Higher-order time integration schemes for the unsteady Navier–Stokes equations on unstructured meshes

The efficiency gains obtained using higher-order implicit Runge–Kutta (RK) schemes as compared with the second-order accurate backward difference schemes for the unsteady Navier–Stokes equations are investigated. Three different algorithms for solving the nonlinear system of equations arising at eac...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics Vol. 191; no. 2; pp. 542 - 566
Main Authors: Jothiprasad, Giridhar, Mavriplis, Dimitri J., Caughey, David A.
Format: Journal Article
Language:English
Published: Elsevier Inc 01.11.2003
Subjects:
ISSN:0021-9991, 1090-2716
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The efficiency gains obtained using higher-order implicit Runge–Kutta (RK) schemes as compared with the second-order accurate backward difference schemes for the unsteady Navier–Stokes equations are investigated. Three different algorithms for solving the nonlinear system of equations arising at each time step are presented. The first algorithm (nonlinear multigrid, NMG) is a pseudo-time-stepping scheme which employs a nonlinear full approximation storage (FAS) agglomeration multigrid method to accelerate convergence. The other two algorithms are based on inexact Newton’s methods. The linear system arising at each Newton step is solved using iterative/Krylov techniques and left preconditioning is used to accelerate convergence of the linear solvers. One of the methods (LMG) uses Richardson’s iterative scheme for solving the linear system at each Newton step while the other (PGMRES) uses the generalized minimal residual method. Results demonstrating the relative superiority of these Newton’s method based schemes are presented. Efficiency gains as high as 10 are obtained by combining the higher-order time integration schemes such as fourth-order Runge–Kutta (RK64) with the more efficient inexact Newton’s method based schemes (LMG).
AbstractList The efficiency gains obtained using higher-order implicit Runge-Kutta (RK) schemes as compared with the second-order accurate backward difference schemes for the unsteady Navier-Stokes equations are investigated. Three different algorithms for solving the nonlinear system of equations arising at each time step are presented. The first algorithm (nonlinear multigrid, NMG) is a pseudo- time-stepping scheme which employs a nonlinear full approximation storage (FAS) agglomeration multigrid method to accelerate convergence. The other two algorithms are based on inexact Newton's methods. The linear system arising at each Newton step is solved using iterative/Krylov techniques and left preconditioning is used to accelerate convergence of the linear solvers. One of the methods (LMG) uses Richardson's iterative scheme for solving the linear system at each Newton step while the other (PGMRES) uses the generalized minimal residual method. Results demonstrating the relative superiority of these Newton's method based schemes are presented. Efficiency gains as high as 10 are obtained by combining the higher-order time integration schemes such as fourth- order Runge-Kutta (RK64) with the more efficient inexact Newton's method based schemes (LMG). (Author)
The efficiency gains obtained using higher-order implicit Runge–Kutta (RK) schemes as compared with the second-order accurate backward difference schemes for the unsteady Navier–Stokes equations are investigated. Three different algorithms for solving the nonlinear system of equations arising at each time step are presented. The first algorithm (nonlinear multigrid, NMG) is a pseudo-time-stepping scheme which employs a nonlinear full approximation storage (FAS) agglomeration multigrid method to accelerate convergence. The other two algorithms are based on inexact Newton’s methods. The linear system arising at each Newton step is solved using iterative/Krylov techniques and left preconditioning is used to accelerate convergence of the linear solvers. One of the methods (LMG) uses Richardson’s iterative scheme for solving the linear system at each Newton step while the other (PGMRES) uses the generalized minimal residual method. Results demonstrating the relative superiority of these Newton’s method based schemes are presented. Efficiency gains as high as 10 are obtained by combining the higher-order time integration schemes such as fourth-order Runge–Kutta (RK64) with the more efficient inexact Newton’s method based schemes (LMG).
Author Mavriplis, Dimitri J.
Caughey, David A.
Jothiprasad, Giridhar
Author_xml – sequence: 1
  givenname: Giridhar
  surname: Jothiprasad
  fullname: Jothiprasad, Giridhar
  email: gj24@cornell.edu
  organization: Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
– sequence: 2
  givenname: Dimitri J.
  surname: Mavriplis
  fullname: Mavriplis, Dimitri J.
  email: dimitri@icase.edu
  organization: National Institute of Aerospace, 144 Research Drive, Hampton, VA 23666, USA
– sequence: 3
  givenname: David A.
  surname: Caughey
  fullname: Caughey, David A.
  email: dac5@cornell.edu
  organization: Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
BookMark eNqFkMtKAzEUQINUsK1-gjAr0cXozaTzCC5Eii8QXVTXIZPcaaPtpE0ygjv_wT_0S0xbceHGVeDmnAv3DEivtS0SckjhlAItziYAGU055_QY2AkAY5DyHdKnwCHNSlr0SP8X2SMD718AoMpHVZ9Mb810hi61TqNLgllgYtqAUyeDsW3i1QwX6JPGxs8ZJl3rA0r9njzIN4Pu6-NzEuxrBHDVbQyfRGtNuU6FzqFOoj5Dv092Gzn3ePDzDsnz9dXT-Da9f7y5G1_ep4pVeUibUhUjBrVErnMtGc-qIi8QoCw0VnUNSmOTYwNSF7yukJU8jyPMCtXUGR2xITna7l06u-rQB7EwXuF8Llu0nRdZyWkWu0TwfAsqZ7132AhlwuaE4KSZCwpiHVds4op1OQFMbOIKHu38j710ZiHd-7_exdbD2GBdUHhlsFWojUMVhLbmnw3foceX0Q
CitedBy_id crossref_primary_10_1016_j_amc_2019_124644
crossref_primary_10_1016_j_cma_2004_06_036
crossref_primary_10_1016_j_jcp_2005_08_018
crossref_primary_10_1016_j_jcp_2011_01_022
crossref_primary_10_1007_s10444_016_9468_x
crossref_primary_10_2514_1_J055106
crossref_primary_10_1016_j_jcp_2013_01_004
crossref_primary_10_1016_j_jcp_2010_08_033
crossref_primary_10_1002_fld_4208
crossref_primary_10_2514_1_22847
crossref_primary_10_1137_110825996
crossref_primary_10_1016_j_jcp_2018_08_003
crossref_primary_10_1080_10618562_2013_813491
crossref_primary_10_1016_j_camwa_2022_05_007
crossref_primary_10_1016_j_cja_2014_10_004
crossref_primary_10_1080_10407790_2011_594398
crossref_primary_10_2514_1_J061929
crossref_primary_10_1002_fld_861
crossref_primary_10_1016_j_compfluid_2012_07_002
crossref_primary_10_1016_j_jcp_2017_09_043
crossref_primary_10_1016_j_cma_2010_07_001
crossref_primary_10_1007_s10915_017_0476_x
crossref_primary_10_1016_j_jcp_2010_04_027
crossref_primary_10_1016_j_jcp_2015_03_022
crossref_primary_10_1016_j_compfluid_2015_02_006
crossref_primary_10_1051_0004_6361_201116979
crossref_primary_10_1016_j_actaastro_2020_03_019
crossref_primary_10_1016_j_camwa_2021_08_018
crossref_primary_10_1016_j_jcp_2007_02_027
crossref_primary_10_1016_j_jcp_2012_04_013
crossref_primary_10_1016_j_compfluid_2009_09_004
crossref_primary_10_1016_j_jcp_2007_03_002
crossref_primary_10_1016_j_cpc_2024_109351
crossref_primary_10_1007_s40430_021_03055_9
Cites_doi 10.1080/10407788608913491
10.2514/6.1985-1494
10.1137/0719025
10.1006/jcph.2001.6948
10.1007/BF01963532
10.1017/S0022112097007465
10.2514/2.590
10.1006/jcph.1998.6036
10.2514/6.1997-2025
10.1006/jcph.2000.6488
10.1006/jfls.1998.0184
10.1137/0907058
10.2514/6.2001-2612
10.2514/6.1998-2966
ContentType Journal Article
Copyright 2003 Elsevier B.V.
Copyright_xml – notice: 2003 Elsevier B.V.
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/S0021-9991(03)00330-9
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
EndPage 566
ExternalDocumentID 10_1016_S0021_9991_03_00330_9
S0021999103003309
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6OB
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADIYS
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSQ
SSV
SSZ
T5K
T9H
TN5
UPT
UQL
WUQ
XFK
YQT
ZMT
ZU3
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c385t-f7c6430bae9d5da3928656e0076de8bb0cdef5ef0ad69b8e3795cdee26cfb2143
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000186667400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9991
IngestDate Sun Sep 28 10:42:32 EDT 2025
Tue Nov 18 21:38:46 EST 2025
Sat Nov 29 06:45:46 EST 2025
Fri Feb 23 02:28:28 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Jacobian-free Newton
Navier–Stokes
Unstructured
Runge–Kutta methods
Multigrid
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c385t-f7c6430bae9d5da3928656e0076de8bb0cdef5ef0ad69b8e3795cdee26cfb2143
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://ntrs.nasa.gov/api/citations/20030010277/downloads/20030010277.pdf
PQID 27912090
PQPubID 23500
PageCount 25
ParticipantIDs proquest_miscellaneous_27912090
crossref_citationtrail_10_1016_S0021_9991_03_00330_9
crossref_primary_10_1016_S0021_9991_03_00330_9
elsevier_sciencedirect_doi_10_1016_S0021_9991_03_00330_9
PublicationCentury 2000
PublicationDate 2003-11-01
PublicationDateYYYYMMDD 2003-11-01
PublicationDate_xml – month: 11
  year: 2003
  text: 2003-11-01
  day: 01
PublicationDecade 2000
PublicationTitle Journal of computational physics
PublicationYear 2003
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References L.B. Wigton, N.J. Yu, D.P. Young, GMRES acceleration of computational fluid dynamics codes, in: Proceedings of the 7th AIAA CFD Conference, 1985, pp. 67–74
D.J. Mavriplis, Multigrid techniques for unstructured meshes, in: VKI Lecture Series, no. 1995-02 in VKI-LS, 1995
H. Bijl, M.H. Carpenter, V.N. Vatsa, Time integration schemes for the unsteady Navier–Stokes equations, AIAA Paper 2001-2612
Mavriplis (BIB6) 1999; 37
Mavriplis, Pelaez, Kandil (BIB25) 2001
V. Venkatakrishnan, Implicit schemes and parallel computing in unstructured grid CFD, in: VKI Lecture Series VKI-LS 1995-02, 1995
C.A. Kennedy, M.H. Carpenter, Additive Runge–Kutta schemes for convection–diffusion-reaction equations, Tech. Rep. NASA/TM-2001-211038, NASA Langley Research Center, 2001
A. Jameson, Time-dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings, AIAA Paper 91-1596
Saad, Schultz (BIB12) 1986; 7
E. Turkel, Preconditioning-squared methods for multidimensional aerodynamics, in: Proceedings of the 13th AIAA CFD Conference, Snowmass, CO, June, 1997, pp. 856–866
R. Dembo, S. Eisenstat, T. Steihaug, Inexact Newton methods, SIAM Journal on Numerical Analysis 19 (400)
Ruge, Stüben (BIB19) 1987
Mousseau, Knoll, Rider (BIB10) 2000; 160
N.D. Melson, M.D. Sanetrik, H.L. Atkins, Time-accurate Navier–Stokes calculations with multigrid acceleration, in: Proc. 6th Copper Mountain Conference on Multigrid Methods, NASA Conference Publication 3224, 1993, pp. 423–439
Hairer, Norsett, Wanner (BIB9) 1991
Golub, Loan (BIB20) 1996
Henderson (BIB24) 1997; 352
Hutchinson, Raithby (BIB15) 1986; 9
Trefethen, Bau (BIB21) 1997
D.J. Mavriplis, On convergence acceleration techniques for unstructured meshes, AIAA Paper 98-2966, Presented at the 29th AIAA Fluid Dynamics Conference, Albuquerque, NM, June 1998
Williamson, Brown (BIB23) 1998; 12
Mavriplis (BIB5) 2002; 175
E.J. Nielsen, W.K. Anderson, R.W. Walters, D.E. Keyes, Application of Newton–Krylov methodology to a three-dimensional Euler code, in: Proceedings of the 12th AIAA CFD Conference, no. AIAA Paper 97-1953, 1997
Mavriplis (BIB13) 1998; 145
B.V. Leer, C.H. Tai, K.G. Powell, Design of optimally-smoothing multistage schemes for the Euler equations, AIAA Paper 89-1933
G. Dahlquist, A special stability problem for linear multistep methods, BIT 3
Hairer (10.1016/S0021-9991(03)00330-9_BIB9) 1991
Mousseau (10.1016/S0021-9991(03)00330-9_BIB10) 2000; 160
Mavriplis (10.1016/S0021-9991(03)00330-9_BIB13) 1998; 145
Trefethen (10.1016/S0021-9991(03)00330-9_BIB21) 1997
Mavriplis (10.1016/S0021-9991(03)00330-9_BIB6) 1999; 37
10.1016/S0021-9991(03)00330-9_BIB2
10.1016/S0021-9991(03)00330-9_BIB1
Mavriplis (10.1016/S0021-9991(03)00330-9_BIB5) 2002; 175
Golub (10.1016/S0021-9991(03)00330-9_BIB20) 1996
10.1016/S0021-9991(03)00330-9_BIB8
10.1016/S0021-9991(03)00330-9_BIB7
10.1016/S0021-9991(03)00330-9_BIB26
10.1016/S0021-9991(03)00330-9_BIB4
10.1016/S0021-9991(03)00330-9_BIB3
10.1016/S0021-9991(03)00330-9_BIB22
Mavriplis (10.1016/S0021-9991(03)00330-9_BIB25) 2001
10.1016/S0021-9991(03)00330-9_BIB17
10.1016/S0021-9991(03)00330-9_BIB16
10.1016/S0021-9991(03)00330-9_BIB18
Henderson (10.1016/S0021-9991(03)00330-9_BIB24) 1997; 352
Hutchinson (10.1016/S0021-9991(03)00330-9_BIB15) 1986; 9
Saad (10.1016/S0021-9991(03)00330-9_BIB12) 1986; 7
Williamson (10.1016/S0021-9991(03)00330-9_BIB23) 1998; 12
10.1016/S0021-9991(03)00330-9_BIB14
10.1016/S0021-9991(03)00330-9_BIB11
Ruge (10.1016/S0021-9991(03)00330-9_BIB19) 1987
References_xml – volume: 175
  start-page: 302
  year: 2002
  end-page: 325
  ident: BIB5
  article-title: An assessment of linear versus non-linear multigrid methods for unstructured mesh solvers
  publication-title: Journal of Computational Physics
– reference: B.V. Leer, C.H. Tai, K.G. Powell, Design of optimally-smoothing multistage schemes for the Euler equations, AIAA Paper 89-1933
– volume: 12
  start-page: 1073
  year: 1998
  end-page: 1085
  ident: BIB23
  article-title: A series in
  publication-title: Journal of Fluids and Structures
– volume: 145
  start-page: 141
  year: 1998
  end-page: 165
  ident: BIB13
  article-title: Multigrid strategies for viscous flow solvers on anisotrpic unstructured meshes
  publication-title: Journal of Computational Physics
– volume: 37
  start-page: 1222
  year: 1999
  end-page: 1230
  ident: BIB6
  article-title: Directional agglomeration multigrid techniques for high-Reynolds number viscous flows
  publication-title: AIAA Journal
– year: 1991
  ident: BIB9
  article-title: Solving Ordinary Differential Equations I: Nonstiff Problems
– volume: 160
  start-page: 743
  year: 2000
  end-page: 765
  ident: BIB10
  article-title: Physics-based precondtioning and the Newton–Krylov method for the non-equilibrium radiation diffusion
  publication-title: Journal of Computational Physics
– reference: E. Turkel, Preconditioning-squared methods for multidimensional aerodynamics, in: Proceedings of the 13th AIAA CFD Conference, Snowmass, CO, June, 1997, pp. 856–866
– reference: H. Bijl, M.H. Carpenter, V.N. Vatsa, Time integration schemes for the unsteady Navier–Stokes equations, AIAA Paper 2001-2612
– reference: E.J. Nielsen, W.K. Anderson, R.W. Walters, D.E. Keyes, Application of Newton–Krylov methodology to a three-dimensional Euler code, in: Proceedings of the 12th AIAA CFD Conference, no. AIAA Paper 97-1953, 1997
– reference: L.B. Wigton, N.J. Yu, D.P. Young, GMRES acceleration of computational fluid dynamics codes, in: Proceedings of the 7th AIAA CFD Conference, 1985, pp. 67–74
– year: 1997
  ident: BIB21
  article-title: Numerical Linear Algebra
– volume: 352
  start-page: 65
  year: 1997
  end-page: 112
  ident: BIB24
  article-title: Nonlinear dynamics and pattern formation in turbulent wake transition
  publication-title: Journal of Fluid Mechanics
– year: 1996
  ident: BIB20
  article-title: Matrix Computations
– reference: N.D. Melson, M.D. Sanetrik, H.L. Atkins, Time-accurate Navier–Stokes calculations with multigrid acceleration, in: Proc. 6th Copper Mountain Conference on Multigrid Methods, NASA Conference Publication 3224, 1993, pp. 423–439
– reference: A. Jameson, Time-dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings, AIAA Paper 91-1596
– reference: D.J. Mavriplis, On convergence acceleration techniques for unstructured meshes, AIAA Paper 98-2966, Presented at the 29th AIAA Fluid Dynamics Conference, Albuquerque, NM, June 1998
– reference: C.A. Kennedy, M.H. Carpenter, Additive Runge–Kutta schemes for convection–diffusion-reaction equations, Tech. Rep. NASA/TM-2001-211038, NASA Langley Research Center, 2001
– reference: R. Dembo, S. Eisenstat, T. Steihaug, Inexact Newton methods, SIAM Journal on Numerical Analysis 19 (400)
– volume: 9
  start-page: 511
  year: 1986
  end-page: 537
  ident: BIB15
  article-title: A multigrid method based on the additive correction strategy
  publication-title: Numerical Heat Transfer
– volume: 7
  start-page: 856
  year: 1986
  ident: BIB12
  article-title: A generalized minimal residual algorithm for somving non-symetric linear systems
  publication-title: SIAM Journal on Scientific and Statistical Computing
– reference: V. Venkatakrishnan, Implicit schemes and parallel computing in unstructured grid CFD, in: VKI Lecture Series VKI-LS 1995-02, 1995
– reference: G. Dahlquist, A special stability problem for linear multistep methods, BIT 3
– reference: D.J. Mavriplis, Multigrid techniques for unstructured meshes, in: VKI Lecture Series, no. 1995-02 in VKI-LS, 1995
– start-page: 461
  year: 2001
  end-page: 470
  ident: BIB25
  article-title: Large eddy and detached eddy simulations using an unstructured multigrid solver
  publication-title: DNS/LES – Progress and Challenges. Proc. of the Third AFOSR Int. Conf. on DNS/LES
– start-page: 73
  year: 1987
  end-page: 131
  ident: BIB19
  article-title: Algebraic multigrid
  publication-title: Multigrid Methods, SIAM Frontiers in Applied Mathematics
– year: 1996
  ident: 10.1016/S0021-9991(03)00330-9_BIB20
– volume: 9
  start-page: 511
  year: 1986
  ident: 10.1016/S0021-9991(03)00330-9_BIB15
  article-title: A multigrid method based on the additive correction strategy
  publication-title: Numerical Heat Transfer
  doi: 10.1080/10407788608913491
– ident: 10.1016/S0021-9991(03)00330-9_BIB16
– ident: 10.1016/S0021-9991(03)00330-9_BIB22
  doi: 10.2514/6.1985-1494
– ident: 10.1016/S0021-9991(03)00330-9_BIB14
– ident: 10.1016/S0021-9991(03)00330-9_BIB3
– ident: 10.1016/S0021-9991(03)00330-9_BIB18
  doi: 10.1137/0719025
– volume: 175
  start-page: 302
  issue: 1
  year: 2002
  ident: 10.1016/S0021-9991(03)00330-9_BIB5
  article-title: An assessment of linear versus non-linear multigrid methods for unstructured mesh solvers
  publication-title: Journal of Computational Physics
  doi: 10.1006/jcph.2001.6948
– ident: 10.1016/S0021-9991(03)00330-9_BIB7
  doi: 10.1007/BF01963532
– volume: 352
  start-page: 65
  year: 1997
  ident: 10.1016/S0021-9991(03)00330-9_BIB24
  article-title: Nonlinear dynamics and pattern formation in turbulent wake transition
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112097007465
– ident: 10.1016/S0021-9991(03)00330-9_BIB11
– volume: 37
  start-page: 1222
  issue: 10
  year: 1999
  ident: 10.1016/S0021-9991(03)00330-9_BIB6
  article-title: Directional agglomeration multigrid techniques for high-Reynolds number viscous flows
  publication-title: AIAA Journal
  doi: 10.2514/2.590
– volume: 145
  start-page: 141
  issue: 1
  year: 1998
  ident: 10.1016/S0021-9991(03)00330-9_BIB13
  article-title: Multigrid strategies for viscous flow solvers on anisotrpic unstructured meshes
  publication-title: Journal of Computational Physics
  doi: 10.1006/jcph.1998.6036
– start-page: 73
  year: 1987
  ident: 10.1016/S0021-9991(03)00330-9_BIB19
  article-title: Algebraic multigrid
– year: 1997
  ident: 10.1016/S0021-9991(03)00330-9_BIB21
– ident: 10.1016/S0021-9991(03)00330-9_BIB4
– ident: 10.1016/S0021-9991(03)00330-9_BIB17
  doi: 10.2514/6.1997-2025
– ident: 10.1016/S0021-9991(03)00330-9_BIB2
– ident: 10.1016/S0021-9991(03)00330-9_BIB8
– volume: 160
  start-page: 743
  year: 2000
  ident: 10.1016/S0021-9991(03)00330-9_BIB10
  article-title: Physics-based precondtioning and the Newton–Krylov method for the non-equilibrium radiation diffusion
  publication-title: Journal of Computational Physics
  doi: 10.1006/jcph.2000.6488
– volume: 12
  start-page: 1073
  year: 1998
  ident: 10.1016/S0021-9991(03)00330-9_BIB23
  article-title: A series in 1Re to represent the Strouhal–Reynolds number relationship of the cylinder wake
  publication-title: Journal of Fluids and Structures
  doi: 10.1006/jfls.1998.0184
– year: 1991
  ident: 10.1016/S0021-9991(03)00330-9_BIB9
– start-page: 461
  year: 2001
  ident: 10.1016/S0021-9991(03)00330-9_BIB25
  article-title: Large eddy and detached eddy simulations using an unstructured multigrid solver
– volume: 7
  start-page: 856
  year: 1986
  ident: 10.1016/S0021-9991(03)00330-9_BIB12
  article-title: A generalized minimal residual algorithm for somving non-symetric linear systems
  publication-title: SIAM Journal on Scientific and Statistical Computing
  doi: 10.1137/0907058
– ident: 10.1016/S0021-9991(03)00330-9_BIB1
  doi: 10.2514/6.2001-2612
– ident: 10.1016/S0021-9991(03)00330-9_BIB26
  doi: 10.2514/6.1998-2966
SSID ssj0008548
Score 2.0162148
Snippet The efficiency gains obtained using higher-order implicit Runge–Kutta (RK) schemes as compared with the second-order accurate backward difference schemes for...
The efficiency gains obtained using higher-order implicit Runge-Kutta (RK) schemes as compared with the second-order accurate backward difference schemes for...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 542
SubjectTerms Jacobian-free Newton
Multigrid
Navier–Stokes
Runge–Kutta methods
Unstructured
Title Higher-order time integration schemes for the unsteady Navier–Stokes equations on unstructured meshes
URI https://dx.doi.org/10.1016/S0021-9991(03)00330-9
https://www.proquest.com/docview/27912090
Volume 191
WOSCitedRecordID wos000186667400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQcuvBFtefhAERxMnYcT-1hVWwEqC1K30t4sx3FERZXd7kvlwm9nHNtJoEILBy7RKhvHWn_fzoxnxjMIvVI6MVRUjERlQkmqsowIWiUENGEa8dJEkaqaZhP5eMynU_FlMPgRzsJsLvO65tfXYv5foYZ7ALY9OvsPcLcvhRvwGUCHK8AO178C3mVukKamZtM6vi0JYZGGzayx9ZlCduG6bmD-DmLWakhytpp9g6_N1TrkyNXNM7bK7NrmqsPgrz7v8KZNq5seEcG_6LwmXY4ikOJivlBLx6q2qdcntVnYg8HOoO_iVMdqDb_ERfm9yzW4JxJ_Tq8ncm0OiHAtuVqRK6Iet-KeAGWu1pbXxcx1ZLkh5p3H4ax994HtsXUQW68sME50ui3E88ef5cn56amcjKaT1_MrYruO2ei8b8FyC-3EORN8iHaOPoymH1tdzlnqdLmfqDsDdtjN_oYmb_3Mf7JuftPzjfEyuY_ueoTwkWPLAzQw9UN0z-9AsJfvy0fI9MmDLXlwjzzYkwcDeTCQBwfy4F_Ig1vyYBjTJw925HmMzk9Gk-P3xDfiIDrhbEWqXIPhSgtlRMlKBSY1h22AsVHc0vCioLo0FTMVVWUmCm6SXDC4ZeJMV0UMFvkTNKxntXmKcKqjrCp4EaVVnhZZojTV1mhUsJFmJY13URoWUGpfpd42S7mUXToirLu06y5pIpt1l2IXvWuHzV2Zlm0DeEBHelvT2ZASOLZt6MuApgRZbANsqjaz9VLGubBH0ene1if20Z3uz_IMDQEI8xzd1pvVxXLxwrPwJ5_3qZ8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Higher-order+time+integration+schemes+for+the+unsteady+Navier-Stokes+equations+on+unstructured+meshes&rft.jtitle=Journal+of+computational+physics&rft.au=Jothiprasad%2C+G&rft.au=Mavriplis%2C+D+J&rft.au=Caughey%2C+D+A&rft.date=2003-11-01&rft.issn=0021-9991&rft.volume=191&rft.issue=2&rft.spage=542&rft.epage=566&rft_id=info:doi/10.1016%2FS0021-9991%2803%2900330-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon