109/10520299109110562 – ident: e_1_2_8_42_1 doi: 10.1038/s41598-017-10730-2 – ident: e_1_2_8_34_1 doi: 10.1073/pnas.1103542108 – ident: e_1_2_8_61_1 doi: 10.1016/j.tplants.2008.03.003 – ident: e_1_2_8_64_1 doi: 10.1111/j.1365-3040.2011.02318.x – ident: e_1_2_8_63_1 doi: 10.1111/j.1365-3040.2004.01245.x – ident: e_1_2_8_49_1 doi: 10.1104/pp.109.144907 – ident: e_1_2_8_31_1 doi: 10.1007/s11103-008-9408-3 – ident: e_1_2_8_47_1 doi: 10.1139/b03-042 – ident: e_1_2_8_2_1 doi: 10.1089/dna.2014.2349 – ident: e_1_2_8_69_1 doi: 10.3389/fpls.2016.00009 – ident: e_1_2_8_58_1 doi: 10.1007/s00468-010-0417-x – ident: e_1_2_8_60_1 doi: 10.1042/bj3420027 – ident: e_1_2_8_78_1 doi: 10.1093/jxb/38.7.1141 – ident: e_1_2_8_18_1 doi: 10.1046/j.1365-313x.1998.00343.x – ident: e_1_2_8_23_1 doi: 10.1016/j.pbi.2007.04.004 – ident: e_1_2_8_79_1 doi: 10.1038/nprot.2007.199 – ident: e_1_2_8_59_1 doi: 10.1111/j.1742-4658.2010.07948.x – ident: e_1_2_8_14_1 doi: 10.1371/journal.pone.0159875 – ident: e_1_2_8_3_1 doi: 10.1126/science.1086391 – ident: e_1_2_8_6_1 doi: 10.1093/jxb/erv190 – ident: e_1_2_8_26_1 doi: 10.3389/fpls.2012.00004 – ident: e_1_2_8_28_1 doi: 10.1186/s12870-016-0806-4 – ident: e_1_2_8_76_1 doi: 10.1111/nph.15128 – ident: e_1_2_8_52_1 doi: 10.4161/psb.5.3.11187 – ident: e_1_2_8_27_1 doi: 10.1104/pp.16.01614 – ident: e_1_2_8_37_1 doi: 10.1111/j.1469-8137.2009.03021.x – ident: e_1_2_8_35_1 doi: 10.1074/jbc.M114.603084 – ident: e_1_2_8_36_1 doi: 10.1111/tpj.12624 – ident: e_1_2_8_53_1 doi: 10.1007/s11103-004-0685-1 – ident: e_1_2_8_8_1 doi: 10.4161/psb.27700 – ident: e_1_2_8_62_1 doi: 10.1093/jxb/erq389 – ident: e_1_2_8_45_1 doi: 10.1093/pcp/pcv006 – ident: e_1_2_8_70_1 doi: 10.1111/tpj.13784 – ident: e_1_2_8_80_1 doi: 10.1111/pce.13784 – ident: e_1_2_8_10_1 doi: 10.1016/j.cell.2015.12.021 – start-page: e0167 volume-title: Apoplastic diffusion barriers in Arabidopsis year: 2013 ident: e_1_2_8_55_1 – ident: e_1_2_8_33_1 doi: 10.1139/b84-391 – ident: e_1_2_8_54_1 doi: 10.1073/pnas.1205726109 – ident: e_1_2_8_13_1 doi: 10.1105/tpc.16.00681 – ident: e_1_2_8_25_1 doi: 10.1111/j.1365-313X.2008.03674.x – ident: e_1_2_8_38_1 doi: 10.1093/jxb/err135 – ident: e_1_2_8_56_1 doi: 10.1007/s00438-014-0849-x – ident: e_1_2_8_74_1 doi: 10.3390/plants5010004 – ident: e_1_2_8_48_1 doi: 10.1186/gb-2003-4-3-r20 – ident: e_1_2_8_50_1 doi: 10.1111/j.1469-8137.2005.01487.x – ident: e_1_2_8_32_1 doi: 10.1093/pcp/pcr110 – ident: e_1_2_8_57_1 doi: 10.1016/j.ecoenv.2004.06.010 – ident: e_1_2_8_7_1 doi: 10.3389/fpls.2018.00801 – ident: e_1_2_8_17_1 doi: 10.1371/journal.pone.0143022 |
| SSID | ssj0016612 |
| Score | 2.528379 |
| Snippet | Salinity affects crop productivity worldwide and mangroves growing under high salinity exhibit adaptations such as enhanced root apoplastic barrier to survive... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1673 |
| SubjectTerms | Acids Adaptation Arabidopsis Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Avicennia officinalis Chromatin chromatin immunoprecipitation Crop production Cytochrome cytochrome P-450 Cytochrome P-450 Enzyme System - genetics Cytochrome P-450 Enzyme System - metabolism Cytochrome P450 Cytochromes P450 Dicarboxylic acids Electrophoretic mobility Endoplasmic reticulum gas chromatography Gene Expression Regulation, Plant Genes heterologous gene expression Hydroxy acids Immunoprecipitation Lipids Mangrove trees Mangroves mangroves (trees) Mass spectrometry Mass spectroscopy Monomers Mutants phenotype Phenotypes Plant Roots - genetics Plant Roots - metabolism Plants, Genetically Modified - metabolism Roots Salinity Salinity effects Salinity tolerance Salt tolerance Salt Tolerance - genetics Seedlings Shoots suberin Transcription Factors |
| Title | WRKY9 transcription factor regulates cytochrome P450 genes CYP94B3 and CYP86B1, leading to increased root suberin and salt tolerance in Arabidopsis |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fppl.13371 https://www.ncbi.nlm.nih.gov/pubmed/33619745 https://www.proquest.com/docview/2545823585 https://www.proquest.com/docview/2492661453 https://www.proquest.com/docview/2661005576 |
| Volume | 172 |
| WOSCitedRecordID | wos000627837900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1399-3054 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016612 issn: 0031-9317 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RhUMvtPS5hSK36oFDU23WceKIU5eyQipCESrqcopsx25XWiVonUXid_CHGTsPgWgREjcr-aJY8Ty-icczAF84Z0abeBQwF-lE6NMCIdMwKBLFZJgaw7TyzSaSkxM-m6XZGux3Z2Ga-hD9DzenGd5eOwUX0t5SciRp3zDAcufH18cot2wA6z9Op2fH_SYCup6mWDgNgxT9ZFtYyCXy9A_fdUf3OOZdyup9zvTFk2b7EjZbqkm-N7KxBWu6fAUbkwrp4NVruP59-vM8JbXzVZ3lIE33HbJsGtRrS9RVXam_rqQBySI2In-caSQH51kaTSgRZeHGPJ6EX8miSccndUXmpeOiVhcEeXlN7Eq6Q4YebsWiRshCu4YeGpE4PyHnRXVh5_YNnE0Pfx0cBW2HhkBRHoeBSUap4bQwqPk6lLjIgiWRlBh0K81NjNeESqmgQhvXO4EXyBAiZgqupdKxom9hUFalfg8EuYOmMhGKx0WEI6mpimKB5gHd6UiFQ9jrFipXbfly10VjkXdhDH7i3H_iIXzuoRdNzY5_gXa61c5btbX52G8jUgyhhvCpv40K53ZRRKmrFWJciUUkNYw-gEGAr24WD-FdI0n9TCjFmDWJ8A17XmD-P8U8y4794MPjodvwfOyybnxC8Q4M6uVKf4QNdVnP7XIXniUzvtvqyQ0VYRRv |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CEmgv6bvdNG3V0kMOdVhHsi1DL920S0q2iwkJTU5GkqV2YbHD2lvI7-gf7oz8oKEPCr0J-zMWmhnNN3rMALyWMnLWxeMgokhHoE8LlE7DoEhMpMPUucgaX2wimc_lxUWabcDb_i5Mmx9iWHAjy_DzNRk4LUj_ZOXI0g4wwqIL5FsC1Qj1e-v96fR8NuwioO9ps4XzMEjRUXaZhegkz_DxTX_0C8m8yVm905ne-b_u3oWdjmyyd6123IMNW96H7UmFhPD6AXz_fHpymbKGvFU_d7C2_g5btSXqbc3MdVOZr5TUgGUiGrMvNDmyo8ssFRPOVFlQW8aT8A1btgfyWVOxRUlstLYFQ2besHqt6Zqhh9dq2SBkaamkh0Uk9k_pRVFd1Yv6IZxPP5wdHQddjYbA4IiHgUvGqZO8cGj7NtQoZhUlQmsMu42VLsZnyqRccWUdVU-QBXIEEblCWm1sbPgj2Cyr0j4BhuzBcp0oI-NCYEtbbkSsSLKJHJtwBPu9pHLTJTCnOhrLvA9kcIhzP8QjeDVAr9qsHb8D7fXizjvDrfNDv5HIMYgawcvhNZoc7aOo0lZrxFCSRaQ1Ef8LBgE-v1k8gsetKg094Ryj1kTgH_a9xvy5i3mWzXxj99-hL-DW8dmnWT77OD95CrcP6QyOP168B5vNam2fwbb51izq1fPOXH4AF3QXdw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7CJpRe-n5sm7Zq6SGHOqwj2Zahl27SpSXLYkJDk5ORZKldWOxl7S3kd_QPd0Z-0NAHhd6E_RkPlmbmG2s0A_BayshZF0-CiCIdgT4tUDoNgyIxkQ5T5yJrfLOJZLGQFxdptgNv-7MwbX2I4YcbaYa316Tgdl24n7QcWdohRlh0gHxXUBOZEeyenM3O58MuAvqetlo4D4MUHWVXWYgyeYaHr_ujX0jmdc7qnc7s9v-JewdudWSTvWtXx13YseU92JtWSAiv7sP3z2enlylryFv1toO1_XfYpm1Rb2tmrprKfKWiBiwT0YR9IePIji-zVEw5U2VBYxlPwzds1Sbks6Ziy5LYaG0Lhsy8YfVW0zFDD6_VqkHIylJLD4tIlE_pZVGt62X9AM5n7z8dfwi6Hg2B4TIOA5dMUid54VD3bahxmlWUCK0x7DZWuhivKZNyxZV11D1BFsgRROQKabWxseEPYVRWpX0MDNmD5TpRRsaFwJG23IhYoYFAhzox4RgO-pnKTVfAnPporPI-kMFPnPtPPIZXA3TdVu34HWi_n-68U9w6P_IbiRyDqDG8HG6jytE-iipttUUMFVlEWhPxv2AQ4OubxWN41C6lQRLOMWpNBL7hwK-YP4uYZ9ncD578O_QF3MhOZvn84-L0Kdw8ohQcn128D6Nms7XPYM98a5b15nmnLT8Af_QW8g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WRKY9+transcription+factor+regulates+cytochrome+P450+genes+CYP94B3+and+CYP86B1%2C+leading+to+increased+root+suberin+and+salt+tolerance+in+Arabidopsis&rft.jtitle=Physiologia+plantarum&rft.au=Krishnamurthy%2C+Pannaga&rft.au=Vishal%2C+Bhushan&rft.au=Bhal%2C+Amrit&rft.au=Kumar%2C+Prakash+P.&rft.date=2021-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0031-9317&rft.eissn=1399-3054&rft.volume=172&rft.issue=3&rft.spage=1673&rft.epage=1687&rft_id=info:doi/10.1111%2Fppl.13371&rft.externalDBID=10.1111%252Fppl.13371&rft.externalDocID=PPL13371 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9317&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9317&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9317&client=summon |