Disentanglement effects on welding behaviour of polymer melts during the fused-filament-fabrication method for additive manufacturing

Although 3D printing has the potential to transform manufacturing processes, the strength of printed parts often does not rival that of traditionally-manufactured parts. The fused-filament fabrication method involves melting a thermoplastic, followed by layer-by-layer extrusion of the molten viscoel...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Polymer (Guilford) Ročník 123; s. 376 - 391
Hlavní autori: McIlroy, C., Olmsted, P.D.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Kidlington Elsevier Ltd 11.08.2017
Elsevier BV
Predmet:
ISSN:0032-3861, 1873-2291
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Although 3D printing has the potential to transform manufacturing processes, the strength of printed parts often does not rival that of traditionally-manufactured parts. The fused-filament fabrication method involves melting a thermoplastic, followed by layer-by-layer extrusion of the molten viscoelastic material to fabricate a three-dimensional object. The strength of the welds between layers is controlled by interdiffusion and entanglement of the melt across the interface. However, diffusion slows down as the printed layer cools towards the glass transition temperature. Diffusion is also affected by high shear rates in the nozzle, which significantly deform and disentangle the polymer microstructure prior to welding. In this paper, we model non-isothermal polymer relaxation, entanglement recovery, and diffusion processes that occur post-extrusion to investigate the effects that typical printing conditions and amorphous (non-crystalline) polymer rheology have on the ultimate weld structure. Although we find the weld thickness to be of the order of the polymer size, the structure of the weld is anisotropic and relatively disentangled; reduced mechanical strength at the weld is attributed to this lower degree of entanglement. [Display omitted] •Amorphous polymer melt is extruded and deposited filament-by-filament.•Non-isothermal inter-diffusion from an anisotropic configuration is modelled.•Inter-penetration depth and re-entanglement is arrested by the glass transition.•Weld thickness (∼Rg ) is sufficient to achieve bulk mechanical strength at weld.•Reduced weld strength is attributed to a partially entangled structure.
AbstractList Although 3D printing has the potential to transform manufacturing processes, the strength of printed parts often does not rival that of traditionally-manufactured parts. The fused-filament fabrication method involves melting a thermoplastic, followed by layer-by-layer extrusion of the molten viscoelastic material to fabricate a three-dimensional object. The strength of the welds between layers is controlled by interdiffusion and entanglement of the melt across the interface. However, diffusion slows down as the printed layer cools towards the glass transition temperature. Diffusion is also affected by high shear rates in the nozzle, which significantly deform and disentangle the polymer microstructure prior to welding. In this paper, we model non-isothermal polymer relaxation, entanglement recovery, and diffusion processes that occur post-extrusion to investigate the effects that typical printing conditions and amorphous (non-crystalline) polymer rheology have on the ultimate weld structure. Although we find the weld thickness to be of the order of the polymer size, the structure of the weld is anisotropic and relatively disentangled; reduced mechanical strength at the weld is attributed to this lower degree of entanglement. [Display omitted] •Amorphous polymer melt is extruded and deposited filament-by-filament.•Non-isothermal inter-diffusion from an anisotropic configuration is modelled.•Inter-penetration depth and re-entanglement is arrested by the glass transition.•Weld thickness (∼Rg ) is sufficient to achieve bulk mechanical strength at weld.•Reduced weld strength is attributed to a partially entangled structure.
Although 3D printing has the potential to transform manufacturing processes, the strength of printed parts often does not rival that of traditionally-manufactured parts. The fused-filament fabrication method involves melting a thermoplastic, followed by layer-by-layer extrusion of the molten viscoelastic material to fabricate a three-dimensional object. The strength of the welds between layers is controlled by interdiffusion and entanglement of the melt across the interface. However, diffusion slows down as the printed layer cools towards the glass transition temperature. Diffusion is also affected by high shear rates in the nozzle, which significantly deform and disentangle the polymer microstructure prior to welding. In this paper, we model non-isothermal polymer relaxation, entanglement recovery, and diffusion processes that occur post-extrusion to investigate the effects that typical printing conditions and amorphous (non-crystalline) polymer rheology have on the ultimate weld structure. Although we find the weld thickness to be of the order of the polymer size, the structure of the weld is anisotropic and relatively disentangled; reduced mechanical strength at the weld is attributed to this lower degree of entanglement.
Author Olmsted, P.D.
McIlroy, C.
Author_xml – sequence: 1
  givenname: C.
  orcidid: 0000-0001-5302-5920
  surname: McIlroy
  fullname: McIlroy, C.
  email: claire_mcilroy@hotmail.co.uk
– sequence: 2
  givenname: P.D.
  surname: Olmsted
  fullname: Olmsted, P.D.
  email: Peter.Olmsted@georgetown.edu
BookMark eNqFkUFrHCEYhqWk0E3an1AQcp6pzqjj0kMpSdoGArm0Z3H0M-syoxt1NuQH5H_Xze4pl5wUfN_n43s8R2chBkDoKyUtJVR827a7OD3PkNqO0KEloiWcfkArKoe-6bo1PUMrQvqu6aWgn9B5zltCSMc7tkIv1z5DKDo8TDDXCwbnwJSMY8BPMFkfHvAIG733cUk4OnwahWeYasou6ZAoG8BuyWAb5yd94DROj8kbXXwFzVA20WIXE9bW-uL3gGcdFqdNeQV8Rh-dnjJ8OZ0X6N-vm79Xf5q7-9-3Vz_vGtNLXpnCDP0g3DgMwIaBSSmAy46Z3lABmlPGGKytJr0mkriRdsQaw-nIpRnZ2vYX6PLI3aX4uEAualvXCnWkomsumORUsprix5RJMecETu2Sn3V6VpSog3G1VScN6mBcEaGq8dr7_qZnfHk1UJL207vtH8c2VAF7X1-z8RAMWJ_qjygb_TuE_0fLpkI
CitedBy_id crossref_primary_10_3390_ma11020285
crossref_primary_10_1016_j_addma_2022_102604
crossref_primary_10_3390_ma13204671
crossref_primary_10_1002_app_57600
crossref_primary_10_1002_app_55301
crossref_primary_10_1016_j_addma_2023_103538
crossref_primary_10_3390_ma11071191
crossref_primary_10_3390_polym13142314
crossref_primary_10_3390_polym15081817
crossref_primary_10_1016_j_compscitech_2020_108227
crossref_primary_10_3390_polym13193218
crossref_primary_10_1016_j_progpolymsci_2021_101411
crossref_primary_10_1002_adfm_202211579
crossref_primary_10_1016_j_addma_2021_102577
crossref_primary_10_1021_acsami_4c22694
crossref_primary_10_3390_polym13121983
crossref_primary_10_3390_ma16247664
crossref_primary_10_3390_polym14091754
crossref_primary_10_3390_ma11050826
crossref_primary_10_3390_jmmp7060189
crossref_primary_10_1177_0731684420929757
crossref_primary_10_3390_polym14235147
crossref_primary_10_3390_polym11091487
crossref_primary_10_1016_j_jmapro_2025_04_006
crossref_primary_10_3390_ma11101947
crossref_primary_10_1016_j_polymertesting_2019_04_020
crossref_primary_10_1016_j_jmapro_2025_04_014
crossref_primary_10_1515_ipp_2022_4217
crossref_primary_10_3390_polym13030399
crossref_primary_10_1016_j_addma_2019_03_030
crossref_primary_10_1039_D0PY00819B
crossref_primary_10_1089_3dp_2024_0115
crossref_primary_10_1016_j_polymertesting_2022_107805
crossref_primary_10_1038_s44334_025_00049_6
crossref_primary_10_3390_polym15214204
crossref_primary_10_1016_j_addma_2017_11_002
crossref_primary_10_1089_3dp_2022_0127
crossref_primary_10_1016_j_addma_2023_103678
crossref_primary_10_1177_1558925020910875
crossref_primary_10_3390_polym13040667
crossref_primary_10_1002_jbm_b_34997
crossref_primary_10_3390_polym14153081
crossref_primary_10_1103_PhysRevE_111_025503
crossref_primary_10_1002_app_51409
crossref_primary_10_1007_s40194_022_01277_6
crossref_primary_10_1016_j_tafmec_2020_102536
crossref_primary_10_3390_chemengineering7010001
crossref_primary_10_1016_j_addma_2022_102853
crossref_primary_10_1038_s44160_022_00115_3
crossref_primary_10_1016_j_addma_2019_02_013
crossref_primary_10_1016_j_jmapro_2023_02_039
crossref_primary_10_1007_s00170_020_05648_5
crossref_primary_10_1016_j_polymertesting_2023_108055
crossref_primary_10_1016_j_polymertesting_2019_106255
crossref_primary_10_1007_s40964_023_00469_w
crossref_primary_10_3390_app9132676
crossref_primary_10_1007_s11740_025_01366_7
crossref_primary_10_1039_D2RA05067F
crossref_primary_10_1016_j_addma_2020_101297
crossref_primary_10_1016_j_polymer_2018_04_024
crossref_primary_10_1021_acs_macromol_5c00569
crossref_primary_10_1016_j_addma_2019_100968
crossref_primary_10_1007_s00170_022_10327_8
crossref_primary_10_1002_mame_202200197
crossref_primary_10_1007_s00170_022_08663_w
crossref_primary_10_1016_j_addma_2022_102807
crossref_primary_10_1016_j_addma_2024_104395
crossref_primary_10_1016_j_addma_2018_10_018
crossref_primary_10_1016_j_polymer_2020_122637
crossref_primary_10_1016_j_addma_2020_101161
crossref_primary_10_3390_jmmp7010044
crossref_primary_10_1002_app_57409
crossref_primary_10_1016_j_apmt_2020_100700
crossref_primary_10_1016_j_addma_2021_102412
crossref_primary_10_1016_j_addma_2023_103624
crossref_primary_10_1016_j_compscitech_2025_111277
crossref_primary_10_1016_j_mechmat_2019_103139
crossref_primary_10_1016_j_addma_2024_104383
crossref_primary_10_1016_j_apm_2020_07_017
crossref_primary_10_1038_s41598_023_38527_6
crossref_primary_10_3390_polym13050789
crossref_primary_10_1016_j_engfracmech_2019_106818
crossref_primary_10_1007_s40964_018_0063_1
crossref_primary_10_1002_app_55360
crossref_primary_10_1016_j_addma_2021_102502
crossref_primary_10_1016_j_apmt_2024_102383
crossref_primary_10_1016_j_jmapro_2022_06_026
crossref_primary_10_1080_15583724_2023_2220024
crossref_primary_10_1007_s40964_023_00451_6
crossref_primary_10_1016_j_compscitech_2018_01_049
crossref_primary_10_1108_RPJ_10_2021_0272
crossref_primary_10_1002_pen_26495
crossref_primary_10_1016_j_tafmec_2023_104032
crossref_primary_10_3390_nano12071068
crossref_primary_10_1016_j_mechmat_2025_105408
crossref_primary_10_1016_j_matpr_2020_08_469
crossref_primary_10_3390_polym13203534
crossref_primary_10_1016_j_addma_2020_101368
crossref_primary_10_3390_polym14142792
crossref_primary_10_1557_s43579_021_00025_z
crossref_primary_10_1016_j_addma_2021_102518
crossref_primary_10_1007_s10118_021_2606_z
crossref_primary_10_3390_polym14245357
crossref_primary_10_1016_j_addma_2021_101995
crossref_primary_10_1007_s00170_024_14103_8
crossref_primary_10_1039_D5AN00789E
crossref_primary_10_1016_j_matlet_2020_127742
crossref_primary_10_1016_j_polymer_2024_127333
crossref_primary_10_1016_j_polymer_2025_129009
crossref_primary_10_1002_pc_29396
crossref_primary_10_1016_j_addma_2024_104191
crossref_primary_10_1002_macp_202300356
crossref_primary_10_1007_s40964_024_00833_4
crossref_primary_10_3390_pharmaceutics11040165
crossref_primary_10_1016_j_addma_2020_101361
crossref_primary_10_1007_s40964_020_00137_3
crossref_primary_10_3390_ma13235328
crossref_primary_10_1002_adem_202201468
crossref_primary_10_3390_ma15248722
crossref_primary_10_1002_pi_6166
crossref_primary_10_1016_j_addma_2019_100815
crossref_primary_10_1080_17452759_2023_2300666
crossref_primary_10_3390_polym17172280
crossref_primary_10_1007_s40430_019_2037_8
crossref_primary_10_3390_ma16020691
crossref_primary_10_1016_j_compstruct_2023_117715
crossref_primary_10_1089_3dp_2023_0104
crossref_primary_10_1016_j_polymer_2021_124230
crossref_primary_10_1007_s40964_022_00349_9
crossref_primary_10_1039_D3PY00517H
crossref_primary_10_1016_j_addma_2024_104063
crossref_primary_10_1007_s00397_022_01377_6
crossref_primary_10_3390_polym12051166
crossref_primary_10_1108_RPJ_10_2018_0276
crossref_primary_10_1002_adhm_201800213
crossref_primary_10_3390_polym11020315
crossref_primary_10_1007_s40964_023_00492_x
crossref_primary_10_1016_j_addma_2022_102596
crossref_primary_10_1002_pc_27431
crossref_primary_10_1002_app_53667
crossref_primary_10_1002_pc_28769
crossref_primary_10_1002_app_52337
crossref_primary_10_1108_RPJ_05_2019_0142
crossref_primary_10_1016_j_addma_2020_101463
crossref_primary_10_3390_coatings11070792
crossref_primary_10_1007_s00170_018_2827_7
crossref_primary_10_3390_polym14225047
crossref_primary_10_1002_admt_202400457
crossref_primary_10_1122_1_5054648
crossref_primary_10_1007_s40430_020_02724_5
crossref_primary_10_1007_s12289_020_01591_8
crossref_primary_10_1016_j_polymer_2018_03_063
crossref_primary_10_1007_s40192_020_00188_y
crossref_primary_10_1007_s00289_025_05720_8
crossref_primary_10_1007_s00170_023_11576_x
crossref_primary_10_1002_app_51818
crossref_primary_10_1108_RPJ_08_2018_0203
crossref_primary_10_1080_14658011_2020_1855386
crossref_primary_10_1016_j_ijpharm_2021_120626
crossref_primary_10_1016_j_polymer_2021_123734
crossref_primary_10_1002_pen_25693
crossref_primary_10_3390_polym12092070
crossref_primary_10_1108_RPJ_05_2024_0188
crossref_primary_10_1016_j_addma_2022_102773
crossref_primary_10_1002_pc_29114
crossref_primary_10_1007_s00170_020_05538_w
crossref_primary_10_1122_1_5093033
crossref_primary_10_3390_polym13223965
crossref_primary_10_1080_17452759_2024_2336160
crossref_primary_10_1016_j_addma_2020_101544
crossref_primary_10_1016_j_addma_2020_101665
crossref_primary_10_1038_s41598_022_19053_3
crossref_primary_10_1016_j_cma_2018_11_031
crossref_primary_10_1002_app_47824
crossref_primary_10_1108_RPJ_11_2017_0242
crossref_primary_10_1016_j_measurement_2021_110207
crossref_primary_10_1007_s00170_023_11039_3
crossref_primary_10_1016_j_polymer_2020_123318
crossref_primary_10_3390_polym15234518
crossref_primary_10_1016_j_addma_2021_102105
crossref_primary_10_3390_polym13213739
crossref_primary_10_1007_s00170_019_04376_9
crossref_primary_10_1016_j_mtphys_2020_100220
crossref_primary_10_1016_j_addma_2020_101414
crossref_primary_10_1016_j_addma_2020_101658
crossref_primary_10_1016_j_addma_2020_101415
crossref_primary_10_1016_j_polymer_2018_09_018
crossref_primary_10_1108_RPJ_11_2017_0233
crossref_primary_10_1002_adma_202102877
crossref_primary_10_3390_polym15102263
crossref_primary_10_3390_polym17070836
crossref_primary_10_1016_j_addma_2021_102474
crossref_primary_10_1007_s40964_024_00789_5
crossref_primary_10_3390_polym13010149
crossref_primary_10_1016_j_addma_2020_101408
crossref_primary_10_3390_polym16192812
crossref_primary_10_3390_polym16131913
crossref_primary_10_3390_polym13162677
crossref_primary_10_1016_j_addma_2022_103079
crossref_primary_10_1016_j_addma_2019_100922
crossref_primary_10_1002_marc_202200221
crossref_primary_10_3390_pr13010171
Cites_doi 10.1122/1.2901231
10.1016/0032-3861(84)90205-2
10.1007/BF00552073
10.1002/pen.760280109
10.1063/1.3202868
10.1103/PhysRevLett.57.1312
10.1021/ma991821v
10.1063/1.328526
10.1122/1.3523485
10.1002/polb.10288
10.1021/ma00179a045
10.1122/1.4843957
10.1103/PhysRevE.83.061802
10.1021/ma00244a016
10.1122/1.4976839
10.1051/jphys:0198900500180255100
10.1016/S0167-8922(08)70894-0
10.1016/j.commatsci.2013.06.041
10.1108/RPJ-04-2013-0039
10.1103/PhysRevLett.110.098301
10.1122/1.4973852
10.1063/1.441871
10.1021/ma0200219
10.1021/ma00111a044
10.1108/13552540810862028
10.1108/13552541211272045
10.1002/aic.11136
10.1103/PhysRevLett.89.148304
10.1021/ja01619a008
10.1021/ma010858o
10.1108/RPJ-01-2013-0012
10.1023/A:1016394104244
10.1002/pol.1985.180230214
10.1021/acs.macromol.5b01401
10.1021/ma980860o
10.1122/1.1595099
10.1122/1.4903495
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Aug 11, 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 11, 2017
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOI 10.1016/j.polymer.2017.06.051
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-2291
EndPage 391
ExternalDocumentID 10_1016_j_polymer_2017_06_051
S0032386117306213
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSK
SSM
SSZ
T5K
TN5
WH7
XPP
ZMT
~G-
.-4
29O
6TJ
6TU
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDEX
ABDPE
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SCB
SEW
T9H
WUQ
~HD
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c385t-f6c7376fb77e4774886e5824c3c16ea51444e9da03a080fb120dcc51b58cb49d3
ISICitedReferencesCount 242
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000407399000040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0032-3861
IngestDate Wed Aug 13 08:08:57 EDT 2025
Sat Nov 29 07:29:08 EST 2025
Tue Nov 18 20:36:07 EST 2025
Fri Feb 23 02:33:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Disentanglement
Non-isothermal
Fused filament fabrication
Welding
Polymer melt
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c385t-f6c7376fb77e4774886e5824c3c16ea51444e9da03a080fb120dcc51b58cb49d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5302-5920
PQID 1956485184
PQPubID 2045419
PageCount 16
ParticipantIDs proquest_journals_1956485184
crossref_primary_10_1016_j_polymer_2017_06_051
crossref_citationtrail_10_1016_j_polymer_2017_06_051
elsevier_sciencedirect_doi_10_1016_j_polymer_2017_06_051
PublicationCentury 2000
PublicationDate 2017-08-11
PublicationDateYYYYMMDD 2017-08-11
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-11
  day: 11
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Polymer (Guilford)
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Turner, Strong, Gold (bib2) 2014; 20
Kline, Wool (bib6) 1988; 28
Graham, Likhtman, McLeish, Milner (bib36) 2003; 47
Hill, Haghi (bib3) 2014; 20
Yang, Pitchumani (bib20) 2002; 35
Ianniruberto (bib44) 2015; 59
Hunt, Todd (bib25) 2009; 131
Brown (bib9) 2001; 34
Mark (bib42) 1996
Likhtman, Graham (bib22) 2003; 114
Ianniruberto (bib28) 2015; 48
Wool (bib13) 1995
Ianniruberto, Marrucci (bib24) 1996; 65
Kramer, Green, Palmstrøm (bib30) 1984; 25
Graham (bib45) 2002
Zhao, Macosko (bib33) 2007; 53
Croccolo, De Agostinis, Olmi (bib21) 2013; 79
Sun, Rizvi, Bellehumeur, Gu (bib18) 2008; 14
Uneyama, Horio, Watanabe (bib26) 2011; 83
Williams, Landel, Ferry (bib38) 1955; 77
Chua, Leong (bib1) 2003; vol. 1
De Gennes (bib10) 1981; 7
Schnell, Stamm, Creton (bib7) 1999; 32
Likhtman, McLeish (bib39) 2002; 35
Schach, Creton (bib16) 2008; 52
Brochard, Jouffroy, Levinson (bib29) 1983; 16
Prager, Tirrell (bib11) 1981; 75
Ilg, Kröger (bib27) 2011; 55
Composto, Mayer, Kramer, White (bib31) 1986; 57
Wool, O'Connor (bib8) 1981; 52
Jud, Kausch, Williams (bib5) 1981; 16
Zhang, Hendro, Fujii, Tomimura, Imaishi (bib35) 2002; 23
Jordan, Ball, Donald, Fetters, Jones, Klein (bib32) 1988; 21
Sha, Hui, Ruina, Kramer (bib40) 1995; 28
Seppala, Migler (bib19) 2016; 12
Ianniruberto, Marrucci (bib23) 2014; 58
Doi, Edwards (bib37) 1988
De Gennes (bib43) 1989; 50
Ge, Pierce, Perahia, Grest, Robbins (bib12) 2013; 110
McIlroy, Olmsted (bib17) 2017; 61
Mackay, Swain, Banbury, Phan, Edwards (bib34) 2017; 61
Benkoski, Fredrickson, Kramer (bib14) 2002; 40
Adolf, Tirrell, Prager (bib15) 1985; 23
Drummer, Cifuentes-Cuéllar, Rietzel (bib4) 2012; 18
Rottler, Barsky, Robbins (bib41) 2002; 89
Composto (10.1016/j.polymer.2017.06.051_bib31) 1986; 57
Sha (10.1016/j.polymer.2017.06.051_bib40) 1995; 28
Chua (10.1016/j.polymer.2017.06.051_bib1) 2003; vol. 1
Seppala (10.1016/j.polymer.2017.06.051_bib19) 2016; 12
Brown (10.1016/j.polymer.2017.06.051_bib9) 2001; 34
Graham (10.1016/j.polymer.2017.06.051_bib36) 2003; 47
Jud (10.1016/j.polymer.2017.06.051_bib5) 1981; 16
Wool (10.1016/j.polymer.2017.06.051_bib8) 1981; 52
Sun (10.1016/j.polymer.2017.06.051_bib18) 2008; 14
Ianniruberto (10.1016/j.polymer.2017.06.051_bib24) 1996; 65
De Gennes (10.1016/j.polymer.2017.06.051_bib43) 1989; 50
Hunt (10.1016/j.polymer.2017.06.051_bib25) 2009; 131
Uneyama (10.1016/j.polymer.2017.06.051_bib26) 2011; 83
De Gennes (10.1016/j.polymer.2017.06.051_bib10) 1981; 7
Kramer (10.1016/j.polymer.2017.06.051_bib30) 1984; 25
Doi (10.1016/j.polymer.2017.06.051_bib37) 1988
Wool (10.1016/j.polymer.2017.06.051_bib13) 1995
Schnell (10.1016/j.polymer.2017.06.051_bib7) 1999; 32
Ianniruberto (10.1016/j.polymer.2017.06.051_bib28) 2015; 48
Rottler (10.1016/j.polymer.2017.06.051_bib41) 2002; 89
Likhtman (10.1016/j.polymer.2017.06.051_bib39) 2002; 35
Zhao (10.1016/j.polymer.2017.06.051_bib33) 2007; 53
Hill (10.1016/j.polymer.2017.06.051_bib3) 2014; 20
Kline (10.1016/j.polymer.2017.06.051_bib6) 1988; 28
Likhtman (10.1016/j.polymer.2017.06.051_bib22) 2003; 114
Jordan (10.1016/j.polymer.2017.06.051_bib32) 1988; 21
Mackay (10.1016/j.polymer.2017.06.051_bib34) 2017; 61
Adolf (10.1016/j.polymer.2017.06.051_bib15) 1985; 23
Yang (10.1016/j.polymer.2017.06.051_bib20) 2002; 35
Ianniruberto (10.1016/j.polymer.2017.06.051_bib23) 2014; 58
Williams (10.1016/j.polymer.2017.06.051_bib38) 1955; 77
Prager (10.1016/j.polymer.2017.06.051_bib11) 1981; 75
Benkoski (10.1016/j.polymer.2017.06.051_bib14) 2002; 40
Brochard (10.1016/j.polymer.2017.06.051_bib29) 1983; 16
Schach (10.1016/j.polymer.2017.06.051_bib16) 2008; 52
Croccolo (10.1016/j.polymer.2017.06.051_bib21) 2013; 79
Ianniruberto (10.1016/j.polymer.2017.06.051_bib44) 2015; 59
Graham (10.1016/j.polymer.2017.06.051_bib45) 2002
Mark (10.1016/j.polymer.2017.06.051_bib42) 1996
Ilg (10.1016/j.polymer.2017.06.051_bib27) 2011; 55
Zhang (10.1016/j.polymer.2017.06.051_bib35) 2002; 23
Ge (10.1016/j.polymer.2017.06.051_bib12) 2013; 110
Turner (10.1016/j.polymer.2017.06.051_bib2) 2014; 20
Drummer (10.1016/j.polymer.2017.06.051_bib4) 2012; 18
McIlroy (10.1016/j.polymer.2017.06.051_bib17) 2017; 61
References_xml – year: 1995
  ident: bib13
  article-title: Polymer Interfaces: Structure and Strength
– volume: 61
  start-page: 229
  year: 2017
  end-page: 236
  ident: bib34
  article-title: The performance of the hot end in a plasticating 3D printer
  publication-title: J. Rheol.
– volume: 79
  start-page: 506
  year: 2013
  end-page: 518
  ident: bib21
  article-title: Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30
  publication-title: Comput. Mater. Sci.
– volume: vol. 1
  year: 2003
  ident: bib1
  publication-title: Rapid Prototyping: Principles and Applications
– volume: 28
  start-page: 52
  year: 1988
  end-page: 57
  ident: bib6
  article-title: Polymer welding relations investigated by a lap shear joint method
  publication-title: Polym. Eng. Sci.
– volume: 59
  start-page: 211
  year: 2015
  end-page: 235
  ident: bib44
  article-title: Quantitative appraisal of a new CCR model for entangled linear polymers
  publication-title: J. Rheol.
– volume: 131
  start-page: 054904
  year: 2009
  ident: bib25
  article-title: Diffusion of linear polymer melts in shear and extensional flows
  publication-title: J. Chem. Phys.
– volume: 16
  start-page: 1638
  year: 1983
  end-page: 1641
  ident: bib29
  article-title: Polymer-polymer diffusion in melts
  publication-title: Macromolecules
– volume: 25
  start-page: 473
  year: 1984
  end-page: 480
  ident: bib30
  article-title: Interdiffusion and marker movements in concentrated polymer-polymer diffusion couples
  publication-title: Polymer
– volume: 55
  start-page: 69
  year: 2011
  end-page: 93
  ident: bib27
  article-title: Molecularly derived constitutive equation for low-molecular polymer melts from thermodynamically guided simulation
  publication-title: J. Rheol.
– volume: 28
  start-page: 2450
  year: 1995
  end-page: 2459
  ident: bib40
  article-title: Continuum and discrete modeling of craze failure at a crack-tip in a glassy polymer
  publication-title: Macromolecules
– volume: 20
  start-page: 221
  year: 2014
  end-page: 227
  ident: bib3
  article-title: Deposition direction-dependent failure criteria for fused deposition modeling polycarbonate
  publication-title: Rapid Prototyp. J.
– volume: 65
  start-page: 241
  year: 1996
  end-page: 246
  ident: bib24
  article-title: On compatibility of the Cox-Merz rule with the model of Doi and Edwards
  publication-title: J. Newt. Fluid Mech.
– volume: 75
  start-page: 5194
  year: 1981
  end-page: 5198
  ident: bib11
  article-title: The healing process at polymer–polymer interfaces
  publication-title: J. Chem. Phys.
– volume: 47
  start-page: 1171
  year: 2003
  end-page: 1200
  ident: bib36
  article-title: Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release
  publication-title: J. Rheol.
– volume: 50
  start-page: 2551
  year: 1989
  end-page: 2562
  ident: bib43
  article-title: Weak adhesive junctions
  publication-title: J. de Phys.
– year: 1988
  ident: bib37
  article-title: The Theory of Polymer Dynamics
– volume: 110
  start-page: 098301
  year: 2013
  ident: bib12
  article-title: Molecular dynamics simulations of polymer welding: strength from interfacial entanglements
  publication-title: Phys. Rev. Lett.
– volume: 53
  start-page: 978
  year: 2007
  end-page: 985
  ident: bib33
  article-title: Polymer–polymer mutual diffusion via rheology of coextruded multilayers
  publication-title: AIChE J.
– volume: 21
  start-page: 235
  year: 1988
  end-page: 239
  ident: bib32
  article-title: Mutual diffusion in blends of long and short entangled polymer chains
  publication-title: Macromolecules
– volume: 35
  start-page: 6332
  year: 2002
  end-page: 6343
  ident: bib39
  article-title: Quantitative theory for linear dynamics of linear entangled polymers
  publication-title: Macromolecules
– volume: 23
  start-page: 1077
  year: 2002
  end-page: 1090
  ident: bib35
  article-title: Measurements of the thermal conductivity and thermal diffusivity of polymer melts with the short-hot-wire method
  publication-title: Int. J. Thermophys.
– volume: 32
  start-page: 3420
  year: 1999
  end-page: 3425
  ident: bib7
  article-title: Mechanical properties of homopolymer interfaces: transition from simple pullout to crazing with increasing interfacial width
  publication-title: Macromolecules
– volume: 48
  start-page: 6306
  year: 2015
  end-page: 6312
  ident: bib28
  article-title: Extensional flows of solutions of entangled polymers confirm reduction of friction coefficient
  publication-title: Macromolecules
– volume: 14
  start-page: 72
  year: 2008
  end-page: 80
  ident: bib18
  article-title: Effect of processing conditions on the bonding quality of FDM polymer filaments
  publication-title: Rapid Prototyp. J.
– volume: 83
  start-page: 061802
  year: 2011
  ident: bib26
  article-title: Anisotropic mobility model for polymers under shear and its linear response functions
  publication-title: Phys. Rev. E
– volume: 61
  start-page: 379
  year: 2017
  end-page: 397
  ident: bib17
  article-title: Deformation of an amorphous polymer during the fused-filament-fabrication method for additive manufacturing
  publication-title: J. Rheol.
– volume: 77
  start-page: 3701
  year: 1955
  end-page: 3707
  ident: bib38
  article-title: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids
  publication-title: J. Am. Chem. Soc.
– year: 2002
  ident: bib45
  article-title: Molecular Modelling of Entangled Polymers under Flow
– volume: 18
  start-page: 500
  year: 2012
  end-page: 507
  ident: bib4
  article-title: Suitability of PLA/TCP for fused deposition modeling
  publication-title: Rapid Prototyp. J.
– volume: 23
  start-page: 413
  year: 1985
  end-page: 427
  ident: bib15
  article-title: Molecular weight dependence of healing and brittle fracture in amorphous polymers above the entanglement molecular weight
  publication-title: J. Polym. Sci. Polym. Phys. Ed.
– volume: 52
  start-page: 749
  year: 2008
  end-page: 767
  ident: bib16
  article-title: Adhesion at interfaces between highly entangled polymer melts
  publication-title: J. Rheol.
– volume: 89
  start-page: 148304
  year: 2002
  ident: bib41
  article-title: Cracks and crazes: on calculating the macroscopic fracture energy of glassy polymers from molecular simulations
  publication-title: Phys. Rev. Lett.
– volume: 40
  start-page: 2377
  year: 2002
  end-page: 2386
  ident: bib14
  article-title: Model for the fracture energy of glassy polymer–polymer interfaces
  publication-title: J. Polym. Sci. Part B Polym. Phys.
– volume: 12
  start-page: 71
  year: 2016
  end-page: 76
  ident: bib19
  article-title: Infrared thermography of welding zones produced by polymer extrusion additive manufacturing
  publication-title: Addit. Manuf.
– volume: 35
  start-page: 3213
  year: 2002
  end-page: 3224
  ident: bib20
  article-title: Healing of thermoplastic polymers at an interface under nonisothermal conditions
  publication-title: Macromolecules
– volume: 57
  start-page: 1312
  year: 1986
  ident: bib31
  article-title: Fast mutual diffusion in polymer blends
  publication-title: Phys. Rev. Lett.
– volume: 52
  start-page: 5953
  year: 1981
  end-page: 5963
  ident: bib8
  article-title: A theory of crack healing in polymers
  publication-title: J. Appl. Phys.
– volume: 16
  start-page: 204
  year: 1981
  end-page: 210
  ident: bib5
  article-title: Fracture mechanics studies of crack healing and welding of polymers
  publication-title: J. Mater. Sci.
– volume: 114
  start-page: 1
  year: 2003
  end-page: 12
  ident: bib22
  article-title: Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie–poly equation
  publication-title: J. Newt. Fluid Mech.
– volume: 20
  start-page: 192
  year: 2014
  end-page: 204
  ident: bib2
  article-title: A review of melt extrusion additive manufacturing processes: I
  publication-title: Process Des. Model., Rapid Prototyp. J.
– volume: 58
  start-page: 89
  year: 2014
  end-page: 102
  ident: bib23
  article-title: Convective constraint release (CCR) revisited
  publication-title: J. Rheol.
– volume: 7
  start-page: 355
  year: 1981
  end-page: 367
  ident: bib10
  article-title: The formation of polymer/polymer junctions
  publication-title: Tribol. Ser.
– year: 1996
  ident: bib42
  article-title: Physical Properties of Polymers Handbook
– volume: 34
  start-page: 3720
  year: 2001
  end-page: 3724
  ident: bib9
  article-title: Relation between the width of an interface between two polymers and its toughness
  publication-title: Macromolecules
– volume: 52
  start-page: 749
  issue: 3
  year: 2008
  ident: 10.1016/j.polymer.2017.06.051_bib16
  article-title: Adhesion at interfaces between highly entangled polymer melts
  publication-title: J. Rheol.
  doi: 10.1122/1.2901231
– volume: 25
  start-page: 473
  issue: 4
  year: 1984
  ident: 10.1016/j.polymer.2017.06.051_bib30
  article-title: Interdiffusion and marker movements in concentrated polymer-polymer diffusion couples
  publication-title: Polymer
  doi: 10.1016/0032-3861(84)90205-2
– year: 2002
  ident: 10.1016/j.polymer.2017.06.051_bib45
– volume: 16
  start-page: 204
  issue: 1
  year: 1981
  ident: 10.1016/j.polymer.2017.06.051_bib5
  article-title: Fracture mechanics studies of crack healing and welding of polymers
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00552073
– volume: 28
  start-page: 52
  issue: 1
  year: 1988
  ident: 10.1016/j.polymer.2017.06.051_bib6
  article-title: Polymer welding relations investigated by a lap shear joint method
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.760280109
– volume: 131
  start-page: 054904
  issue: 5
  year: 2009
  ident: 10.1016/j.polymer.2017.06.051_bib25
  article-title: Diffusion of linear polymer melts in shear and extensional flows
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3202868
– volume: 57
  start-page: 1312
  issue: 11
  year: 1986
  ident: 10.1016/j.polymer.2017.06.051_bib31
  article-title: Fast mutual diffusion in polymer blends
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.57.1312
– year: 1996
  ident: 10.1016/j.polymer.2017.06.051_bib42
– volume: 34
  start-page: 3720
  issue: 11
  year: 2001
  ident: 10.1016/j.polymer.2017.06.051_bib9
  article-title: Relation between the width of an interface between two polymers and its toughness
  publication-title: Macromolecules
  doi: 10.1021/ma991821v
– volume: 52
  start-page: 5953
  issue: 10
  year: 1981
  ident: 10.1016/j.polymer.2017.06.051_bib8
  article-title: A theory of crack healing in polymers
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.328526
– volume: 114
  start-page: 1
  issue: 1
  year: 2003
  ident: 10.1016/j.polymer.2017.06.051_bib22
  article-title: Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie–poly equation
  publication-title: J. Newt. Fluid Mech.
– volume: 55
  start-page: 69
  issue: 1
  year: 2011
  ident: 10.1016/j.polymer.2017.06.051_bib27
  article-title: Molecularly derived constitutive equation for low-molecular polymer melts from thermodynamically guided simulation
  publication-title: J. Rheol.
  doi: 10.1122/1.3523485
– volume: 40
  start-page: 2377
  issue: 20
  year: 2002
  ident: 10.1016/j.polymer.2017.06.051_bib14
  article-title: Model for the fracture energy of glassy polymer–polymer interfaces
  publication-title: J. Polym. Sci. Part B Polym. Phys.
  doi: 10.1002/polb.10288
– volume: 21
  start-page: 235
  issue: 1
  year: 1988
  ident: 10.1016/j.polymer.2017.06.051_bib32
  article-title: Mutual diffusion in blends of long and short entangled polymer chains
  publication-title: Macromolecules
  doi: 10.1021/ma00179a045
– volume: 58
  start-page: 89
  issue: 1
  year: 2014
  ident: 10.1016/j.polymer.2017.06.051_bib23
  article-title: Convective constraint release (CCR) revisited
  publication-title: J. Rheol.
  doi: 10.1122/1.4843957
– volume: 83
  start-page: 061802
  issue: 6
  year: 2011
  ident: 10.1016/j.polymer.2017.06.051_bib26
  article-title: Anisotropic mobility model for polymers under shear and its linear response functions
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.83.061802
– volume: 16
  start-page: 1638
  issue: 10
  year: 1983
  ident: 10.1016/j.polymer.2017.06.051_bib29
  article-title: Polymer-polymer diffusion in melts
  publication-title: Macromolecules
  doi: 10.1021/ma00244a016
– volume: 61
  start-page: 379
  issue: 2
  year: 2017
  ident: 10.1016/j.polymer.2017.06.051_bib17
  article-title: Deformation of an amorphous polymer during the fused-filament-fabrication method for additive manufacturing
  publication-title: J. Rheol.
  doi: 10.1122/1.4976839
– volume: 50
  start-page: 2551
  issue: 18
  year: 1989
  ident: 10.1016/j.polymer.2017.06.051_bib43
  article-title: Weak adhesive junctions
  publication-title: J. de Phys.
  doi: 10.1051/jphys:0198900500180255100
– volume: 7
  start-page: 355
  year: 1981
  ident: 10.1016/j.polymer.2017.06.051_bib10
  article-title: The formation of polymer/polymer junctions
  publication-title: Tribol. Ser.
  doi: 10.1016/S0167-8922(08)70894-0
– volume: 79
  start-page: 506
  year: 2013
  ident: 10.1016/j.polymer.2017.06.051_bib21
  article-title: Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2013.06.041
– volume: 12
  start-page: 71
  year: 2016
  ident: 10.1016/j.polymer.2017.06.051_bib19
  article-title: Infrared thermography of welding zones produced by polymer extrusion additive manufacturing
  publication-title: Addit. Manuf.
– volume: 20
  start-page: 221
  issue: 3
  year: 2014
  ident: 10.1016/j.polymer.2017.06.051_bib3
  article-title: Deposition direction-dependent failure criteria for fused deposition modeling polycarbonate
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/RPJ-04-2013-0039
– volume: 110
  start-page: 098301
  issue: 9
  year: 2013
  ident: 10.1016/j.polymer.2017.06.051_bib12
  article-title: Molecular dynamics simulations of polymer welding: strength from interfacial entanglements
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.098301
– year: 1995
  ident: 10.1016/j.polymer.2017.06.051_bib13
– volume: 61
  start-page: 229
  issue: 2
  year: 2017
  ident: 10.1016/j.polymer.2017.06.051_bib34
  article-title: The performance of the hot end in a plasticating 3D printer
  publication-title: J. Rheol.
  doi: 10.1122/1.4973852
– volume: 75
  start-page: 5194
  issue: 10
  year: 1981
  ident: 10.1016/j.polymer.2017.06.051_bib11
  article-title: The healing process at polymer–polymer interfaces
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.441871
– year: 1988
  ident: 10.1016/j.polymer.2017.06.051_bib37
– volume: 35
  start-page: 6332
  issue: 16
  year: 2002
  ident: 10.1016/j.polymer.2017.06.051_bib39
  article-title: Quantitative theory for linear dynamics of linear entangled polymers
  publication-title: Macromolecules
  doi: 10.1021/ma0200219
– volume: 28
  start-page: 2450
  issue: 7
  year: 1995
  ident: 10.1016/j.polymer.2017.06.051_bib40
  article-title: Continuum and discrete modeling of craze failure at a crack-tip in a glassy polymer
  publication-title: Macromolecules
  doi: 10.1021/ma00111a044
– volume: 65
  start-page: 241
  issue: 2
  year: 1996
  ident: 10.1016/j.polymer.2017.06.051_bib24
  article-title: On compatibility of the Cox-Merz rule with the model of Doi and Edwards
  publication-title: J. Newt. Fluid Mech.
– volume: 14
  start-page: 72
  issue: 2
  year: 2008
  ident: 10.1016/j.polymer.2017.06.051_bib18
  article-title: Effect of processing conditions on the bonding quality of FDM polymer filaments
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/13552540810862028
– volume: vol. 1
  year: 2003
  ident: 10.1016/j.polymer.2017.06.051_bib1
– volume: 18
  start-page: 500
  issue: 6
  year: 2012
  ident: 10.1016/j.polymer.2017.06.051_bib4
  article-title: Suitability of PLA/TCP for fused deposition modeling
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/13552541211272045
– volume: 53
  start-page: 978
  issue: 4
  year: 2007
  ident: 10.1016/j.polymer.2017.06.051_bib33
  article-title: Polymer–polymer mutual diffusion via rheology of coextruded multilayers
  publication-title: AIChE J.
  doi: 10.1002/aic.11136
– volume: 89
  start-page: 148304
  issue: 14
  year: 2002
  ident: 10.1016/j.polymer.2017.06.051_bib41
  article-title: Cracks and crazes: on calculating the macroscopic fracture energy of glassy polymers from molecular simulations
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.148304
– volume: 77
  start-page: 3701
  issue: 14
  year: 1955
  ident: 10.1016/j.polymer.2017.06.051_bib38
  article-title: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01619a008
– volume: 35
  start-page: 3213
  issue: 8
  year: 2002
  ident: 10.1016/j.polymer.2017.06.051_bib20
  article-title: Healing of thermoplastic polymers at an interface under nonisothermal conditions
  publication-title: Macromolecules
  doi: 10.1021/ma010858o
– volume: 20
  start-page: 192
  issue: 3
  year: 2014
  ident: 10.1016/j.polymer.2017.06.051_bib2
  article-title: A review of melt extrusion additive manufacturing processes: I
  publication-title: Process Des. Model., Rapid Prototyp. J.
  doi: 10.1108/RPJ-01-2013-0012
– volume: 23
  start-page: 1077
  issue: 4
  year: 2002
  ident: 10.1016/j.polymer.2017.06.051_bib35
  article-title: Measurements of the thermal conductivity and thermal diffusivity of polymer melts with the short-hot-wire method
  publication-title: Int. J. Thermophys.
  doi: 10.1023/A:1016394104244
– volume: 23
  start-page: 413
  issue: 2
  year: 1985
  ident: 10.1016/j.polymer.2017.06.051_bib15
  article-title: Molecular weight dependence of healing and brittle fracture in amorphous polymers above the entanglement molecular weight
  publication-title: J. Polym. Sci. Polym. Phys. Ed.
  doi: 10.1002/pol.1985.180230214
– volume: 48
  start-page: 6306
  issue: 17
  year: 2015
  ident: 10.1016/j.polymer.2017.06.051_bib28
  article-title: Extensional flows of solutions of entangled polymers confirm reduction of friction coefficient
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.5b01401
– volume: 32
  start-page: 3420
  issue: 10
  year: 1999
  ident: 10.1016/j.polymer.2017.06.051_bib7
  article-title: Mechanical properties of homopolymer interfaces: transition from simple pullout to crazing with increasing interfacial width
  publication-title: Macromolecules
  doi: 10.1021/ma980860o
– volume: 47
  start-page: 1171
  issue: 5
  year: 2003
  ident: 10.1016/j.polymer.2017.06.051_bib36
  article-title: Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release
  publication-title: J. Rheol.
  doi: 10.1122/1.1595099
– volume: 59
  start-page: 211
  issue: 1
  year: 2015
  ident: 10.1016/j.polymer.2017.06.051_bib44
  article-title: Quantitative appraisal of a new CCR model for entangled linear polymers
  publication-title: J. Rheol.
  doi: 10.1122/1.4903495
SSID ssj0002524
Score 2.6362076
Snippet Although 3D printing has the potential to transform manufacturing processes, the strength of printed parts often does not rival that of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 376
SubjectTerms Additive manufacturing
Anisotropy
Deformation
Diffusion
Diffusion layers
Diffusion rate
Disentanglement
Entanglement
Extrusion
Fabrication
Fused deposition modeling
Fused filament fabrication
Glass transition temperature
Interdiffusion
Manufacturing industry
Mechanical properties
Melts
Non-isothermal
Polymer melt
Polymer melts
Polymers
Printing
Rheological properties
Rheology
Studies
Three dimensional printing
Transition temperatures
Viscoelasticity
Welded joints
Welding
Title Disentanglement effects on welding behaviour of polymer melts during the fused-filament-fabrication method for additive manufacturing
URI https://dx.doi.org/10.1016/j.polymer.2017.06.051
https://www.proquest.com/docview/1956485184
Volume 123
WOSCitedRecordID wos000407399000040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002524
  issn: 0032-3861
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5FLRJwqKCA6AO0B26Vjb1ee3ePVVpEEVQ5FCk3y16vUSrHiZK6j1sv_G9mvbuOGyilBy5WZMWTjefzzOx45huEPrSTT0JSeDl4a49mofIyEWSeyEWQh0omtGhJXL-y01M-HovRYHDremEuK1bX_PpazP-rquEcKFu3zj5C3Z1QOAGfQelwBLXD8Z8UfzRp-4nqH6YwfFWxUR9cqfZVk-vNb9o3BPNZdTNVi4OpquBbtm1Rh6Nls1SFV04AMyDHK7N8YRN8du60qcAsClN-NM3qRrdJtAL6Me_I_oBOSDSTylTTd_mHb_LEJQSH_irlO3Vp2JF_5PdTE-DuNFVs2De3EfEibtjWO3NLop7BjFjS872Rmdz1m1k3GYZz394RXZHHWtpVS1Z7h0Z7zb11RYeunu08tWJSLSbVdX26B3-TsFiAad88PDkef-m8OYmJYfK2f2XVBfbxj-u5L75Z8_Rt-HL2Am3ZfQc-NHh5iQaq3kZPh27c3zZ63mOmfIV-rqEIWxThWY0tinCHIjwrsV0jblGEDYowoAjfjyJsUIQBENihCN9B0Wv0_dPx2fCzZyd2eDLiMchIJDz8SZkzpihsLDhPVMwJlZEME5VBcE6pEkUWRBnsVMo8JEEhZRzmMZc5FUX0Bm3Us1q9RZgHhaZuUnEWK5oHJSeMSdgLSxHzRAiyg6i7z6m0dPZ6qkqV_lXPO8jvLpsbPpeHLuBOiakNSk2wmQI4H7p03yk9tQZimer-XArbHE53H7uUPfRs9ZTto42LRaPeoSfy8mKyXLy3wP0FaRXAUg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disentanglement+effects+on+welding+behaviour+of+polymer+melts+during+the+fused-filament-fabrication+method+for+additive+manufacturing&rft.jtitle=Polymer+%28Guilford%29&rft.au=McIlroy%2C+C.&rft.au=Olmsted%2C+P.D.&rft.date=2017-08-11&rft.issn=0032-3861&rft.volume=123&rft.spage=376&rft.epage=391&rft_id=info:doi/10.1016%2Fj.polymer.2017.06.051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_polymer_2017_06_051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3861&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3861&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3861&client=summon