Convergence for noncommutative rational functions evaluated in random matrices

One of the main applications of free probability is to show that for appropriately chosen independent copies of d random matrix models, any noncommutative polynomial in these d variables has a spectral distribution that converges asymptotically and can be described with the help of free probability....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematische annalen Ročník 388; číslo 1; s. 543 - 574
Hlavní autoři: Collins, Benoît, Mai, Tobias, Miyagawa, Akihiro, Parraud, Félix, Yin, Sheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2024
Springer Nature B.V
Témata:
ISSN:0025-5831, 1432-1807
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:One of the main applications of free probability is to show that for appropriately chosen independent copies of d random matrix models, any noncommutative polynomial in these d variables has a spectral distribution that converges asymptotically and can be described with the help of free probability. This paper aims to show that this can be extended to noncommutative rational functions, answering an open question by Roland Speicher. This paper also provides a noncommutative probability approach to approximating the free field. At the algebraic level, its construction relies on the approximation by generic matrices. On the other hand, it admits many embeddings in the algebra of operators affiliated with a I I 1 factor. A consequence of our result is that, as soon as the generators admit a random matrix model, the approximation of any self-adjoint noncommutative rational function by generic matrices can be upgraded at the level of convergence in distribution.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-022-02530-5