WRKY9 transcription factor regulates cytochrome P450 genes CYP94B3 and CYP86B1, leading to increased root suberin and salt tolerance in Arabidopsis

Salinity affects crop productivity worldwide and mangroves growing under high salinity exhibit adaptations such as enhanced root apoplastic barrier to survive under such conditions. We have identified two cytochrome P450 family genes, AoCYP94B3 and AoCYP86B1 from the mangrove tree Avicennia officina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiologia plantarum Jg. 172; H. 3; S. 1673 - 1687
Hauptverfasser: Krishnamurthy, Pannaga, Vishal, Bhushan, Bhal, Amrit, Kumar, Prakash P.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford, UK Blackwell Publishing Ltd 01.07.2021
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0031-9317, 1399-3054, 1399-3054
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Salinity affects crop productivity worldwide and mangroves growing under high salinity exhibit adaptations such as enhanced root apoplastic barrier to survive under such conditions. We have identified two cytochrome P450 family genes, AoCYP94B3 and AoCYP86B1 from the mangrove tree Avicennia officinalis and characterized them using atcyp94b3 and atcyp86b1, which are mutants of their putative Arabidopsis orthologs and the corresponding complemented lines with A. officinalis genes. CYP94B3 and CYP86B1 transcripts were induced upon salt treatment in the roots of both A. officinalis and Arabidopsis. Both AoCYP94B3 and AoCYP86B1 were localized to the endoplasmic reticulum. Heterologous expression of 35S::AoCYP94B3 and 35S::AoCYP86B1 in their respective Arabidopsis mutants (atcyp94b3 and atcyp86b1) increased the salt tolerance of the transgenic seedlings by reducing the amount of Na+ accumulation in the shoots. Moreover, the reduced root suberin phenotype of atcyp94b3 was rescued in the 35S::AoCYP94B3;atcyp94b3 transgenic Arabidopsis seedlings. Gas‐chromatography and mass spectrometry analyses showed that the amount of suberin monomers (C‐16 ω‐hydroxy acids, C‐16 α, ω‐dicarboxylic acids and C‐20 eicosanol) were increased in the roots of 35S::AoCYP94B3;atcyp94b3 Arabidopsis seedlings. Using chromatin immunoprecipitation and electrophoretic mobility shift assays, we identified AtWRKY9 as the upstream regulator of AtCYP94B3 and AtCYP86B1 in Arabidopsis. In addition, atwrky9 showed suppressed expression of AtCYP94B3 and AtCYP86B1 transcripts, and reduced suberin in the roots. These results show that AtWRKY9 controls suberin deposition by regulating AtCYP94B3 and AtCYP86B1, leading to salt tolerance. Our data can be used for generating salt‐tolerant crop plants in the future.
AbstractList Salinity affects crop productivity worldwide and mangroves growing under high salinity exhibit adaptations such as enhanced root apoplastic barrier to survive under such conditions. We have identified two cytochrome P450 family genes, AoCYP94B3 and AoCYP86B1 from the mangrove tree Avicennia officinalis and characterized them using atcyp94b3 and atcyp86b1 , which are mutants of their putative Arabidopsis orthologs and the corresponding complemented lines with A. officinalis genes. CYP94B3 and CYP86B1 transcripts were induced upon salt treatment in the roots of both A. officinalis and Arabidopsis. Both AoCYP94B3 and AoCYP86B1 were localized to the endoplasmic reticulum. Heterologous expression of 35S::AoCYP94B3 and 35S::AoCYP86B1 in their respective Arabidopsis mutants ( atcyp94b3 and atcyp86b1 ) increased the salt tolerance of the transgenic seedlings by reducing the amount of Na + accumulation in the shoots. Moreover, the reduced root suberin phenotype of atcyp94b3 was rescued in the 35S::AoCYP94B3;atcyp94b3 transgenic Arabidopsis seedlings. Gas‐chromatography and mass spectrometry analyses showed that the amount of suberin monomers (C‐16 ω ‐hydroxy acids, C‐16 α , ω ‐dicarboxylic acids and C‐20 eicosanol) were increased in the roots of 35S::AoCYP94B3;atcyp94b3 Arabidopsis seedlings. Using chromatin immunoprecipitation and electrophoretic mobility shift assays, we identified AtWRKY9 as the upstream regulator of AtCYP94B3 and AtCYP86B1 in Arabidopsis. In addition, atwrky9 showed suppressed expression of AtCYP94B3 and AtCYP86B1 transcripts, and reduced suberin in the roots. These results show that AtWRKY9 controls suberin deposition by regulating AtCYP94B3 and AtCYP86B1 , leading to salt tolerance. Our data can be used for generating salt‐tolerant crop plants in the future.
Salinity affects crop productivity worldwide and mangroves growing under high salinity exhibit adaptations such as enhanced root apoplastic barrier to survive under such conditions. We have identified two cytochrome P450 family genes, AoCYP94B3 and AoCYP86B1 from the mangrove tree Avicennia officinalis and characterized them using atcyp94b3 and atcyp86b1, which are mutants of their putative Arabidopsis orthologs and the corresponding complemented lines with A. officinalis genes. CYP94B3 and CYP86B1 transcripts were induced upon salt treatment in the roots of both A. officinalis and Arabidopsis. Both AoCYP94B3 and AoCYP86B1 were localized to the endoplasmic reticulum. Heterologous expression of 35S::AoCYP94B3 and 35S::AoCYP86B1 in their respective Arabidopsis mutants (atcyp94b3 and atcyp86b1) increased the salt tolerance of the transgenic seedlings by reducing the amount of Na+ accumulation in the shoots. Moreover, the reduced root suberin phenotype of atcyp94b3 was rescued in the 35S::AoCYP94B3;atcyp94b3 transgenic Arabidopsis seedlings. Gas‐chromatography and mass spectrometry analyses showed that the amount of suberin monomers (C‐16 ω‐hydroxy acids, C‐16 α, ω‐dicarboxylic acids and C‐20 eicosanol) were increased in the roots of 35S::AoCYP94B3;atcyp94b3 Arabidopsis seedlings. Using chromatin immunoprecipitation and electrophoretic mobility shift assays, we identified AtWRKY9 as the upstream regulator of AtCYP94B3 and AtCYP86B1 in Arabidopsis. In addition, atwrky9 showed suppressed expression of AtCYP94B3 and AtCYP86B1 transcripts, and reduced suberin in the roots. These results show that AtWRKY9 controls suberin deposition by regulating AtCYP94B3 and AtCYP86B1, leading to salt tolerance. Our data can be used for generating salt‐tolerant crop plants in the future.
Salinity affects crop productivity worldwide and mangroves growing under high salinity exhibit adaptations such as enhanced root apoplastic barrier to survive under such conditions. We have identified two cytochrome P450 family genes, AoCYP94B3 and AoCYP86B1 from the mangrove tree Avicennia officinalis and characterized them using atcyp94b3 and atcyp86b1, which are mutants of their putative Arabidopsis orthologs and the corresponding complemented lines with A. officinalis genes. CYP94B3 and CYP86B1 transcripts were induced upon salt treatment in the roots of both A. officinalis and Arabidopsis. Both AoCYP94B3 and AoCYP86B1 were localized to the endoplasmic reticulum. Heterologous expression of 35S::AoCYP94B3 and 35S::AoCYP86B1 in their respective Arabidopsis mutants (atcyp94b3 and atcyp86b1) increased the salt tolerance of the transgenic seedlings by reducing the amount of Na⁺ accumulation in the shoots. Moreover, the reduced root suberin phenotype of atcyp94b3 was rescued in the 35S::AoCYP94B3;atcyp94b3 transgenic Arabidopsis seedlings. Gas‐chromatography and mass spectrometry analyses showed that the amount of suberin monomers (C‐16 ω‐hydroxy acids, C‐16 α, ω‐dicarboxylic acids and C‐20 eicosanol) were increased in the roots of 35S::AoCYP94B3;atcyp94b3 Arabidopsis seedlings. Using chromatin immunoprecipitation and electrophoretic mobility shift assays, we identified AtWRKY9 as the upstream regulator of AtCYP94B3 and AtCYP86B1 in Arabidopsis. In addition, atwrky9 showed suppressed expression of AtCYP94B3 and AtCYP86B1 transcripts, and reduced suberin in the roots. These results show that AtWRKY9 controls suberin deposition by regulating AtCYP94B3 and AtCYP86B1, leading to salt tolerance. Our data can be used for generating salt‐tolerant crop plants in the future.
Salinity affects crop productivity worldwide and mangroves growing under high salinity exhibit adaptations such as enhanced root apoplastic barrier to survive under such conditions. We have identified two cytochrome P450 family genes, AoCYP94B3 and AoCYP86B1 from the mangrove tree Avicennia officinalis and characterized them using atcyp94b3 and atcyp86b1, which are mutants of their putative Arabidopsis orthologs and the corresponding complemented lines with A. officinalis genes. CYP94B3 and CYP86B1 transcripts were induced upon salt treatment in the roots of both A. officinalis and Arabidopsis. Both AoCYP94B3 and AoCYP86B1 were localized to the endoplasmic reticulum. Heterologous expression of 35S::AoCYP94B3 and 35S::AoCYP86B1 in their respective Arabidopsis mutants (atcyp94b3 and atcyp86b1) increased the salt tolerance of the transgenic seedlings by reducing the amount of Na accumulation in the shoots. Moreover, the reduced root suberin phenotype of atcyp94b3 was rescued in the 35S::AoCYP94B3;atcyp94b3 transgenic Arabidopsis seedlings. Gas-chromatography and mass spectrometry analyses showed that the amount of suberin monomers (C-16 ω-hydroxy acids, C-16 α, ω-dicarboxylic acids and C-20 eicosanol) were increased in the roots of 35S::AoCYP94B3;atcyp94b3 Arabidopsis seedlings. Using chromatin immunoprecipitation and electrophoretic mobility shift assays, we identified AtWRKY9 as the upstream regulator of AtCYP94B3 and AtCYP86B1 in Arabidopsis. In addition, atwrky9 showed suppressed expression of AtCYP94B3 and AtCYP86B1 transcripts, and reduced suberin in the roots. These results show that AtWRKY9 controls suberin deposition by regulating AtCYP94B3 and AtCYP86B1, leading to salt tolerance. Our data can be used for generating salt-tolerant crop plants in the future.
Salinity affects crop productivity worldwide and mangroves growing under high salinity exhibit adaptations such as enhanced root apoplastic barrier to survive under such conditions. We have identified two cytochrome P450 family genes, AoCYP94B3 and AoCYP86B1 from the mangrove tree Avicennia officinalis and characterized them using atcyp94b3 and atcyp86b1, which are mutants of their putative Arabidopsis orthologs and the corresponding complemented lines with A. officinalis genes. CYP94B3 and CYP86B1 transcripts were induced upon salt treatment in the roots of both A. officinalis and Arabidopsis. Both AoCYP94B3 and AoCYP86B1 were localized to the endoplasmic reticulum. Heterologous expression of 35S::AoCYP94B3 and 35S::AoCYP86B1 in their respective Arabidopsis mutants (atcyp94b3 and atcyp86b1) increased the salt tolerance of the transgenic seedlings by reducing the amount of Na+ accumulation in the shoots. Moreover, the reduced root suberin phenotype of atcyp94b3 was rescued in the 35S::AoCYP94B3;atcyp94b3 transgenic Arabidopsis seedlings. Gas-chromatography and mass spectrometry analyses showed that the amount of suberin monomers (C-16 ω-hydroxy acids, C-16 α, ω-dicarboxylic acids and C-20 eicosanol) were increased in the roots of 35S::AoCYP94B3;atcyp94b3 Arabidopsis seedlings. Using chromatin immunoprecipitation and electrophoretic mobility shift assays, we identified AtWRKY9 as the upstream regulator of AtCYP94B3 and AtCYP86B1 in Arabidopsis. In addition, atwrky9 showed suppressed expression of AtCYP94B3 and AtCYP86B1 transcripts, and reduced suberin in the roots. These results show that AtWRKY9 controls suberin deposition by regulating AtCYP94B3 and AtCYP86B1, leading to salt tolerance. Our data can be used for generating salt-tolerant crop plants in the future.Salinity affects crop productivity worldwide and mangroves growing under high salinity exhibit adaptations such as enhanced root apoplastic barrier to survive under such conditions. We have identified two cytochrome P450 family genes, AoCYP94B3 and AoCYP86B1 from the mangrove tree Avicennia officinalis and characterized them using atcyp94b3 and atcyp86b1, which are mutants of their putative Arabidopsis orthologs and the corresponding complemented lines with A. officinalis genes. CYP94B3 and CYP86B1 transcripts were induced upon salt treatment in the roots of both A. officinalis and Arabidopsis. Both AoCYP94B3 and AoCYP86B1 were localized to the endoplasmic reticulum. Heterologous expression of 35S::AoCYP94B3 and 35S::AoCYP86B1 in their respective Arabidopsis mutants (atcyp94b3 and atcyp86b1) increased the salt tolerance of the transgenic seedlings by reducing the amount of Na+ accumulation in the shoots. Moreover, the reduced root suberin phenotype of atcyp94b3 was rescued in the 35S::AoCYP94B3;atcyp94b3 transgenic Arabidopsis seedlings. Gas-chromatography and mass spectrometry analyses showed that the amount of suberin monomers (C-16 ω-hydroxy acids, C-16 α, ω-dicarboxylic acids and C-20 eicosanol) were increased in the roots of 35S::AoCYP94B3;atcyp94b3 Arabidopsis seedlings. Using chromatin immunoprecipitation and electrophoretic mobility shift assays, we identified AtWRKY9 as the upstream regulator of AtCYP94B3 and AtCYP86B1 in Arabidopsis. In addition, atwrky9 showed suppressed expression of AtCYP94B3 and AtCYP86B1 transcripts, and reduced suberin in the roots. These results show that AtWRKY9 controls suberin deposition by regulating AtCYP94B3 and AtCYP86B1, leading to salt tolerance. Our data can be used for generating salt-tolerant crop plants in the future.
Author Vishal, Bhushan
Bhal, Amrit
Kumar, Prakash P.
Krishnamurthy, Pannaga
Author_xml – sequence: 1
  givenname: Pannaga
  surname: Krishnamurthy
  fullname: Krishnamurthy, Pannaga
  organization: National University of Singapore
– sequence: 2
  givenname: Bhushan
  surname: Vishal
  fullname: Vishal, Bhushan
  organization: Nanyang Technological University
– sequence: 3
  givenname: Amrit
  surname: Bhal
  fullname: Bhal, Amrit
  organization: National University of Singapore
– sequence: 4
  givenname: Prakash P.
  orcidid: 0000-0002-0963-1664
  surname: Kumar
  fullname: Kumar, Prakash P.
  email: prakash.kumar@nus.edu.sg
  organization: National University of Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33619745$$D View this record in MEDLINE/PubMed
BookMark eNqF0d1uFCEUB3Biauy2euELGBJvNHFaGGBmuGw3fsVN3BiN6RVhmDMrDQsjMDH7HL6wbHd702jkBnLyO4fA_wyd-OABoeeUXNCyLqfJXVDGWvoILSiTsmJE8BO0IITRSjLanqKzlG4JoU1D6yfolLGGypaLBfr9_cunG4lz1D6ZaKdsg8ejNjlEHGEzO50hYbPLwfyIYQt4zQXBG_ClurxZS37NsPbD_tw11_QNdqAH6zc4B2y9iaATDDiGkHGae4jW3_GkXS7EQbnXQJH4KureDmFKNj1Fj0ftEjw77ufo27u3X5cfqtXn9x-XV6vKsK6h1dgSOXZsGHktgPa9pFq0vO8Jbwx0Y1Nq2kimmYaxI6Luhpp1XIxDB72BxrBz9Oowd4rh5wwpq61NBpzTHsKcVF1-ixAh2ub_lMu95oIV-vIBvQ1z9OUhqhZcdDUTnSjqxVHN_RYGNUW71XGn7pMp4PIATAwpRRiVsVnv4ylZWacoUfvsVcle3WVfOl4_6Lgf-jd7nP7LOtj9G6r1enXo-APFMryf
CitedBy_id crossref_primary_10_1093_plphys_kiac360
crossref_primary_10_1111_tpj_70244
crossref_primary_10_1111_brv_13172
crossref_primary_10_1111_nph_19588
crossref_primary_10_3389_fpls_2023_1118313
crossref_primary_10_3389_fpls_2025_1624136
crossref_primary_10_1007_s11103_022_01312_6
crossref_primary_10_1111_tpj_70469
crossref_primary_10_3390_agriculture15161733
crossref_primary_10_1186_s12862_024_02304_4
crossref_primary_10_3389_fpls_2022_1095602
crossref_primary_10_1093_jxb_eraf161
crossref_primary_10_1111_tpj_15914
crossref_primary_10_1016_j_plantsci_2023_111874
crossref_primary_10_1111_pbi_70199
crossref_primary_10_1016_j_plantsci_2024_112300
crossref_primary_10_1007_s00299_024_03215_w
crossref_primary_10_1016_j_postharvbio_2024_113127
crossref_primary_10_3390_jox13030026
crossref_primary_10_1007_s00299_025_03486_x
crossref_primary_10_1016_j_pbi_2021_102153
crossref_primary_10_1111_nph_18202
crossref_primary_10_1016_j_foodchem_2023_135847
crossref_primary_10_3390_plants11030392
crossref_primary_10_1007_s12374_025_09471_x
crossref_primary_10_1016_j_jplph_2023_153921
crossref_primary_10_1016_j_hpj_2023_01_012
crossref_primary_10_1016_j_isci_2021_103547
crossref_primary_10_1007_s00253_023_12441_3
crossref_primary_10_1016_j_plaphy_2025_110388
crossref_primary_10_1186_s12864_022_08605_6
crossref_primary_10_3390_genes14020240
crossref_primary_10_1016_j_plantsci_2023_111841
crossref_primary_10_1111_ppl_13765
crossref_primary_10_1186_s12870_024_05192_4
crossref_primary_10_1038_s41467_024_54112_5
crossref_primary_10_1186_s12870_023_04393_7
crossref_primary_10_3390_plants12091890
Cites_doi 10.1038/s41598-017-05170-x
10.1016/j.phytochem.2005.09.027
10.1074/jbc.M111.316364
10.1080/15592324.2015.1046667
10.1002/9780470015902.a0002086.pub2
10.1111/j.1365-3040.2004.01245.x
10.1111/j.1469-8137.2008.02531.x
10.1111/nph.14140
10.1146/annurev-arplant-050718-100005
10.1007/s00344-003-0002-2
10.1111/tpj.14711
10.1104/pp.20.01054
10.1111/pce.12272
10.1023/B:PHYT.0000047810.10706.46
10.1093/jxb/ern101
10.1111/j.1469-8137.2010.03540.x
10.1016/j.pbi.2015.08.004
10.1104/pp.24.1.1
10.1104/pp.109.141408
10.1104/pp.108.127183
10.1104/pp.104.038612
10.4161/psb.6.10.17054
10.1111/nph.15864
10.1038/s41598-017-10795-z
10.1007/s00425-009-0930-6
10.1093/jexbot/50.337.1267
10.1007/s11104-020-04464-w
10.1111/nph.15464
10.1006/bbrc.1998.8156
10.3109/10520299109110562
10.1038/s41598-017-10730-2
10.1073/pnas.1103542108
10.1016/j.tplants.2008.03.003
10.1111/j.1365-3040.2011.02318.x
10.1104/pp.109.144907
10.1007/s11103-008-9408-3
10.1139/b03-042
10.1089/dna.2014.2349
10.3389/fpls.2016.00009
10.1007/s00468-010-0417-x
10.1042/bj3420027
10.1093/jxb/38.7.1141
10.1046/j.1365-313x.1998.00343.x
10.1016/j.pbi.2007.04.004
10.1038/nprot.2007.199
10.1111/j.1742-4658.2010.07948.x
10.1371/journal.pone.0159875
10.1126/science.1086391
10.1093/jxb/erv190
10.3389/fpls.2012.00004
10.1186/s12870-016-0806-4
10.1111/nph.15128
10.4161/psb.5.3.11187
10.1104/pp.16.01614
10.1111/j.1469-8137.2009.03021.x
10.1074/jbc.M114.603084
10.1111/tpj.12624
10.1007/s11103-004-0685-1
10.4161/psb.27700
10.1093/jxb/erq389
10.1093/pcp/pcv006
10.1111/tpj.13784
10.1111/pce.13784
10.1016/j.cell.2015.12.021
10.1139/b84-391
10.1073/pnas.1205726109
10.1105/tpc.16.00681
10.1111/j.1365-313X.2008.03674.x
10.1093/jxb/err135
10.1007/s00438-014-0849-x
10.3390/plants5010004
10.1186/gb-2003-4-3-r20
10.1111/j.1469-8137.2005.01487.x
10.1093/pcp/pcr110
10.1016/j.ecoenv.2004.06.010
10.3389/fpls.2018.00801
10.1371/journal.pone.0143022
ContentType Journal Article
Copyright 2021 Scandinavian Plant Physiology Society
2021 Scandinavian Plant Physiology Society.
Copyright_xml – notice: 2021 Scandinavian Plant Physiology Society
– notice: 2021 Scandinavian Plant Physiology Society.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7ST
8FD
C1K
FR3
P64
RC3
SOI
7X8
7S9
L.6
DOI 10.1111/ppl.13371
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Engineering Research Database
Ecology Abstracts
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Genetics Abstracts
AGRICOLA
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1399-3054
EndPage 1687
ExternalDocumentID 33619745
10_1111_ppl_13371
PPL13371
Genre article
Journal Article
GrantInformation_xml – fundername: National Water Agency
– fundername: National Research Foundation, Singapore
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29O
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBTR
ACBWZ
ACCFJ
ACCZN
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
TWZ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
ABUFD
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7ST
8FD
C1K
FR3
P64
RC3
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c3861-f709f83df425e1bb91a574bb046ce8f6e1bac93a3aef80528d23845fd8ebce6c3
IEDL.DBID DRFUL
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000627837900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-9317
1399-3054
IngestDate Fri Jul 11 18:30:17 EDT 2025
Thu Oct 02 04:38:39 EDT 2025
Fri Jul 25 12:16:51 EDT 2025
Mon Jul 21 06:05:52 EDT 2025
Sat Nov 29 04:19:58 EST 2025
Tue Nov 18 22:17:52 EST 2025
Wed Jan 22 16:28:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License 2021 Scandinavian Plant Physiology Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3861-f709f83df425e1bb91a574bb046ce8f6e1bac93a3aef80528d23845fd8ebce6c3
Notes Funding information
National Water Agency; National Research Foundation, Singapore
Edited by B. Huang
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0963-1664
PMID 33619745
PQID 2545823585
PQPubID 1096353
PageCount 15
ParticipantIDs proquest_miscellaneous_2661005576
proquest_miscellaneous_2492661453
proquest_journals_2545823585
pubmed_primary_33619745
crossref_citationtrail_10_1111_ppl_13371
crossref_primary_10_1111_ppl_13371
wiley_primary_10_1111_ppl_13371_PPL13371
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
2021-Jul
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Denmark
– name: Malden
PublicationTitle Physiologia plantarum
PublicationTitleAlternate Physiol Plant
PublicationYear 2021
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References 1984; 62
2017; 7
2011; 278
2012; 287
2011; 62
2004; 3
2011; 52
2020; 448
2009; 150
2009; 151
2005; 60
2009; 230
2005; 28
2005; 66
1987; 38
1998; 16
2018; 9
1949; 24
2009; 57
2010; 24
2004; 135
2003; 4
2018; 219
2007; 2
1999; 50
2020; 43
2014; 9
1998; 243
2010; 5
2014; 289
2015; 56
2009; 69
2003; 81
2020; 184
2011
2015; 10
2008; 59
2020; 225
2008; 13
2017; 173
2008; 98
2017; 29
2011; 34
2020; 102
1999; 342
2007; 10
2011; 6
2016; 16
2017; 213
2016; 164
2019; 221
2012; 109
2016; 11
2004; 55
2016; 5
2016; 7
2015; 28
2012; 3
2011; 108
2014; 80
1991; 66
2020; 71
2015; 66
2014; 37
2009; 184
2008; 179
2013
2018; 93
2003; 301
2011; 189
2014; 33
2003; 21
2009; 149
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
Nawrath C. (e_1_2_8_55_1) 2013
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – year: 2011
– volume: 10
  year: 2015
  article-title: The cotton WRKY gene positively regulates salt and drought stress tolerance in transgenic
  publication-title: PLoS One
– volume: 448
  start-page: 603
  year: 2020
  end-page: 620
  article-title: Aliphatic suberin confers salt tolerance to Arabidopsis by limiting Na influx, K efflux and water backflow
  publication-title: Plant and Soil
– volume: 62
  start-page: 4215
  year: 2011
  end-page: 4228
  article-title: Root apoplastic barriers block Na transport to shoots in rice ( L.)
  publication-title: Journal of Experimental Botany
– volume: 98
  start-page: 1179
  year: 2008
  end-page: 1189
  article-title: Soybean root suberin and partial resistance to root rot caused by Phytophthora sojae
  publication-title: Phytopathology
– volume: 21
  start-page: 335
  year: 2003
  end-page: 351
  article-title: Root endodermis and exodermis: structure, function, and responses to the environment
  publication-title: Journal of Plant Growth Regulation
– volume: 80
  start-page: 216
  year: 2014
  end-page: 229
  article-title: AtMYB41 activates ectopic suberin synthesis and assembly in multiple palnt species and cell types
  publication-title: The Plant Journal
– volume: 10
  year: 2015
  article-title: Overexpression of a CYP94 family gene CYP94C2b increases internode length and plant height in rice
  publication-title: Plant Signaling & Behavior
– volume: 135
  start-page: 507
  year: 2004
  end-page: 515
  article-title: Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene ‐delta‐cadinene synthase‐a
  publication-title: Plant Physiology
– volume: 52
  start-page: 1757
  year: 2011
  end-page: 1765
  article-title: Arabidopsis CYP94B3 encodes jasmonyl‐L‐isoleucine 12‐hydroxylase, a key enzyme in the oxidative catabolism of jasmonate
  publication-title: Plant & Cell Physiology
– volume: 225
  start-page: 1072
  year: 2020
  end-page: 1090
  article-title: Energy costs of salt tolerance in crop plants
  publication-title: The New Phytologist
– volume: 342
  start-page: 27
  issue: Pt 1
  year: 1999
  end-page: 32
  article-title: Production in vitro by the cytochrome P450 CYP94A1 of major C18 cutin monomers and potential messengers in plant‐pathogen interactions: enantioselectivity studies
  publication-title: The Biochemical Journal
– volume: 3
  start-page: 4
  year: 2012
  article-title: Suberin goes genomics: use of a short living plant to investigate a long lasting polymer
  publication-title: Frontiers in Plant Science
– volume: 7
  start-page: 4799
  year: 2017
  article-title: Chrysanthemum WRKY gene DgWRKY5 enhances tolerance to salt stress in transgenic chrysanthemum
  publication-title: Scientific Reports
– volume: 184
  start-page: 2199
  year: 2020
  end-page: 2215
  article-title: Regulation of a cytochrome P450 gene CYP94B1 by WRKY33 transcription factor controls apoplastic barrier formation in roots to confer salt tolerance
  publication-title: Plant Physiology
– volume: 164
  start-page: 447
  year: 2016
  end-page: 459
  article-title: Adaptation of root function by nutrient‐induced plasticity of endodermal differentiation
  publication-title: Cell
– volume: 13
  start-page: 236
  year: 2008
  end-page: 246
  article-title: Building lipid barriers: biosynthesis of cutin and suberin
  publication-title: Trends in Plant Science
– volume: 69
  start-page: 91
  year: 2009
  end-page: 105
  article-title: Functional characterization of Arabidopsis NaCl‐inducible WRKY25 and WRKY33 transcription factors in abiotic stresses
  publication-title: Plant Molecular Biology
– volume: 34
  start-page: 1223
  year: 2011
  end-page: 1240
  article-title: Stagnant deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice ( L.) roots
  publication-title: Plant, Cell & Environment
– volume: 66
  start-page: 3879
  year: 2015
  end-page: 3892
  article-title: CYP94‐mediated jasmonoyl‐isoleucine hormone oxidation shapes jasmonate profiles and attenuates defence responses to infection
  publication-title: Journal of Experimental Botany
– volume: 33
  start-page: 503
  year: 2014
  end-page: 513
  article-title: Molecular cloning and characterization of a group II WRKY transcription factor from , an important biofuel crop
  publication-title: DNA Cell Biol
– volume: 278
  start-page: 195
  year: 2011
  end-page: 205
  article-title: Cytochrome P450 metabolizing fatty acids in plants: characterization and physiological roles
  publication-title: The FEBS Journal
– volume: 173
  start-page: 1045
  year: 2017
  end-page: 1058
  article-title: The MYB107 transcription factor positively regulates suberin biosynthesis
  publication-title: Plant Physiology
– volume: 221
  start-page: 1369
  year: 2019
  end-page: 1386
  article-title: OsTPS8 controls yield‐related traits and confers salt stress tolerance in rice by enhancing suberin deposition
  publication-title: The New Phytologist
– volume: 230
  start-page: 119
  year: 2009
  end-page: 134
  article-title: The role of root apoplastic transport barriers in salt tolerance of rice ( L.)
  publication-title: Planta
– volume: 3
  start-page: 113
  year: 2004
  end-page: 142
  article-title: Oxidases, peroxidases and hydrogen peroxide: the suberin connection
  publication-title: Phytochemistry Reviews
– volume: 50
  start-page: 1267
  year: 1999
  end-page: 1280
  article-title: Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls
  publication-title: Journal of Experimental Botany
– volume: 102
  start-page: 431
  year: 2020
  end-page: 447
  article-title: SUBERMAN regulates developmental suberization of the Arabidopsis root endodermis
  publication-title: The Plant Journal
– volume: 66
  start-page: 111
  year: 1991
  end-page: 116
  article-title: Efficient lipid staining in plant material with Sudan red 7B or Fluorol yellow 088 in polyethylene glycol‐glycerol
  publication-title: Biotechnic and Histochem
– volume: 2
  start-page: 1565
  year: 2007
  end-page: 1572
  article-title: Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis
  publication-title: Nature Protocols
– volume: 9
  start-page: 801
  year: 2018
  article-title: The role of tomato WRKY genes in plant responses to combined abiotic and biotic stresses
  publication-title: Frontiers in Plant Science
– volume: 7
  year: 2017
  article-title: Transcriptomics analysis of salt stress tolerance in the roots of the mangrove
  publication-title: Scientific Reports
– volume: 24
  start-page: 1
  year: 1949
  end-page: 15
  article-title: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in
  publication-title: Plant Physiology
– volume: 7
  start-page: 9
  year: 2016
  article-title: Global analysis of WRKY genes and their response to dehydration and Salt stress in soybean
  publication-title: Frontiers in Plant Science
– volume: 38
  start-page: 1141
  year: 1987
  end-page: 1153
  article-title: The contribution of an apoplastic pathway to sodium uptake by rice roots in saline conditions
  publication-title: Journal of Experimental Botany
– volume: 213
  start-page: 1604
  year: 2017
  end-page: 1610
  article-title: The endodermis as a checkpoint for nutrients
  publication-title: The New Phytologist
– volume: 29
  start-page: 20
  year: 2017
  end-page: 38
  article-title: Induced genome‐wide binding of three Arabidopsis WRKY transcription factors during early MAMP‐triggered immunity
  publication-title: Plant Cell
– volume: 62
  start-page: 1961
  year: 2011
  end-page: 1974
  article-title: Water and solute permeabilities of Arabidopsis roots in relation to the amount and composition of aliphatic suberin
  publication-title: Journal of Experimental Botany
– volume: 5
  start-page: 320
  year: 2010
  end-page: 324
  article-title: The Arabidopsis translatome cell‐specific mRNA atlas: mining suberin and cutin lipid monomer biosynthesis genes as an example for data application
  publication-title: Plant Signaling & Behavior
– volume: 60
  start-page: 324
  year: 2005
  end-page: 349
  article-title: Salt tolerance and salinity effects on plants: a review
  publication-title: Ecotoxicology and Environmental Safety
– volume: 5
  start-page: 1
  year: 2016
  end-page: 15
  article-title: Dynamics of jasmonate metabolism upon flowering and across leaf stress responses in
  publication-title: Plants
– volume: 6
  start-page: 1499
  year: 2011
  end-page: 1502
  article-title: Casparian strip development and its potential function in salt tolerance
  publication-title: Plant Signaling & Behavior
– volume: 37
  start-page: 1656
  year: 2014
  end-page: 1671
  article-title: Role of root hydrophobic barriers in salt exclusion of a mangrove plant
  publication-title: Plant, Cell & Environment
– volume: 289
  start-page: 765
  year: 2014
  end-page: 781
  article-title: Transcriptome‐wide identification of bread wheat WRKY transcription factors in response to drought stress
  publication-title: Molecular Genetics and Genomics
– volume: 7
  year: 2017
  article-title: A moso bamboo WRKY gene confers salinity tolerance in transgenic Arabidopsis plants
  publication-title: Scientific Reports
– volume: 301
  start-page: 653
  year: 2003
  end-page: 657
  article-title: Genome‐wide insertional mutagenesis of
  publication-title: Science
– volume: 62
  start-page: 2918
  year: 1984
  end-page: 2933
  article-title: Biochemistry and function of cutin and suberin
  publication-title: Canadian Journal of Botany
– volume: 151
  start-page: 1317
  year: 2009
  end-page: 1328
  article-title: Identification of an Arabidopsis feruloyl‐coenzyme a transferase required for suberin synthesis
  publication-title: Plant Physiology
– volume: 287
  start-page: 6296
  year: 2012
  end-page: 6306
  article-title: Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone Jasmonoyl‐isoleucine for catabolic turnover
  publication-title: The Journal of Biological Chemistry
– volume: 4
  start-page: R20
  year: 2003
  article-title: Characterizing the stress/defense transcriptome of Arabidopsis
  publication-title: General Biology
– volume: 66
  start-page: 2643
  year: 2005
  end-page: 2658
  article-title: Apoplastic polyesters in Arabidopsis surface tissues‐a typical suberin and a particular cutin
  publication-title: Phytochemistry
– volume: 16
  start-page: 116
  year: 2016
  article-title: Drought‐responsive WRKY transcription factor genes and from wheat confer drought and/or heat resistance in Arabidopsis
  publication-title: BMC Plant Biology
– volume: 150
  start-page: 1831
  year: 2009
  end-page: 1843
  article-title: CYP86B1 is required for very long chain omega‐hydroxyacid and alpha, omega ‐dicarboxylic acid synthesis in root and seed suberin polyester
  publication-title: Plant Physiology
– volume: 179
  start-page: 945
  year: 2008
  end-page: 963
  article-title: Salinity tolerance in halophytes
  publication-title: The New Phytologist
– volume: 43
  start-page: 1925
  year: 2020
  end-page: 1943
  article-title: The R2R3‐MYB transcription factor AtMYB49 modulates salt tolerance in Arabidopsis by modulating the cuticle formation and antioxidant defence
  publication-title: Plant, Cell & Environment
– volume: 9
  year: 2014
  article-title: WRKY transcription factors: Jack of many trades in plants
  publication-title: Plant Signaling & Behavior
– volume: 81
  start-page: 405
  year: 2003
  end-page: 421
  article-title: Current insights into the development, structure and chemistry of the endodermis and exodermis of roots
  publication-title: Canadian Journal of Botany
– volume: 28
  start-page: 121
  year: 2005
  end-page: 133
  article-title: Blockage of apoplastic bypass‐flow of water in rice roots by insoluble salt precipitates analogous to a Pfeffer cell
  publication-title: Plant, Cell & Environment
– volume: 184
  start-page: 909
  year: 2009
  end-page: 917
  article-title: Apoplastic barriers effectively block oxygen permeability across outer cell layers of rice roots under deoxygenated conditions: roles of apoplastic pores and of respiration
  publication-title: The New Phytologist
– volume: 289
  start-page: 29728
  year: 2014
  end-page: 29738
  article-title: Endoplasmic reticulum‐associated inactivation of the hormone jasmonoyl‐L‐isoleucine by multiple members of the cytochrome P450 94 family in Arabidopsis
  publication-title: The Journal of Biological Chemistry
– volume: 11
  year: 2016
  article-title: Functional characterization of CYP94‐genes and identification of a novel jasmonate catabolite in flowers
  publication-title: PLoS One
– volume: 16
  start-page: 735
  year: 1998
  end-page: 743
  article-title: Floral dip: a simplified method for ‐mediated transformation of
  publication-title: The Plant Journal
– volume: 149
  start-page: 1050
  year: 2009
  end-page: 1060
  article-title: CYP86A33‐targeted gene silencing in potato tuber alters suberin composition, distorts suberin lamellae, and impairs the periderm's water barrier function
  publication-title: Plant Physiology
– volume: 10
  start-page: 252
  year: 2007
  end-page: 259
  article-title: Suberin‐a biopolyester forming apoplastic plant interfaces
  publication-title: Current Opinnion Plant Biology
– volume: 189
  start-page: 54
  year: 2011
  end-page: 81
  article-title: Sodium transport in plants: a critical review
  publication-title: The New Phytologist
– volume: 243
  start-page: 688
  year: 1998
  end-page: 693
  article-title: CYP86A1 from encodes a cytochrome P450‐dependent fatty acid omega‐hydroxylase
  publication-title: Biochemical and Biophysical Research Communications
– volume: 59
  start-page: 2347
  year: 2008
  end-page: 2360
  article-title: The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid omega‐hydroxylase involved in suberin monomer biosynthesis
  publication-title: Journal of Experimental Botany
– volume: 219
  start-page: 216
  year: 2018
  end-page: 229
  article-title: A molecular framework to study periderm formation in Arabidopsis
  publication-title: The New Phytologist
– volume: 57
  start-page: 80
  year: 2009
  end-page: 95
  article-title: The DAISY gene from encodes a fatty acid elongase condensing enzyme involved in the biosynthesis of aliphatic suberin in roots and the chalaza‐micropyle region of seeds
  publication-title: The Plant Journal
– volume: 59
  start-page: 651
  year: 2008
  end-page: 681
  article-title: Mechanisms of salinity tolerance
  publication-title: Annual Review of Plant Biology
– volume: 71
  start-page: 403
  year: 2020
  end-page: 433
  article-title: Salt tolerance mechanisms of plants
  publication-title: Annual Review of Plant Biology
– volume: 55
  start-page: 327
  year: 2004
  end-page: 342
  article-title: Crosstalk in the responses to abiotic and biotic stresses in : analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray
  publication-title: Plant Molecular Biology
– volume: 28
  start-page: 9
  year: 2015
  end-page: 15
  article-title: Suberization ‐ the second life of an endodermal cell
  publication-title: Current Opinion in Plant Biology
– volume: 93
  start-page: 399
  year: 2018
  end-page: 412
  article-title: A protocol for combining fluorescent proteins with histological stains for diverse cell wall components
  publication-title: The Plant Journal
– volume: 108
  start-page: 9298
  year: 2011
  end-page: 9303
  article-title: Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl‐L‐isoleucine
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 56
  start-page: 779
  year: 2015
  end-page: 789
  article-title: Elevated levels of CYP94 family gene expression alleviate the jasmonate response and enhance salt tolerance in rice
  publication-title: Plant & Cell Physiology
– volume: 109
  start-page: 10101
  year: 2012
  end-page: 10106
  article-title: Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 24
  start-page: 199
  year: 2010
  end-page: 217
  article-title: Salt tolerance mechanisms in mangroves: a review
  publication-title: Trees
– year: 2013
– ident: e_1_2_8_46_1
  doi: 10.1038/s41598-017-05170-x
– ident: e_1_2_8_24_1
  doi: 10.1016/j.phytochem.2005.09.027
– ident: e_1_2_8_29_1
  doi: 10.1074/jbc.M111.316364
– ident: e_1_2_8_44_1
  doi: 10.1080/15592324.2015.1046667
– ident: e_1_2_8_66_1
  doi: 10.1002/9780470015902.a0002086.pub2
– ident: e_1_2_8_65_1
  doi: 10.1111/j.1365-3040.2004.01245.x
– ident: e_1_2_8_22_1
  doi: 10.1111/j.1469-8137.2008.02531.x
– ident: e_1_2_8_9_1
  doi: 10.1111/nph.14140
– ident: e_1_2_8_71_1
  doi: 10.1146/annurev-arplant-050718-100005
– ident: e_1_2_8_21_1
  doi: 10.1007/s00344-003-0002-2
– ident: e_1_2_8_19_1
  doi: 10.1111/tpj.14711
– ident: e_1_2_8_40_1
  doi: 10.1104/pp.20.01054
– ident: e_1_2_8_41_1
  doi: 10.1111/pce.12272
– ident: e_1_2_8_12_1
  doi: 10.1023/B:PHYT.0000047810.10706.46
– ident: e_1_2_8_30_1
  doi: 10.1093/jxb/ern101
– ident: e_1_2_8_43_1
  doi: 10.1111/j.1469-8137.2010.03540.x
– ident: e_1_2_8_4_1
  doi: 10.1016/j.pbi.2015.08.004
– ident: e_1_2_8_5_1
  doi: 10.1104/pp.24.1.1
– ident: e_1_2_8_20_1
  doi: 10.1104/pp.109.141408
– ident: e_1_2_8_68_1
  doi: 10.1104/pp.108.127183
– ident: e_1_2_8_77_1
  doi: 10.1104/pp.104.038612
– ident: e_1_2_8_16_1
  doi: 10.4161/psb.6.10.17054
– ident: e_1_2_8_51_1
  doi: 10.1111/nph.15864
– ident: e_1_2_8_75_1
  doi: 10.1038/s41598-017-10795-z
– ident: e_1_2_8_39_1
  doi: 10.1007/s00425-009-0930-6
– ident: e_1_2_8_67_1
  doi: 10.1093/jexbot/50.337.1267
– ident: e_1_2_8_73_1
  doi: 10.1007/s11104-020-04464-w
– ident: e_1_2_8_72_1
  doi: 10.1111/nph.15464
– ident: e_1_2_8_11_1
  doi: 10.1006/bbrc.1998.8156
– ident: e_1_2_8_15_1
  doi: 10.3109/10520299109110562
– ident: e_1_2_8_42_1
  doi: 10.1038/s41598-017-10730-2
– ident: e_1_2_8_34_1
  doi: 10.1073/pnas.1103542108
– ident: e_1_2_8_61_1
  doi: 10.1016/j.tplants.2008.03.003
– ident: e_1_2_8_64_1
  doi: 10.1111/j.1365-3040.2011.02318.x
– ident: e_1_2_8_63_1
  doi: 10.1111/j.1365-3040.2004.01245.x
– ident: e_1_2_8_49_1
  doi: 10.1104/pp.109.144907
– ident: e_1_2_8_31_1
  doi: 10.1007/s11103-008-9408-3
– ident: e_1_2_8_47_1
  doi: 10.1139/b03-042
– ident: e_1_2_8_2_1
  doi: 10.1089/dna.2014.2349
– ident: e_1_2_8_69_1
  doi: 10.3389/fpls.2016.00009
– ident: e_1_2_8_58_1
  doi: 10.1007/s00468-010-0417-x
– ident: e_1_2_8_60_1
  doi: 10.1042/bj3420027
– ident: e_1_2_8_78_1
  doi: 10.1093/jxb/38.7.1141
– ident: e_1_2_8_18_1
  doi: 10.1046/j.1365-313x.1998.00343.x
– ident: e_1_2_8_23_1
  doi: 10.1016/j.pbi.2007.04.004
– ident: e_1_2_8_79_1
  doi: 10.1038/nprot.2007.199
– ident: e_1_2_8_59_1
  doi: 10.1111/j.1742-4658.2010.07948.x
– ident: e_1_2_8_14_1
  doi: 10.1371/journal.pone.0159875
– ident: e_1_2_8_3_1
  doi: 10.1126/science.1086391
– ident: e_1_2_8_6_1
  doi: 10.1093/jxb/erv190
– ident: e_1_2_8_26_1
  doi: 10.3389/fpls.2012.00004
– ident: e_1_2_8_28_1
  doi: 10.1186/s12870-016-0806-4
– ident: e_1_2_8_76_1
  doi: 10.1111/nph.15128
– ident: e_1_2_8_52_1
  doi: 10.4161/psb.5.3.11187
– ident: e_1_2_8_27_1
  doi: 10.1104/pp.16.01614
– ident: e_1_2_8_37_1
  doi: 10.1111/j.1469-8137.2009.03021.x
– ident: e_1_2_8_35_1
  doi: 10.1074/jbc.M114.603084
– ident: e_1_2_8_36_1
  doi: 10.1111/tpj.12624
– ident: e_1_2_8_53_1
  doi: 10.1007/s11103-004-0685-1
– ident: e_1_2_8_8_1
  doi: 10.4161/psb.27700
– ident: e_1_2_8_62_1
  doi: 10.1093/jxb/erq389
– ident: e_1_2_8_45_1
  doi: 10.1093/pcp/pcv006
– ident: e_1_2_8_70_1
  doi: 10.1111/tpj.13784
– ident: e_1_2_8_80_1
  doi: 10.1111/pce.13784
– ident: e_1_2_8_10_1
  doi: 10.1016/j.cell.2015.12.021
– start-page: e0167
  volume-title: Apoplastic diffusion barriers in Arabidopsis
  year: 2013
  ident: e_1_2_8_55_1
– ident: e_1_2_8_33_1
  doi: 10.1139/b84-391
– ident: e_1_2_8_54_1
  doi: 10.1073/pnas.1205726109
– ident: e_1_2_8_13_1
  doi: 10.1105/tpc.16.00681
– ident: e_1_2_8_25_1
  doi: 10.1111/j.1365-313X.2008.03674.x
– ident: e_1_2_8_38_1
  doi: 10.1093/jxb/err135
– ident: e_1_2_8_56_1
  doi: 10.1007/s00438-014-0849-x
– ident: e_1_2_8_74_1
  doi: 10.3390/plants5010004
– ident: e_1_2_8_48_1
  doi: 10.1186/gb-2003-4-3-r20
– ident: e_1_2_8_50_1
  doi: 10.1111/j.1469-8137.2005.01487.x
– ident: e_1_2_8_32_1
  doi: 10.1093/pcp/pcr110
– ident: e_1_2_8_57_1
  doi: 10.1016/j.ecoenv.2004.06.010
– ident: e_1_2_8_7_1
  doi: 10.3389/fpls.2018.00801
– ident: e_1_2_8_17_1
  doi: 10.1371/journal.pone.0143022
SSID ssj0016612
Score 2.528379
Snippet Salinity affects crop productivity worldwide and mangroves growing under high salinity exhibit adaptations such as enhanced root apoplastic barrier to survive...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1673
SubjectTerms Acids
Adaptation
Arabidopsis
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Avicennia officinalis
Chromatin
chromatin immunoprecipitation
Crop production
Cytochrome
cytochrome P-450
Cytochrome P-450 Enzyme System - genetics
Cytochrome P-450 Enzyme System - metabolism
Cytochrome P450
Cytochromes P450
Dicarboxylic acids
Electrophoretic mobility
Endoplasmic reticulum
gas chromatography
Gene Expression Regulation, Plant
Genes
heterologous gene expression
Hydroxy acids
Immunoprecipitation
Lipids
Mangrove trees
Mangroves
mangroves (trees)
Mass spectrometry
Mass spectroscopy
Monomers
Mutants
phenotype
Phenotypes
Plant Roots - genetics
Plant Roots - metabolism
Plants, Genetically Modified - metabolism
Roots
Salinity
Salinity effects
Salinity tolerance
Salt tolerance
Salt Tolerance - genetics
Seedlings
Shoots
suberin
Transcription Factors
Title WRKY9 transcription factor regulates cytochrome P450 genes CYP94B3 and CYP86B1, leading to increased root suberin and salt tolerance in Arabidopsis
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fppl.13371
https://www.ncbi.nlm.nih.gov/pubmed/33619745
https://www.proquest.com/docview/2545823585
https://www.proquest.com/docview/2492661453
https://www.proquest.com/docview/2661005576
Volume 172
WOSCitedRecordID wos000627837900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1399-3054
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016612
  issn: 0031-9317
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RhUMvtPS5hSK36oFDU23WceKIU5eyQipCESrqcopsx25XWiVonUXid_CHGTsPgWgREjcr-aJY8Ty-icczAF84Z0abeBQwF-lE6NMCIdMwKBLFZJgaw7TyzSaSkxM-m6XZGux3Z2Ga-hD9DzenGd5eOwUX0t5SciRp3zDAcufH18cot2wA6z9Op2fH_SYCup6mWDgNgxT9ZFtYyCXy9A_fdUf3OOZdyup9zvTFk2b7EjZbqkm-N7KxBWu6fAUbkwrp4NVruP59-vM8JbXzVZ3lIE33HbJsGtRrS9RVXam_rqQBySI2In-caSQH51kaTSgRZeHGPJ6EX8miSccndUXmpeOiVhcEeXlN7Eq6Q4YebsWiRshCu4YeGpE4PyHnRXVh5_YNnE0Pfx0cBW2HhkBRHoeBSUap4bQwqPk6lLjIgiWRlBh0K81NjNeESqmgQhvXO4EXyBAiZgqupdKxom9hUFalfg8EuYOmMhGKx0WEI6mpimKB5gHd6UiFQ9jrFipXbfly10VjkXdhDH7i3H_iIXzuoRdNzY5_gXa61c5btbX52G8jUgyhhvCpv40K53ZRRKmrFWJciUUkNYw-gEGAr24WD-FdI0n9TCjFmDWJ8A17XmD-P8U8y4794MPjodvwfOyybnxC8Q4M6uVKf4QNdVnP7XIXniUzvtvqyQ0VYRRv
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CEmgv6bvdNG3V0kMOdVhHsi1DL920S0q2iwkJTU5GkqV2YbHD2lvI7-gf7oz8oKEPCr0J-zMWmhnNN3rMALyWMnLWxeMgokhHoE8LlE7DoEhMpMPUucgaX2wimc_lxUWabcDb_i5Mmx9iWHAjy_DzNRk4LUj_ZOXI0g4wwqIL5FsC1Qj1e-v96fR8NuwioO9ps4XzMEjRUXaZhegkz_DxTX_0C8m8yVm905ne-b_u3oWdjmyyd6123IMNW96H7UmFhPD6AXz_fHpymbKGvFU_d7C2_g5btSXqbc3MdVOZr5TUgGUiGrMvNDmyo8ssFRPOVFlQW8aT8A1btgfyWVOxRUlstLYFQ2besHqt6Zqhh9dq2SBkaamkh0Uk9k_pRVFd1Yv6IZxPP5wdHQddjYbA4IiHgUvGqZO8cGj7NtQoZhUlQmsMu42VLsZnyqRccWUdVU-QBXIEEblCWm1sbPgj2Cyr0j4BhuzBcp0oI-NCYEtbbkSsSLKJHJtwBPu9pHLTJTCnOhrLvA9kcIhzP8QjeDVAr9qsHb8D7fXizjvDrfNDv5HIMYgawcvhNZoc7aOo0lZrxFCSRaQ1Ef8LBgE-v1k8gsetKg094Ryj1kTgH_a9xvy5i3mWzXxj99-hL-DW8dmnWT77OD95CrcP6QyOP168B5vNam2fwbb51izq1fPOXH4AF3QXdw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7CJpRe-n5sm7Zq6SGHOqwj2Zahl27SpSXLYkJDk5ORZKldWOxl7S3kd_QPd0Z-0NAHhd6E_RkPlmbmG2s0A_BayshZF0-CiCIdgT4tUDoNgyIxkQ5T5yJrfLOJZLGQFxdptgNv-7MwbX2I4YcbaYa316Tgdl24n7QcWdohRlh0gHxXUBOZEeyenM3O58MuAvqetlo4D4MUHWVXWYgyeYaHr_ujX0jmdc7qnc7s9v-JewdudWSTvWtXx13YseU92JtWSAiv7sP3z2enlylryFv1toO1_XfYpm1Rb2tmrprKfKWiBiwT0YR9IePIji-zVEw5U2VBYxlPwzds1Sbks6Ziy5LYaG0Lhsy8YfVW0zFDD6_VqkHIylJLD4tIlE_pZVGt62X9AM5n7z8dfwi6Hg2B4TIOA5dMUid54VD3bahxmlWUCK0x7DZWuhivKZNyxZV11D1BFsgRROQKabWxseEPYVRWpX0MDNmD5TpRRsaFwJG23IhYoYFAhzox4RgO-pnKTVfAnPporPI-kMFPnPtPPIZXA3TdVu34HWi_n-68U9w6P_IbiRyDqDG8HG6jytE-iipttUUMFVlEWhPxv2AQ4OubxWN41C6lQRLOMWpNBL7hwK-YP4uYZ9ncD578O_QF3MhOZvn84-L0Kdw8ohQcn128D6Nms7XPYM98a5b15nmnLT8Af_QW8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WRKY9+transcription+factor+regulates+cytochrome+P450+genes+CYP94B3+and+CYP86B1%2C+leading+to+increased+root+suberin+and+salt+tolerance+in+Arabidopsis&rft.jtitle=Physiologia+plantarum&rft.au=Krishnamurthy%2C+Pannaga&rft.au=Vishal%2C+Bhushan&rft.au=Bhal%2C+Amrit&rft.au=Kumar%2C+Prakash+P.&rft.date=2021-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0031-9317&rft.eissn=1399-3054&rft.volume=172&rft.issue=3&rft.spage=1673&rft.epage=1687&rft_id=info:doi/10.1111%2Fppl.13371&rft.externalDBID=10.1111%252Fppl.13371&rft.externalDocID=PPL13371
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9317&client=summon