Synergistic effects of climate and land‐use change influence broad‐scale avian population declines
Climate and land‐use changes are expected to be the primary drivers of future global biodiversity loss. Although theory suggests that these factors impact species synergistically, past studies have either focused on only one in isolation or have substituted space for time, which often results in con...
Uložené v:
| Vydané v: | Global change biology Ročník 25; číslo 5; s. 1561 - 1575 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Blackwell Publishing Ltd
01.05.2019
|
| Predmet: | |
| ISSN: | 1354-1013, 1365-2486, 1365-2486 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Climate and land‐use changes are expected to be the primary drivers of future global biodiversity loss. Although theory suggests that these factors impact species synergistically, past studies have either focused on only one in isolation or have substituted space for time, which often results in confounding between drivers. Tests of synergistic effects require congruent time series on animal populations, climate change and land‐use change replicated across landscapes that span the gradient of correlations between the drivers of change. Using a unique time series of high‐resolution climate (measured as temperature and precipitation) and land‐use change (measured as forest change) data, we show that these drivers of global change act synergistically to influence forest bird population declines over 29 years in the Pacific Northwest of the United States. Nearly half of the species examined had declined over this time. Populations declined most in response to loss of early seral and mature forest, with responses to loss of early seral forest amplified in landscapes that had warmed over time. In addition, birds declined more in response to loss of mature forest in areas that had dried over time. Climate change did not appear to impact populations in landscapes with limited habitat loss, except when those landscapes were initially warmer than the average landscape. Our results provide some of the first empirical evidence of synergistic effects of climate and land‐use change on animal population dynamics, suggesting accelerated loss of biodiversity in areas under pressure from multiple global change drivers. Furthermore, our findings suggest strong spatial variability in the impacts of climate change and highlight the need for future studies to evaluate multiple drivers simultaneously to avoid potential misattribution of effects.
Birds in the Pacific Northwest of the United States declined most strongly in response to loss of mature forest, followed by loss of early seral forest. Declines from loss of mature forest were strongest in landscapes that had become drier over time and declines from loss of early seral forest were strongest in landscapes that had warmed over time. This is some of the first empirical evidence for synergistic effects of the two greatest threats to biodiversity and suggest the potential for underestimation of biodiversity declines from studies focusing on only climate or land‐use change in isolation. |
|---|---|
| AbstractList | Climate and land-use changes are expected to be the primary drivers of future global biodiversity loss. Although theory suggests that these factors impact species synergistically, past studies have either focused on only one in isolation or have substituted space for time, which often results in confounding between drivers. Tests of synergistic effects require congruent time series on animal populations, climate change and land-use change replicated across landscapes that span the gradient of correlations between the drivers of change. Using a unique time series of high-resolution climate (measured as temperature and precipitation) and land-use change (measured as forest change) data, we show that these drivers of global change act synergistically to influence forest bird population declines over 29 years in the Pacific Northwest of the United States. Nearly half of the species examined had declined over this time. Populations declined most in response to loss of early seral and mature forest, with responses to loss of early seral forest amplified in landscapes that had warmed over time. In addition, birds declined more in response to loss of mature forest in areas that had dried over time. Climate change did not appear to impact populations in landscapes with limited habitat loss, except when those landscapes were initially warmer than the average landscape. Our results provide some of the first empirical evidence of synergistic effects of climate and land-use change on animal population dynamics, suggesting accelerated loss of biodiversity in areas under pressure from multiple global change drivers. Furthermore, our findings suggest strong spatial variability in the impacts of climate change and highlight the need for future studies to evaluate multiple drivers simultaneously to avoid potential misattribution of effects. Climate and land‐use changes are expected to be the primary drivers of future global biodiversity loss. Although theory suggests that these factors impact species synergistically, past studies have either focused on only one in isolation or have substituted space for time, which often results in confounding between drivers. Tests of synergistic effects require congruent time series on animal populations, climate change and land‐use change replicated across landscapes that span the gradient of correlations between the drivers of change. Using a unique time series of high‐resolution climate (measured as temperature and precipitation) and land‐use change (measured as forest change) data, we show that these drivers of global change act synergistically to influence forest bird population declines over 29 years in the Pacific Northwest of the United States. Nearly half of the species examined had declined over this time. Populations declined most in response to loss of early seral and mature forest, with responses to loss of early seral forest amplified in landscapes that had warmed over time. In addition, birds declined more in response to loss of mature forest in areas that had dried over time. Climate change did not appear to impact populations in landscapes with limited habitat loss, except when those landscapes were initially warmer than the average landscape. Our results provide some of the first empirical evidence of synergistic effects of climate and land‐use change on animal population dynamics, suggesting accelerated loss of biodiversity in areas under pressure from multiple global change drivers. Furthermore, our findings suggest strong spatial variability in the impacts of climate change and highlight the need for future studies to evaluate multiple drivers simultaneously to avoid potential misattribution of effects. Birds in the Pacific Northwest of the United States declined most strongly in response to loss of mature forest, followed by loss of early seral forest. Declines from loss of mature forest were strongest in landscapes that had become drier over time and declines from loss of early seral forest were strongest in landscapes that had warmed over time. This is some of the first empirical evidence for synergistic effects of the two greatest threats to biodiversity and suggest the potential for underestimation of biodiversity declines from studies focusing on only climate or land‐use change in isolation. Climate and land‐use changes are expected to be the primary drivers of future global biodiversity loss. Although theory suggests that these factors impact species synergistically, past studies have either focused on only one in isolation or have substituted space for time, which often results in confounding between drivers. Tests of synergistic effects require congruent time series on animal populations, climate change and land‐use change replicated across landscapes that span the gradient of correlations between the drivers of change. Using a unique time series of high‐resolution climate (measured as temperature and precipitation) and land‐use change (measured as forest change) data, we show that these drivers of global change act synergistically to influence forest bird population declines over 29 years in the Pacific Northwest of the United States. Nearly half of the species examined had declined over this time. Populations declined most in response to loss of early seral and mature forest, with responses to loss of early seral forest amplified in landscapes that had warmed over time. In addition, birds declined more in response to loss of mature forest in areas that had dried over time. Climate change did not appear to impact populations in landscapes with limited habitat loss, except when those landscapes were initially warmer than the average landscape. Our results provide some of the first empirical evidence of synergistic effects of climate and land‐use change on animal population dynamics, suggesting accelerated loss of biodiversity in areas under pressure from multiple global change drivers. Furthermore, our findings suggest strong spatial variability in the impacts of climate change and highlight the need for future studies to evaluate multiple drivers simultaneously to avoid potential misattribution of effects. Climate and land-use changes are expected to be the primary drivers of future global biodiversity loss. Although theory suggests that these factors impact species synergistically, past studies have either focused on only one in isolation or have substituted space for time, which often results in confounding between drivers. Tests of synergistic effects require congruent time series on animal populations, climate change and land-use change replicated across landscapes that span the gradient of correlations between the drivers of change. Using a unique time series of high-resolution climate (measured as temperature and precipitation) and land-use change (measured as forest change) data, we show that these drivers of global change act synergistically to influence forest bird population declines over 29 years in the Pacific Northwest of the United States. Nearly half of the species examined had declined over this time. Populations declined most in response to loss of early seral and mature forest, with responses to loss of early seral forest amplified in landscapes that had warmed over time. In addition, birds declined more in response to loss of mature forest in areas that had dried over time. Climate change did not appear to impact populations in landscapes with limited habitat loss, except when those landscapes were initially warmer than the average landscape. Our results provide some of the first empirical evidence of synergistic effects of climate and land-use change on animal population dynamics, suggesting accelerated loss of biodiversity in areas under pressure from multiple global change drivers. Furthermore, our findings suggest strong spatial variability in the impacts of climate change and highlight the need for future studies to evaluate multiple drivers simultaneously to avoid potential misattribution of effects.Climate and land-use changes are expected to be the primary drivers of future global biodiversity loss. Although theory suggests that these factors impact species synergistically, past studies have either focused on only one in isolation or have substituted space for time, which often results in confounding between drivers. Tests of synergistic effects require congruent time series on animal populations, climate change and land-use change replicated across landscapes that span the gradient of correlations between the drivers of change. Using a unique time series of high-resolution climate (measured as temperature and precipitation) and land-use change (measured as forest change) data, we show that these drivers of global change act synergistically to influence forest bird population declines over 29 years in the Pacific Northwest of the United States. Nearly half of the species examined had declined over this time. Populations declined most in response to loss of early seral and mature forest, with responses to loss of early seral forest amplified in landscapes that had warmed over time. In addition, birds declined more in response to loss of mature forest in areas that had dried over time. Climate change did not appear to impact populations in landscapes with limited habitat loss, except when those landscapes were initially warmer than the average landscape. Our results provide some of the first empirical evidence of synergistic effects of climate and land-use change on animal population dynamics, suggesting accelerated loss of biodiversity in areas under pressure from multiple global change drivers. Furthermore, our findings suggest strong spatial variability in the impacts of climate change and highlight the need for future studies to evaluate multiple drivers simultaneously to avoid potential misattribution of effects. |
| Author | Betts, Matthew G. Yang, Zhiqiang Northrup, Joseph M. Rivers, James W. |
| Author_xml | – sequence: 1 givenname: Joseph M. orcidid: 0000-0001-6319-4138 surname: Northrup fullname: Northrup, Joseph M. email: joe.northrup@gmail.com organization: Ontario Ministry of Natural Resources and Forestry, Wildlife Research and Monitoring Section – sequence: 2 givenname: James W. orcidid: 0000-0001-5041-6002 surname: Rivers fullname: Rivers, James W. organization: Oregon State University – sequence: 3 givenname: Zhiqiang surname: Yang fullname: Yang, Zhiqiang organization: RMRS Research Station – sequence: 4 givenname: Matthew G. orcidid: 0000-0002-7100-2551 surname: Betts fullname: Betts, Matthew G. email: matt.betts@oregonstate.edu organization: Oregon State University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30810257$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkb1uFDEUhS0URH6g4AWQJRooJvHP2J4tYRUCUiQKoLY8d64XR17PYs8Ebccj5Bl5ErzZTROBcGFfyd850j3nlBylMSEhLzk75_VcrKA_560y_Ak54VKrRrSdPtrNqm044_KYnJZywxiTguln5FiyjjOhzAnxX7YJ8yqUKQBF7xGmQkdPIYa1m5C6NNBYr9-_7uaCFL67tEIako8zJkDa59HtPgu4WOnb4BLdjJs5uimMiQ5YjRKW5-Spd7Hgi8N7Rr59uPy6_Nhcf776tHx33YDsNG-81BoUA-nBOC-EUoPrhePg5WCMN6rjfoELcJ3yqu2V1txg2wKDTgnVKnlG3ux9N3n8MWOZ7DoUwFhXwHEuVghpdpxu_4_yTmshOF9U9PUj9Gacc6qLVEO26Jg2Slfq1YGa-zUOdpNrhHlrH8KuwMUegDyWktFbCNN9TlN2IVrO7K5OW-u093VWxdtHigfTv7EH958h4vbfoL1avt8r_gDwrK8t |
| CitedBy_id | crossref_primary_10_1111_gcb_15978 crossref_primary_10_1002_ece3_71040 crossref_primary_10_1017_S0959270923000072 crossref_primary_10_1111_gcb_14765 crossref_primary_10_1007_s10980_023_01613_1 crossref_primary_10_1002_ece3_11097 crossref_primary_10_3389_ffgc_2025_1394664 crossref_primary_10_1111_ele_70145 crossref_primary_10_1016_j_ecolind_2022_108717 crossref_primary_10_1038_s41467_025_58617_5 crossref_primary_10_1111_csp2_70017 crossref_primary_10_1111_csp2_70019 crossref_primary_10_1016_j_biocon_2020_108892 crossref_primary_10_1093_ornithapp_duad020 crossref_primary_10_1016_j_ecoinf_2025_103072 crossref_primary_10_1038_s41598_025_01382_8 crossref_primary_10_1126_science_aax9387 crossref_primary_10_3390_su141610078 crossref_primary_10_1038_s41586_020_2090_6 crossref_primary_10_1126_science_add2915 crossref_primary_10_1002_ecs2_3925 crossref_primary_10_1111_cobi_14069 crossref_primary_10_1371_journal_pclm_0000293 crossref_primary_10_1002_ece3_71796 crossref_primary_10_1111_aec_13336 crossref_primary_10_1002_ecs2_3490 crossref_primary_10_1016_j_rama_2023_07_002 crossref_primary_10_3389_fevo_2022_987204 crossref_primary_10_1016_j_jenvman_2024_123275 crossref_primary_10_1007_s10980_023_01776_x crossref_primary_10_1016_j_ecolind_2023_109984 crossref_primary_10_1016_j_biocon_2022_109885 crossref_primary_10_1016_j_heliyon_2024_e32801 crossref_primary_10_1016_j_tree_2022_01_005 crossref_primary_10_1002_ece3_71828 crossref_primary_10_1111_ecog_07010 crossref_primary_10_3390_su13116044 crossref_primary_10_1007_s00442_023_05387_w crossref_primary_10_3389_fevo_2022_873366 crossref_primary_10_1016_j_biocon_2022_109536 crossref_primary_10_1111_ddi_13602 crossref_primary_10_1111_ele_14430 crossref_primary_10_1016_j_measurement_2025_118780 crossref_primary_10_2478_helm_2024_0019 crossref_primary_10_1016_j_jenvman_2025_124165 crossref_primary_10_3390_biology14081050 crossref_primary_10_1016_j_scitotenv_2021_150806 crossref_primary_10_1038_s41586_022_04644_x crossref_primary_10_1007_s10980_025_02075_3 crossref_primary_10_1016_j_biocon_2024_110956 crossref_primary_10_1111_ddi_13282 crossref_primary_10_1111_cobi_14134 crossref_primary_10_1016_j_apgeog_2020_102293 crossref_primary_10_1111_aec_13242 crossref_primary_10_1111_gcb_14961 crossref_primary_10_1080_00063657_2024_2343956 crossref_primary_10_1111_mec_15279 crossref_primary_10_1111_jbi_14995 crossref_primary_10_1038_s42003_021_02585_1 crossref_primary_10_1111_gcb_16063 crossref_primary_10_1016_j_fooweb_2023_e00314 crossref_primary_10_1111_1365_2656_13228 crossref_primary_10_12688_f1000research_141951_1 crossref_primary_10_12688_f1000research_141951_2 crossref_primary_10_1016_j_baae_2021_11_005 crossref_primary_10_1111_jbi_15045 crossref_primary_10_1111_gcb_15135 crossref_primary_10_3389_fevo_2021_635872 crossref_primary_10_1038_s41559_022_01737_8 crossref_primary_10_1111_cobi_14143 crossref_primary_10_1093_ornithapp_duab040 crossref_primary_10_1111_csp2_243 crossref_primary_10_1007_s10980_022_01407_x crossref_primary_10_1111_1365_2664_14251 crossref_primary_10_1111_gcb_16454 crossref_primary_10_1111_1365_2656_13919 crossref_primary_10_1016_j_scitotenv_2021_152602 crossref_primary_10_1111_csp2_13120 crossref_primary_10_1186_s12302_024_00945_2 crossref_primary_10_3389_fevo_2019_00186 crossref_primary_10_1016_j_agee_2019_106722 crossref_primary_10_1007_s10980_019_00845_4 crossref_primary_10_1002_fsh_10506 crossref_primary_10_1002_wsb_1492 crossref_primary_10_3389_fevo_2023_1216769 crossref_primary_10_1111_1365_2656_13444 crossref_primary_10_1007_s10531_022_02444_3 crossref_primary_10_1111_brv_12828 crossref_primary_10_3389_fsufs_2025_1594356 crossref_primary_10_1093_condor_duaa003 crossref_primary_10_1016_j_ecolind_2021_107729 crossref_primary_10_1111_gcb_16080 crossref_primary_10_1017_S0376892922000194 crossref_primary_10_1371_journal_pone_0330153 crossref_primary_10_5327_Z2176_94781926 crossref_primary_10_1002_wics_1506 crossref_primary_10_1111_2041_210X_70115 crossref_primary_10_1016_j_biocon_2021_109436 crossref_primary_10_1016_j_ecolmodel_2021_109854 crossref_primary_10_1111_gcb_14739 crossref_primary_10_1038_s41559_022_01814_y crossref_primary_10_1111_ddi_13408 crossref_primary_10_1002_jav_03458 crossref_primary_10_1002_ece3_70495 crossref_primary_10_1007_s10980_025_02110_3 crossref_primary_10_1088_1748_9326_ac64b5 crossref_primary_10_1111_gcb_16353 |
| Cites_doi | 10.1098/rspb.2009.1525 10.1016/S0895-4356(96)00236-3 10.1046/j.1523-1739.2001.01093.x 10.1073/pnas.1813072116 10.1525/auk.2010.09220 10.1111/j.1365-2486.2003.00723.x 10.1007/s13280-016-0840-3 10.1126/science.1244693 10.1111/j.1474-919X.2006.00536.x 10.1111/ddi.12144 10.1002/env.2402 10.1038/nature14324 10.1093/jof/103.2.59 10.1038/nature09670 10.1111/aec.12628 10.1890/080216 10.1002/wcc.271 10.1371/journal.pone.0112251 10.1126/science.1206432 10.1046/j.1523-1739.1999.013002314.x 10.1111/ddi.12456 10.1016/S0304-3800(97)00163-4 10.2307/3545823 10.2307/1313420 10.1111/ddi.12688 10.1111/j.1365-2656.2011.01918.x 10.1214/ss/1177011136 10.1098/rspb.2006.0338 10.1371/journal.pone.0024708 10.1111/geb.12555 10.1002/joc.1276 10.1098/rspb.2003.2569 10.1016/j.tree.2008.03.011 10.1111/j.1523-1739.2006.00385.x 10.1111/j.1523-1739.2007.00723.x 10.1016/j.biocon.2004.07.022 10.1038/nature23285 10.1111/j.1365-2486.2011.02593.x 10.1038/nature02121 10.1038/ngeo555 10.1890/12-0564.1 10.1650/CONDOR-17-15.1 10.1126/science.287.5459.1770 10.1038/s41598-017-02072-w 10.1890/09-1305.1 10.1111/j.1365-2486.2006.01180.x 10.1111/j.1523-1739.2006.00609.x 10.1038/500271a 10.1073/pnas.0803825105 10.1111/j.1523-1739.2006.00633.x 10.1073/pnas.0901562106 10.1016/j.biocon.2009.05.006 10.1126/sciadv.1501392 10.5849/jof.10-006 10.1111/j.1365-2486.2009.01878.x 10.1098/rspb.2015.2846 10.1016/j.foreco.2007.03.054 10.1371/journal.pbio.0050157 10.1016/j.rse.2010.07.008 10.1016/j.jaridenv.2013.04.008 10.1016/j.gloenvcha.2008.09.007 10.1098/rspb.2002.2246 10.1093/jof/103.2.83 10.1016/j.biocon.2003.12.008 10.1016/j.foreco.2013.06.052 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 10.2737/PNW-GTR-853 10.1890/090157 10.1111/gcb.12642 10.2193/2006-004 10.1111/rssc.12007 10.1016/j.foreco.2011.09.021 10.1890/1051-0761(2007)017[0005:CEASEO]2.0.CO;2 |
| ContentType | Journal Article |
| Copyright | 2019 John Wiley & Sons Ltd 2019 John Wiley & Sons Ltd. Copyright © 2019 John Wiley & Sons Ltd |
| Copyright_xml | – notice: 2019 John Wiley & Sons Ltd – notice: 2019 John Wiley & Sons Ltd. – notice: Copyright © 2019 John Wiley & Sons Ltd |
| DBID | AAYXX CITATION NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 |
| DOI | 10.1111/gcb.14571 |
| DatabaseName | CrossRef PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | PubMed AGRICOLA CrossRef MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Biology Environmental Sciences |
| EISSN | 1365-2486 |
| EndPage | 1575 |
| ExternalDocumentID | 30810257 10_1111_gcb_14571 GCB14571 |
| Genre | article Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: College of Forestry, Oregon State University – fundername: USDA National Institute of Food and Agriculture, McIntire Stennis project funderid: 1014995 – fundername: USDA National Institute of Food and Agriculture, McIntire Stennis project grantid: 1014995 |
| GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c3861-f366c50c3fc7af2255dab2a1cf3d77f7581f9e9ca85f54b56617e44c0c8525453 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 125 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000465103600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1354-1013 1365-2486 |
| IngestDate | Fri Jul 11 18:37:57 EDT 2025 Fri Jul 11 08:22:46 EDT 2025 Mon Nov 10 02:42:13 EST 2025 Wed Feb 19 02:36:46 EST 2025 Sat Nov 29 06:02:31 EST 2025 Tue Nov 18 22:45:22 EST 2025 Wed Jan 22 17:08:34 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Bayesian hierarchical model land-use change habitat loss synergistic effects Breeding Bird Survey climate change |
| Language | English |
| License | 2019 John Wiley & Sons Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3861-f366c50c3fc7af2255dab2a1cf3d77f7581f9e9ca85f54b56617e44c0c8525453 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7100-2551 0000-0001-6319-4138 0000-0001-5041-6002 |
| PMID | 30810257 |
| PQID | 2209806756 |
| PQPubID | 30327 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_2237545364 proquest_miscellaneous_2186622119 proquest_journals_2209806756 pubmed_primary_30810257 crossref_citationtrail_10_1111_gcb_14571 crossref_primary_10_1111_gcb_14571 wiley_primary_10_1111_gcb_14571_GCB14571 |
| PublicationCentury | 2000 |
| PublicationDate | May 2019 2019-05-00 2019-May 20190501 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: May 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Global change biology |
| PublicationTitleAlternate | Glob Chang Biol |
| PublicationYear | 2019 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2017; 119 1998; 48 2017; 7 2017; 8 2013; 62 2017; 46 2009; 277 2003; 270 2007; 71 2012; 18 2008; 105 2012; 15 2015b 2011; 470 2018; 43 2014; 20 2005; 25 1992; 7 2010; 20 2014; 5 2006; 20 2011; 128 2005; 103 2010; 114 2013; 94 2013; 96 2013; 2011 1999; 13 2013; 310 2008; 23 2001; 15 2007; 5 2000; 287 2014; 9 2007; 21 2009; 19 1994; 71 2009; 15 2007; 246 2007; 17 2012; 81 2011; 333 2006; 12 2017; 26 2011 2015; 520 2013; 500 2017; 24 2013; 342 2004; 427 2011; 6 1996; 15 2016; 283 2011; 9 2004; 10 2012; 272 2012; 110 2016; 2 2015a 2005; 122 2004; 271 2007; 274 2019 2015 1998; 105 2009; 142 2006; 148 2009; 2 2016; 27 1996; 49 2004; 117 2017; 547 2016; 22 2009; 106 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Woodworth B. K. (e_1_2_8_79_1) 2017; 8 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 Rodewald P. (e_1_2_8_58_1) 2015 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Bellard C. (e_1_2_8_5_1) 2012; 15 Sauer J. R. (e_1_2_8_63_1) 2013; 2011 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 Hayes J. P. (e_1_2_8_28_1) 2005; 103 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Team RC (e_1_2_8_69_1) 2015 Adams W. (e_1_2_8_2_1) 2005; 103 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
| References_xml | – year: 2011 – volume: 128 start-page: 87 year: 2011 end-page: 98 article-title: Analysis of the North American breeding bird survey using hierarchical models publication-title: The Auk – volume: 15 start-page: 1866 year: 2009 end-page: 1883 article-title: Poleward shifts in breeding bird distributions in New York State publication-title: Global Change Biology – volume: 142 start-page: 2282 year: 2009 end-page: 2292 article-title: eBird: A citizen‐based bird observation network in the biological sciences publication-title: Biological Conservation – volume: 270 start-page: 467 year: 2003 end-page: 473 article-title: Climate change and habitat destruction: A deadly anthropogenic cocktail publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 18 start-page: 1239 year: 2012 end-page: 1252 article-title: Interactions between climate and habitat loss effects on biodiversity: A systematic review and meta‐analysis publication-title: Global Change Biology – volume: 103 start-page: 83 year: 2005 end-page: 87 article-title: Environmental consequences of intensively managed forest plantations in the Pacific Northwest publication-title: Journal of Forestry – volume: 114 start-page: 2897 year: 2010 end-page: 2910 article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms publication-title: Remote Sensing of Environment – volume: 48 start-page: 607 year: 1998 end-page: 615 article-title: Quantifying threats to imperiled species in the United States assessing the relative importance of habitat destruction, alien species, pollution, overexploitation, and disease publication-title: BioScience – volume: 105 start-page: 273 year: 1998 end-page: 292 article-title: When does fragmentation of breeding habitat affect population survival? publication-title: Ecological Modelling – volume: 21 start-page: 534 year: 2007 end-page: 539 article-title: Breeding distributions of North American bird species moving north as a result of climate change publication-title: Conservation Biology – volume: 105 start-page: 16195 year: 2008 end-page: 16200 article-title: Populations of migratory bird species that did not show a phenological response to climate change are declining publication-title: Proceedings of the National Academy of Sciences – volume: 10 start-page: 148 year: 2004 end-page: 154 article-title: Common birds facing global changes: What makes a species at risk? publication-title: Global Change Biology – volume: 15 start-page: 365 year: 2012 end-page: 377 article-title: Impacts of climate change on the future of biodiversity publication-title: EcologyLetters – volume: 500 start-page: 271 year: 2013 end-page: 272 article-title: Ecosystems: Climate change must not blow conservation off course publication-title: Nature – volume: 20 start-page: 277 year: 2006 end-page: 287 article-title: The Northwest Forest Plan: Origins, components, implementation experience, and suggestions for change publication-title: Conservation Biology – volume: 20 start-page: 1561 year: 2014 end-page: 9 article-title: BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MAXENT studies publication-title: Diversity and Distributions – volume: 271 start-page: 59 year: 2004 end-page: 64 article-title: Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird publication-title: Proceedings of the Royal Society of London B: Biological Sciences – volume: 27 start-page: 322 year: 2016 end-page: 333 article-title: Hierarchical animal movement models for population‐level inference publication-title: Environmetrics – volume: 6 start-page: e24708 year: 2011 article-title: Collision mortality has no discernible effect on population trends of North American birds publication-title: PloS One – volume: 21 start-page: 1046 year: 2007 end-page: 1058 article-title: Thresholds in songbird occurrence in relation to landscape structure publication-title: Conservation Biology – volume: 103 start-page: 59 year: 2005 article-title: Intensively managed forest plantations in the Pacific Northwest: Introduction publication-title: Journal of Forestry – volume: 110 start-page: 429 year: 2012 end-page: 439 article-title: A restoration framework for federal forests in the Pacific Northwest publication-title: Journal of Forestry – volume: 9 start-page: 222 year: 2011 end-page: 228 article-title: Worldwide decline of specialist species: Toward a global functional homogenization? publication-title: Frontiers in Ecology and the Environment – volume: 520 start-page: 45 year: 2015 end-page: 50 article-title: Global effects of land use on local terrestrial biodiversity publication-title: Nature – volume: 2 start-page: e1501392 year: 2016 article-title: Spatial models reveal the microclimatic buffering capacity of old‐growth forests publication-title: Science Advances – volume: 62 start-page: 551 year: 2013 end-page: 572 article-title: Fully Bayesian hierarchical modelling in two stages, with application to meta‐analysis publication-title: Journal of the Royal Statistical Society: Series C (Applied Statistics) – volume: 287 start-page: 1770 year: 2000 end-page: 1774 article-title: Global biodiversity scenarios for the year 2100 publication-title: Science – volume: 19 start-page: 306 year: 2009 end-page: 315 article-title: Land‐use and climate change within assessments of biodiversity change: A review publication-title: Global Environmental Change – volume: 81 start-page: 352 year: 2012 end-page: 363 article-title: Survival and population size of a resident bird species are declining as temperature increases publication-title: Journal of Animal Ecology – volume: 9 start-page: 117 year: 2011 end-page: 125 article-title: The forgotten stage of forest succession: Early‐successional ecosystems on forest sites publication-title: Frontiers in Ecology and the Environment – volume: 333 start-page: 1024 year: 2011 end-page: 1026 article-title: Rapid range shifts of species associated with high levels of climate warming publication-title: Science – volume: 277 start-page: 1259 year: 2009 end-page: 1266 article-title: Avian population consequences of climate change are most severe for long‐distance migrants in seasonal habitats publication-title: Proceedings of the Royal Society of London B: Biological Sciences – volume: 274 start-page: 1023 year: 2007 end-page: 1028 article-title: Experimental simulations about the effects of overexploitation and habitat fragmentation on populations facing environmental warming publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 96 start-page: 48 year: 2013 end-page: 54 article-title: The projected impact of climate and land use change on plant diversity: An example from West Africa publication-title: Journal of Arid Environments – volume: 148 start-page: 90 year: 2006 end-page: 109 article-title: Bird migration studies and potential collision risk with offshore wind turbines publication-title: Ibis – volume: 246 start-page: 108 year: 2007 end-page: 122 article-title: Wildlife species associated with non‐coniferous vegetation in Pacific Northwest conifer forests: A review publication-title: Forest Ecology and Management – volume: 119 start-page: 607 year: 2017 end-page: 615 article-title: How well do route survey areas represent landscapes at larger spatial extents? An analysis of land cover composition along Breeding Bird Survey routes publication-title: The Condor – volume: 283 start-page: 20152846 year: 2016 article-title: Quantifying drivers of population dynamics for a migratory bird throughout the annual cycle publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 547 start-page: 441 year: 2017 end-page: 444 article-title: Global forest loss disproportionately erodes biodiversity in intact landscapes publication-title: Nature – year: 2015 – volume: 15 start-page: 1529 year: 2001 end-page: 1535 article-title: Positive feedbacks among forest fragmentation, drought, and climate change in the Amazon publication-title: Conservation Biology – volume: 470 start-page: 479 year: 2011 end-page: 485 article-title: Climate change and evolutionary adaptation publication-title: Nature – volume: 2 start-page: 484 year: 2009 end-page: 487 article-title: Committed terrestrial ecosystem changes due to climate change publication-title: Nature Geoscience – volume: 20 start-page: 3351 year: 2014 end-page: 3364 article-title: Precipitation and winter temperature predict long‐term range‐scale abundance changes in Western North American birds publication-title: Global Change Biology – volume: 106 start-page: 19637 year: 2009 end-page: 19643 article-title: Birds track their Grinnellian niche through a century of climate change publication-title: Proceedings of the National Academy of Sciences – volume: 310 start-page: 1057 year: 2013 end-page: 1070 article-title: Bird‐vegetation associations in thinned and unthinned young Douglas‐fir forests 10years after thinning publication-title: Forest Ecology and Management – volume: 49 start-page: 1373 year: 1996 end-page: 1379 article-title: A simulation study of the number of events per variable in logistic regression analysis publication-title: Journal of Clinical Epidemiology – year: 2019 article-title: Impacts of the Northwest Forest Plan on forest composition and bird populations publication-title: Proceedings of the National Academy of Sciences – volume: 20 start-page: 2116 year: 2010 end-page: 2130 article-title: Thresholds in forest bird occurrence as a function of the amount of early‐seral broadleaf forest at landscape scales publication-title: Ecological Applications – volume: 26 start-page: 385 year: 2017 end-page: 394 article-title: Impacts of global change on species distributions: Obstacles and solutions to integrate climate and land use publication-title: Global Ecology and Biogeography – volume: 22 start-page: 944 year: 2016 end-page: 959 article-title: Microclimate predicts within‐season distribution dynamics of montane forest birds publication-title: Diversity and Distributions – year: 2015a – volume: 25 start-page: 1965 year: 2005 end-page: 1978 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: International Journal of Climatology – volume: 8 start-page: 14812 year: 2017 article-title: Winter temperatures limit population growth rate of a migratory songbird publication-title: NatureCommunications – volume: 117 start-page: 285 year: 2004 end-page: 297 article-title: Climate change meets habitat fragmentation: Linking landscape and biogeographical scale levels in research and conservation publication-title: Biological Conservation – volume: 43 start-page: 852 year: 2018 end-page: 860 article-title: Why understanding the pioneering and continuing contributions of BIOCLIM to species distribution modelling is important publication-title: Austral Ecology – volume: 15 start-page: 361 year: 1996 end-page: 387 article-title: Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors publication-title: Statistics in Medicine – volume: 24 start-page: 439 year: 2017 end-page: 447 article-title: Old‐growth forests buffer climate‐sensitive bird populations from warming publication-title: Diversity and Distributions – volume: 21 start-page: 495 year: 2007 end-page: 503 article-title: Effects of climate and land‐use change on species abundance in a Central European bird community publication-title: Conservation Biology – volume: 71 start-page: 2266 year: 2007 end-page: 2273 article-title: Uneven rates of landscape change as a source of bias in roadside wildlife surveys publication-title: Journal of Wildlife Management – volume: 94 start-page: 801 year: 2013 end-page: 808 article-title: Spatial occupancy models for large data sets publication-title: Ecology – volume: 5 start-page: e157 year: 2007 article-title: Projected impacts of climate and land‐use change on the global diversity of birds publication-title: PLoS Biology – volume: 13 start-page: 314 year: 1999 end-page: 326 article-title: Extinction thresholds for species in fractal landscapes publication-title: Conservation Biology – volume: 71 start-page: 355 year: 1994 end-page: 366 article-title: Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: A review publication-title: Oikos – volume: 2011 start-page: 1561 year: 2013 end-page: 32 article-title: The North American breeding bird survey 1966–2011: Summary analysis and species accounts publication-title: North American Fauna – volume: 46 start-page: 277 year: 2017 end-page: 290 article-title: Differentiating the effects of climate and land use change on European biodiversity: A scenario analysis publication-title: Ambio – volume: 7 start-page: 457 year: 1992 end-page: 472 article-title: Inference from iterative simulation using multiple sequences publication-title: Statistical Science – volume: 122 start-page: 363 year: 2005 end-page: 374 article-title: Dynamics of hardwood patches in a conifer matrix: 54 years of change in a forested landscape in Coastal Oregon, USA publication-title: Biological Conservation – volume: 427 start-page: 145 year: 2004 end-page: 148 article-title: Extinction risk from climate change publication-title: Nature – volume: 9 start-page: e112251 year: 2014 article-title: The relative impacts of climate and land‐use change on conterminous United States bird species from 2001 to 2075 publication-title: PloS One – volume: 17 start-page: 5 year: 2007 end-page: 17 article-title: Cumulative ecological and socioeconomic effects of forest policies in coastal Oregon publication-title: Ecological Applications – volume: 12 start-page: 1545 year: 2006 end-page: 1553 article-title: Impacts of climate warming and habitat loss on extinctions at species' low‐latitude range boundaries publication-title: Global Change Biology – volume: 342 start-page: 850 year: 2013 end-page: 853 article-title: High‐resolution global maps of 21st‐century forest cover change publication-title: Science – volume: 7 start-page: 1874 year: 2017 article-title: Using change trajectories to study the impacts of multi‐annual habitat loss on fledgling production in an old forest specialist bird publication-title: Scientific Reports – volume: 5 start-page: 317 year: 2014 end-page: 335 article-title: Interactions between climate change and land use change on biodiversity: Attribution problems, risks, and opportunities publication-title: Wiley Interdisciplinary Reviews: Climate Change – volume: 23 start-page: 453 year: 2008 end-page: 460 article-title: Synergies among extinction drivers under global change publication-title: Trends in Ecology & Evolution – volume: 272 start-page: 13 year: 2012 end-page: 25 article-title: Mapping change of older forest with nearest‐neighbor imputation and Landsat time‐series publication-title: Forest Ecology and Management – year: 2015b – ident: e_1_2_8_13_1 doi: 10.1098/rspb.2009.1525 – ident: e_1_2_8_54_1 doi: 10.1016/S0895-4356(96)00236-3 – ident: e_1_2_8_41_1 doi: 10.1046/j.1523-1739.2001.01093.x – ident: e_1_2_8_55_1 doi: 10.1073/pnas.1813072116 – ident: e_1_2_8_62_1 doi: 10.1525/auk.2010.09220 – ident: e_1_2_8_38_1 doi: 10.1111/j.1365-2486.2003.00723.x – ident: e_1_2_8_76_1 doi: 10.1007/s13280-016-0840-3 – ident: e_1_2_8_26_1 doi: 10.1126/science.1244693 – ident: e_1_2_8_34_1 doi: 10.1111/j.1474-919X.2006.00536.x – ident: e_1_2_8_12_1 doi: 10.1111/ddi.12144 – ident: e_1_2_8_33_1 doi: 10.1002/env.2402 – ident: e_1_2_8_49_1 doi: 10.1038/nature14324 – volume: 103 start-page: 59 year: 2005 ident: e_1_2_8_2_1 article-title: Intensively managed forest plantations in the Pacific Northwest: Introduction publication-title: Journal of Forestry doi: 10.1093/jof/103.2.59 – ident: e_1_2_8_32_1 doi: 10.1038/nature09670 – ident: e_1_2_8_11_1 doi: 10.1111/aec.12628 – ident: e_1_2_8_16_1 doi: 10.1890/080216 – ident: e_1_2_8_52_1 doi: 10.1002/wcc.271 – ident: e_1_2_8_65_1 doi: 10.1371/journal.pone.0112251 – ident: e_1_2_8_15_1 doi: 10.1126/science.1206432 – ident: e_1_2_8_78_1 doi: 10.1046/j.1523-1739.1999.013002314.x – ident: e_1_2_8_21_1 doi: 10.1111/ddi.12456 – ident: e_1_2_8_18_1 doi: 10.1016/S0304-3800(97)00163-4 – ident: e_1_2_8_3_1 doi: 10.2307/3545823 – ident: e_1_2_8_77_1 doi: 10.2307/1313420 – ident: e_1_2_8_9_1 doi: 10.1111/ddi.12688 – ident: e_1_2_8_61_1 doi: 10.1111/j.1365-2656.2011.01918.x – ident: e_1_2_8_23_1 doi: 10.1214/ss/1177011136 – ident: e_1_2_8_48_1 doi: 10.1098/rspb.2006.0338 – ident: e_1_2_8_4_1 doi: 10.1371/journal.pone.0024708 – ident: e_1_2_8_64_1 doi: 10.1111/geb.12555 – ident: e_1_2_8_30_1 doi: 10.1002/joc.1276 – ident: e_1_2_8_50_1 doi: 10.1098/rspb.2003.2569 – ident: e_1_2_8_14_1 doi: 10.1016/j.tree.2008.03.011 – ident: e_1_2_8_71_1 doi: 10.1111/j.1523-1739.2006.00385.x – ident: e_1_2_8_6_1 doi: 10.1111/j.1523-1739.2007.00723.x – ident: e_1_2_8_39_1 doi: 10.1016/j.biocon.2004.07.022 – ident: e_1_2_8_10_1 doi: 10.1038/nature23285 – ident: e_1_2_8_45_1 doi: 10.1111/j.1365-2486.2011.02593.x – ident: e_1_2_8_70_1 doi: 10.1038/nature02121 – ident: e_1_2_8_37_1 doi: 10.1038/ngeo555 – ident: e_1_2_8_36_1 doi: 10.1890/12-0564.1 – ident: e_1_2_8_75_1 doi: 10.1650/CONDOR-17-15.1 – ident: e_1_2_8_60_1 doi: 10.1126/science.287.5459.1770 – ident: e_1_2_8_42_1 doi: 10.1038/s41598-017-02072-w – ident: e_1_2_8_7_1 doi: 10.1890/09-1305.1 – ident: e_1_2_8_19_1 doi: 10.1111/j.1365-2486.2006.01180.x – ident: e_1_2_8_31_1 doi: 10.1111/j.1523-1739.2006.00609.x – volume-title: The birds of North America year: 2015 ident: e_1_2_8_58_1 – ident: e_1_2_8_56_1 – ident: e_1_2_8_72_1 doi: 10.1038/500271a – ident: e_1_2_8_47_1 doi: 10.1073/pnas.0803825105 – ident: e_1_2_8_43_1 doi: 10.1111/j.1523-1739.2006.00633.x – ident: e_1_2_8_73_1 doi: 10.1073/pnas.0901562106 – ident: e_1_2_8_67_1 doi: 10.1016/j.biocon.2009.05.006 – ident: e_1_2_8_22_1 doi: 10.1126/sciadv.1501392 – ident: e_1_2_8_20_1 doi: 10.5849/jof.10-006 – ident: e_1_2_8_81_1 doi: 10.1111/j.1365-2486.2009.01878.x – ident: e_1_2_8_59_1 doi: 10.1098/rspb.2015.2846 – volume: 15 start-page: 365 year: 2012 ident: e_1_2_8_5_1 article-title: Impacts of climate change on the future of biodiversity publication-title: EcologyLetters – volume: 2011 start-page: 1561 year: 2013 ident: e_1_2_8_63_1 article-title: The North American breeding bird survey 1966–2011: Summary analysis and species accounts publication-title: North American Fauna – ident: e_1_2_8_25_1 doi: 10.1016/j.foreco.2007.03.054 – ident: e_1_2_8_35_1 doi: 10.1371/journal.pbio.0050157 – ident: e_1_2_8_40_1 doi: 10.1016/j.rse.2010.07.008 – ident: e_1_2_8_29_1 doi: 10.1016/j.jaridenv.2013.04.008 – ident: e_1_2_8_17_1 doi: 10.1016/j.gloenvcha.2008.09.007 – volume: 8 start-page: 14812 year: 2017 ident: e_1_2_8_79_1 article-title: Winter temperatures limit population growth rate of a migratory songbird publication-title: NatureCommunications – volume-title: R: A language and environment for statistical computing year: 2015 ident: e_1_2_8_69_1 – ident: e_1_2_8_74_1 doi: 10.1098/rspb.2002.2246 – volume: 103 start-page: 83 year: 2005 ident: e_1_2_8_28_1 article-title: Environmental consequences of intensively managed forest plantations in the Pacific Northwest publication-title: Journal of Forestry doi: 10.1093/jof/103.2.83 – ident: e_1_2_8_53_1 doi: 10.1016/j.biocon.2003.12.008 – ident: e_1_2_8_57_1 – ident: e_1_2_8_80_1 doi: 10.1016/j.foreco.2013.06.052 – ident: e_1_2_8_27_1 doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 – ident: e_1_2_8_46_1 doi: 10.2737/PNW-GTR-853 – ident: e_1_2_8_68_1 doi: 10.1890/090157 – ident: e_1_2_8_24_1 doi: 10.1111/gcb.12642 – ident: e_1_2_8_8_1 doi: 10.2193/2006-004 – ident: e_1_2_8_44_1 doi: 10.1111/rssc.12007 – ident: e_1_2_8_51_1 doi: 10.1016/j.foreco.2011.09.021 – ident: e_1_2_8_66_1 doi: 10.1890/1051-0761(2007)017[0005:CEASEO]2.0.CO;2 |
| SSID | ssj0003206 |
| Score | 2.5995276 |
| Snippet | Climate and land‐use changes are expected to be the primary drivers of future global biodiversity loss. Although theory suggests that these factors impact... Climate and land-use changes are expected to be the primary drivers of future global biodiversity loss. Although theory suggests that these factors impact... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1561 |
| SubjectTerms | Animal population Animal populations Bayesian hierarchical model Biodiversity Biodiversity loss Bird populations Birds Breeding Bird Survey climate Climate change Climate effects Dynamics Environmental impact Forests habitat destruction Habitat loss Land use land use change Landscape landscapes Population decline population dynamics Populations Spatial variations synergism Synergistic effect synergistic effects temperature Time series time series analysis United States |
| Title | Synergistic effects of climate and land‐use change influence broad‐scale avian population declines |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.14571 https://www.ncbi.nlm.nih.gov/pubmed/30810257 https://www.proquest.com/docview/2209806756 https://www.proquest.com/docview/2186622119 https://www.proquest.com/docview/2237545364 |
| Volume | 25 |
| WOSCitedRecordID | wos000465103600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1365-2486 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003206 issn: 1354-1013 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB7BUiQuFBaWpgXkVghxibSJ7ThRT-3CwgFQ1RZpb5Hj2GgllKANi8Stj8Az9kk6dn5aVEBI3BLls-TYM-NvkvkB2FMZRSnImE8jaXzGqPQliwJfJHicGRPkIspdswlxfh5PJsm3Bfjc5sLU9SG6D25WM5y9tgous-ofJb9UGao5t_njSyHKLevB0uH38cVpZ4hp6FprBpQztDYBbQoL2UCebvDD4-g_jvmQsrozZ_z2VbNdg9WGapIvtWysw4Iu-rBcN5-868Pg6G-OG8IaJa_64J0hkS5nDkb2yehqiqzW3W2A-XFnkwVddWfSxIKQ0hDlQJrIIic2VvL3r_t5pUmdVkymbScUks1KaR9WKBqIvkXhJNddDzGSa5upqatNuBgf_Ryd-E2rBl_RGLfW0ChSfKioUUIatBE8l1koA2VoLoRBpyQwiU6UjLnhLEMOGQjNmBqqmKOLyukAekVZ6HdAqIxxaKQUUhvGchkzHJXYwlzoChojPDhodyxVTR1z207jKm39GVzr1K21B5866HVdvOMx0Ha77Wmjv1UahsMkts5U5MHH7jFqnv2dIgtdzhFjawWGtkLeM5jQthjmNGIebNUi1c2EIhtDxmlfyEnO01NMj0df3cX7l0M_wApyu6SOzdyG3s1srnfgjbq9mVazXVgUk3i3UZg_n9UZEA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFD6UbUVfal2tndpqFBFfBnYmyVzAF912rbhdRFvo25DJJGWhzJSdbqFv_gR_Y3-J52QuWqxF8G2GfIFMck7yncy5ALzWOUcpyIXPI2V9IbjylYgCP07xOLM2KOKocMUm4tksOTlJv6zAuy4WpskP0V-4kWa4_ZoUnC6kf9PyU52jnksKIF8VKEZyAKt7XyfH034n5qGrrRlwKXC7CXibWYg8efrON8-jP0jmTc7qDp3Jw_8b7gast2STvW-k4xGsmHII95ryk1dD2Nz_FeWGsFbN6yF4h0ilq4WDsTdsfDZHXuveHoP9dkXhgi6_M2u9QVhlmXYgw1RZMPKWvP7-Y1kb1gQWs3lXC4Xli0pRY43CgehLFE923lcRY4WhWE1TP4Hjyf7R-MBvizX4mie4uJZHkZYjza2OlcVdQhYqD1WgLS_i2KJZEtjUpFol0kqRI4sMYiOEHulEopEq-SYMyqo0W8C4SrBrpDWSGyEKlQjslVJqLjQGrY09eNstWabbTOZUUOMs6ywanOvMzbUHr3roeZO-4zbQTrfuWavBdRaGozQhcyry4GXfjLpHP1RUaaolYihbYEg58u7AhFRkWPJIePC0kal-JBz5GHJO-iAnOn8fYvZx_ME9bP879AXcPzg6nGbTT7PPz-ABMr208dTcgcHFYml2YU1fXszrxfNWb34CxeAcGA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFD6IVumLbVdtU62OIqUvgU3mkgR8aVdXi7qIreBbmExmyoIky8YVfPMn9Df6SzwzubTSC4JvCfkGJjPnm_lOMuccgF2VUbSCjPlUSOMzRqUvmQj8KMHtzJggj0Tuik1Eo1F8eZmczcFeGwtT54foPrhZZrj12hJcT3LzG8t_qAx5zm0A-QLjiUBaLuyfDy9OupWYhq62ZkA5w-UmoE1mIXuSp2v8eD_6Q2Q-1qxu0xm-el53X8NyIzbJ59o63sCcLnqwWJefvO3B2sGvKDeENTSveuCdopQupw5GPpLB1Rh1rbtbAfPt1oYLuvzOpDkNQkpDlANpIouc2NOS93c_Z5UmdWAxGbe1UEg2LaV9WKFxIPoGzZNMuipiJNc2VlNXq3AxPPg-OPKbYg2-ojFOrqFCKN5X1KhIGlwleC6zUAbK0DyKDLolgUl0omTMDWcZqsgg0oypvoo5OqmcrsF8URb6HRAqY2wqlEJxw1guY4atEpuaC51BYyIPPrVTlqomk7ktqHGVth4NjnXqxtqDnQ46qdN3_A200c572jC4SsOwn8TWnRIebHePkXv2h4osdDlDjM0WGNocef_BhLbIMKeCefC2tqmuJxT1GGpO-0LOdP7dxfRw8MVdvH86dAuWzvaH6cnX0fE6vEShl9QHNTdg_no60x_ghbq5HlfTzYY2DyhiG5M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+effects+of+climate+and+land%E2%80%90use+change+influence+broad%E2%80%90scale+avian+population+declines&rft.jtitle=Global+change+biology&rft.au=Northrup%2C+Joseph+M&rft.au=Rivers%2C+James+W&rft.au=Yang%2C+Zhiqiang&rft.au=Betts%2C+Matthew+G&rft.date=2019-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=25&rft.issue=5&rft.spage=1561&rft.epage=1575&rft_id=info:doi/10.1111%2Fgcb.14571&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |