Disentanglement effects on welding behaviour of polymer melts during the fused-filament-fabrication method for additive manufacturing
Although 3D printing has the potential to transform manufacturing processes, the strength of printed parts often does not rival that of traditionally-manufactured parts. The fused-filament fabrication method involves melting a thermoplastic, followed by layer-by-layer extrusion of the molten viscoel...
Uložené v:
| Vydané v: | Polymer (Guilford) Ročník 123; s. 376 - 391 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Kidlington
Elsevier Ltd
11.08.2017
Elsevier BV |
| Predmet: | |
| ISSN: | 0032-3861, 1873-2291 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Although 3D printing has the potential to transform manufacturing processes, the strength of printed parts often does not rival that of traditionally-manufactured parts. The fused-filament fabrication method involves melting a thermoplastic, followed by layer-by-layer extrusion of the molten viscoelastic material to fabricate a three-dimensional object. The strength of the welds between layers is controlled by interdiffusion and entanglement of the melt across the interface. However, diffusion slows down as the printed layer cools towards the glass transition temperature. Diffusion is also affected by high shear rates in the nozzle, which significantly deform and disentangle the polymer microstructure prior to welding. In this paper, we model non-isothermal polymer relaxation, entanglement recovery, and diffusion processes that occur post-extrusion to investigate the effects that typical printing conditions and amorphous (non-crystalline) polymer rheology have on the ultimate weld structure. Although we find the weld thickness to be of the order of the polymer size, the structure of the weld is anisotropic and relatively disentangled; reduced mechanical strength at the weld is attributed to this lower degree of entanglement.
[Display omitted]
•Amorphous polymer melt is extruded and deposited filament-by-filament.•Non-isothermal inter-diffusion from an anisotropic configuration is modelled.•Inter-penetration depth and re-entanglement is arrested by the glass transition.•Weld thickness (∼Rg ) is sufficient to achieve bulk mechanical strength at weld.•Reduced weld strength is attributed to a partially entangled structure. |
|---|---|
| AbstractList | Although 3D printing has the potential to transform manufacturing processes, the strength of printed parts often does not rival that of traditionally-manufactured parts. The fused-filament fabrication method involves melting a thermoplastic, followed by layer-by-layer extrusion of the molten viscoelastic material to fabricate a three-dimensional object. The strength of the welds between layers is controlled by interdiffusion and entanglement of the melt across the interface. However, diffusion slows down as the printed layer cools towards the glass transition temperature. Diffusion is also affected by high shear rates in the nozzle, which significantly deform and disentangle the polymer microstructure prior to welding. In this paper, we model non-isothermal polymer relaxation, entanglement recovery, and diffusion processes that occur post-extrusion to investigate the effects that typical printing conditions and amorphous (non-crystalline) polymer rheology have on the ultimate weld structure. Although we find the weld thickness to be of the order of the polymer size, the structure of the weld is anisotropic and relatively disentangled; reduced mechanical strength at the weld is attributed to this lower degree of entanglement.
[Display omitted]
•Amorphous polymer melt is extruded and deposited filament-by-filament.•Non-isothermal inter-diffusion from an anisotropic configuration is modelled.•Inter-penetration depth and re-entanglement is arrested by the glass transition.•Weld thickness (∼Rg ) is sufficient to achieve bulk mechanical strength at weld.•Reduced weld strength is attributed to a partially entangled structure. Although 3D printing has the potential to transform manufacturing processes, the strength of printed parts often does not rival that of traditionally-manufactured parts. The fused-filament fabrication method involves melting a thermoplastic, followed by layer-by-layer extrusion of the molten viscoelastic material to fabricate a three-dimensional object. The strength of the welds between layers is controlled by interdiffusion and entanglement of the melt across the interface. However, diffusion slows down as the printed layer cools towards the glass transition temperature. Diffusion is also affected by high shear rates in the nozzle, which significantly deform and disentangle the polymer microstructure prior to welding. In this paper, we model non-isothermal polymer relaxation, entanglement recovery, and diffusion processes that occur post-extrusion to investigate the effects that typical printing conditions and amorphous (non-crystalline) polymer rheology have on the ultimate weld structure. Although we find the weld thickness to be of the order of the polymer size, the structure of the weld is anisotropic and relatively disentangled; reduced mechanical strength at the weld is attributed to this lower degree of entanglement. |
| Author | Olmsted, P.D. McIlroy, C. |
| Author_xml | – sequence: 1 givenname: C. orcidid: 0000-0001-5302-5920 surname: McIlroy fullname: McIlroy, C. email: claire_mcilroy@hotmail.co.uk – sequence: 2 givenname: P.D. surname: Olmsted fullname: Olmsted, P.D. email: Peter.Olmsted@georgetown.edu |
| BookMark | eNqFkUFrHCEYhqWk0E3an1AQcp6pzqjj0kMpSdoGArm0Z3H0M-syoxt1NuQH5H_Xze4pl5wUfN_n43s8R2chBkDoKyUtJVR827a7OD3PkNqO0KEloiWcfkArKoe-6bo1PUMrQvqu6aWgn9B5zltCSMc7tkIv1z5DKDo8TDDXCwbnwJSMY8BPMFkfHvAIG733cUk4OnwahWeYasou6ZAoG8BuyWAb5yd94DROj8kbXXwFzVA20WIXE9bW-uL3gGcdFqdNeQV8Rh-dnjJ8OZ0X6N-vm79Xf5q7-9-3Vz_vGtNLXpnCDP0g3DgMwIaBSSmAy46Z3lABmlPGGKytJr0mkriRdsQaw-nIpRnZ2vYX6PLI3aX4uEAualvXCnWkomsumORUsprix5RJMecETu2Sn3V6VpSog3G1VScN6mBcEaGq8dr7_qZnfHk1UJL207vtH8c2VAF7X1-z8RAMWJ_qjygb_TuE_0fLpkI |
| CitedBy_id | crossref_primary_10_3390_ma11020285 crossref_primary_10_1016_j_addma_2022_102604 crossref_primary_10_3390_ma13204671 crossref_primary_10_1002_app_57600 crossref_primary_10_1002_app_55301 crossref_primary_10_1016_j_addma_2023_103538 crossref_primary_10_3390_ma11071191 crossref_primary_10_3390_polym13142314 crossref_primary_10_3390_polym15081817 crossref_primary_10_1016_j_compscitech_2020_108227 crossref_primary_10_3390_polym13193218 crossref_primary_10_1016_j_progpolymsci_2021_101411 crossref_primary_10_1002_adfm_202211579 crossref_primary_10_1016_j_addma_2021_102577 crossref_primary_10_1021_acsami_4c22694 crossref_primary_10_3390_polym13121983 crossref_primary_10_3390_ma16247664 crossref_primary_10_3390_polym14091754 crossref_primary_10_3390_ma11050826 crossref_primary_10_3390_jmmp7060189 crossref_primary_10_1177_0731684420929757 crossref_primary_10_3390_polym14235147 crossref_primary_10_3390_polym11091487 crossref_primary_10_1016_j_jmapro_2025_04_006 crossref_primary_10_3390_ma11101947 crossref_primary_10_1016_j_polymertesting_2019_04_020 crossref_primary_10_1016_j_jmapro_2025_04_014 crossref_primary_10_1515_ipp_2022_4217 crossref_primary_10_3390_polym13030399 crossref_primary_10_1016_j_addma_2019_03_030 crossref_primary_10_1039_D0PY00819B crossref_primary_10_1089_3dp_2024_0115 crossref_primary_10_1016_j_polymertesting_2022_107805 crossref_primary_10_1038_s44334_025_00049_6 crossref_primary_10_3390_polym15214204 crossref_primary_10_1016_j_addma_2017_11_002 crossref_primary_10_1089_3dp_2022_0127 crossref_primary_10_1016_j_addma_2023_103678 crossref_primary_10_1177_1558925020910875 crossref_primary_10_3390_polym13040667 crossref_primary_10_1002_jbm_b_34997 crossref_primary_10_3390_polym14153081 crossref_primary_10_1103_PhysRevE_111_025503 crossref_primary_10_1002_app_51409 crossref_primary_10_1007_s40194_022_01277_6 crossref_primary_10_1016_j_tafmec_2020_102536 crossref_primary_10_3390_chemengineering7010001 crossref_primary_10_1016_j_addma_2022_102853 crossref_primary_10_1038_s44160_022_00115_3 crossref_primary_10_1016_j_addma_2019_02_013 crossref_primary_10_1016_j_jmapro_2023_02_039 crossref_primary_10_1007_s00170_020_05648_5 crossref_primary_10_1016_j_polymertesting_2023_108055 crossref_primary_10_1016_j_polymertesting_2019_106255 crossref_primary_10_1007_s40964_023_00469_w crossref_primary_10_3390_app9132676 crossref_primary_10_1007_s11740_025_01366_7 crossref_primary_10_1039_D2RA05067F crossref_primary_10_1016_j_addma_2020_101297 crossref_primary_10_1016_j_polymer_2018_04_024 crossref_primary_10_1021_acs_macromol_5c00569 crossref_primary_10_1016_j_addma_2019_100968 crossref_primary_10_1007_s00170_022_10327_8 crossref_primary_10_1002_mame_202200197 crossref_primary_10_1007_s00170_022_08663_w crossref_primary_10_1016_j_addma_2022_102807 crossref_primary_10_1016_j_addma_2024_104395 crossref_primary_10_1016_j_addma_2018_10_018 crossref_primary_10_1016_j_polymer_2020_122637 crossref_primary_10_1016_j_addma_2020_101161 crossref_primary_10_3390_jmmp7010044 crossref_primary_10_1002_app_57409 crossref_primary_10_1016_j_apmt_2020_100700 crossref_primary_10_1016_j_addma_2021_102412 crossref_primary_10_1016_j_addma_2023_103624 crossref_primary_10_1016_j_compscitech_2025_111277 crossref_primary_10_1016_j_mechmat_2019_103139 crossref_primary_10_1016_j_addma_2024_104383 crossref_primary_10_1016_j_apm_2020_07_017 crossref_primary_10_1038_s41598_023_38527_6 crossref_primary_10_3390_polym13050789 crossref_primary_10_1016_j_engfracmech_2019_106818 crossref_primary_10_1007_s40964_018_0063_1 crossref_primary_10_1002_app_55360 crossref_primary_10_1016_j_addma_2021_102502 crossref_primary_10_1016_j_apmt_2024_102383 crossref_primary_10_1016_j_jmapro_2022_06_026 crossref_primary_10_1080_15583724_2023_2220024 crossref_primary_10_1007_s40964_023_00451_6 crossref_primary_10_1016_j_compscitech_2018_01_049 crossref_primary_10_1108_RPJ_10_2021_0272 crossref_primary_10_1002_pen_26495 crossref_primary_10_1016_j_tafmec_2023_104032 crossref_primary_10_3390_nano12071068 crossref_primary_10_1016_j_mechmat_2025_105408 crossref_primary_10_1016_j_matpr_2020_08_469 crossref_primary_10_3390_polym13203534 crossref_primary_10_1016_j_addma_2020_101368 crossref_primary_10_3390_polym14142792 crossref_primary_10_1557_s43579_021_00025_z crossref_primary_10_1016_j_addma_2021_102518 crossref_primary_10_1007_s10118_021_2606_z crossref_primary_10_3390_polym14245357 crossref_primary_10_1016_j_addma_2021_101995 crossref_primary_10_1007_s00170_024_14103_8 crossref_primary_10_1039_D5AN00789E crossref_primary_10_1016_j_matlet_2020_127742 crossref_primary_10_1016_j_polymer_2024_127333 crossref_primary_10_1016_j_polymer_2025_129009 crossref_primary_10_1002_pc_29396 crossref_primary_10_1016_j_addma_2024_104191 crossref_primary_10_1002_macp_202300356 crossref_primary_10_1007_s40964_024_00833_4 crossref_primary_10_3390_pharmaceutics11040165 crossref_primary_10_1016_j_addma_2020_101361 crossref_primary_10_1007_s40964_020_00137_3 crossref_primary_10_3390_ma13235328 crossref_primary_10_1002_adem_202201468 crossref_primary_10_3390_ma15248722 crossref_primary_10_1002_pi_6166 crossref_primary_10_1016_j_addma_2019_100815 crossref_primary_10_1080_17452759_2023_2300666 crossref_primary_10_3390_polym17172280 crossref_primary_10_1007_s40430_019_2037_8 crossref_primary_10_3390_ma16020691 crossref_primary_10_1016_j_compstruct_2023_117715 crossref_primary_10_1089_3dp_2023_0104 crossref_primary_10_1016_j_polymer_2021_124230 crossref_primary_10_1007_s40964_022_00349_9 crossref_primary_10_1039_D3PY00517H crossref_primary_10_1016_j_addma_2024_104063 crossref_primary_10_1007_s00397_022_01377_6 crossref_primary_10_3390_polym12051166 crossref_primary_10_1108_RPJ_10_2018_0276 crossref_primary_10_1002_adhm_201800213 crossref_primary_10_3390_polym11020315 crossref_primary_10_1007_s40964_023_00492_x crossref_primary_10_1016_j_addma_2022_102596 crossref_primary_10_1002_pc_27431 crossref_primary_10_1002_app_53667 crossref_primary_10_1002_pc_28769 crossref_primary_10_1002_app_52337 crossref_primary_10_1108_RPJ_05_2019_0142 crossref_primary_10_1016_j_addma_2020_101463 crossref_primary_10_3390_coatings11070792 crossref_primary_10_1007_s00170_018_2827_7 crossref_primary_10_3390_polym14225047 crossref_primary_10_1002_admt_202400457 crossref_primary_10_1122_1_5054648 crossref_primary_10_1007_s40430_020_02724_5 crossref_primary_10_1007_s12289_020_01591_8 crossref_primary_10_1016_j_polymer_2018_03_063 crossref_primary_10_1007_s40192_020_00188_y crossref_primary_10_1007_s00289_025_05720_8 crossref_primary_10_1007_s00170_023_11576_x crossref_primary_10_1002_app_51818 crossref_primary_10_1108_RPJ_08_2018_0203 crossref_primary_10_1080_14658011_2020_1855386 crossref_primary_10_1016_j_ijpharm_2021_120626 crossref_primary_10_1016_j_polymer_2021_123734 crossref_primary_10_1002_pen_25693 crossref_primary_10_3390_polym12092070 crossref_primary_10_1108_RPJ_05_2024_0188 crossref_primary_10_1016_j_addma_2022_102773 crossref_primary_10_1002_pc_29114 crossref_primary_10_1007_s00170_020_05538_w crossref_primary_10_1122_1_5093033 crossref_primary_10_3390_polym13223965 crossref_primary_10_1080_17452759_2024_2336160 crossref_primary_10_1016_j_addma_2020_101544 crossref_primary_10_1016_j_addma_2020_101665 crossref_primary_10_1038_s41598_022_19053_3 crossref_primary_10_1016_j_cma_2018_11_031 crossref_primary_10_1002_app_47824 crossref_primary_10_1108_RPJ_11_2017_0242 crossref_primary_10_1016_j_measurement_2021_110207 crossref_primary_10_1007_s00170_023_11039_3 crossref_primary_10_1016_j_polymer_2020_123318 crossref_primary_10_3390_polym15234518 crossref_primary_10_1016_j_addma_2021_102105 crossref_primary_10_3390_polym13213739 crossref_primary_10_1007_s00170_019_04376_9 crossref_primary_10_1016_j_mtphys_2020_100220 crossref_primary_10_1016_j_addma_2020_101414 crossref_primary_10_1016_j_addma_2020_101658 crossref_primary_10_1016_j_addma_2020_101415 crossref_primary_10_1016_j_polymer_2018_09_018 crossref_primary_10_1108_RPJ_11_2017_0233 crossref_primary_10_1002_adma_202102877 crossref_primary_10_3390_polym15102263 crossref_primary_10_3390_polym17070836 crossref_primary_10_1016_j_addma_2021_102474 crossref_primary_10_1007_s40964_024_00789_5 crossref_primary_10_3390_polym13010149 crossref_primary_10_1016_j_addma_2020_101408 crossref_primary_10_3390_polym16192812 crossref_primary_10_3390_polym16131913 crossref_primary_10_3390_polym13162677 crossref_primary_10_1016_j_addma_2022_103079 crossref_primary_10_1016_j_addma_2019_100922 crossref_primary_10_1002_marc_202200221 crossref_primary_10_3390_pr13010171 |
| Cites_doi | 10.1122/1.2901231 10.1016/0032-3861(84)90205-2 10.1007/BF00552073 10.1002/pen.760280109 10.1063/1.3202868 10.1103/PhysRevLett.57.1312 10.1021/ma991821v 10.1063/1.328526 10.1122/1.3523485 10.1002/polb.10288 10.1021/ma00179a045 10.1122/1.4843957 10.1103/PhysRevE.83.061802 10.1021/ma00244a016 10.1122/1.4976839 10.1051/jphys:0198900500180255100 10.1016/S0167-8922(08)70894-0 10.1016/j.commatsci.2013.06.041 10.1108/RPJ-04-2013-0039 10.1103/PhysRevLett.110.098301 10.1122/1.4973852 10.1063/1.441871 10.1021/ma0200219 10.1021/ma00111a044 10.1108/13552540810862028 10.1108/13552541211272045 10.1002/aic.11136 10.1103/PhysRevLett.89.148304 10.1021/ja01619a008 10.1021/ma010858o 10.1108/RPJ-01-2013-0012 10.1023/A:1016394104244 10.1002/pol.1985.180230214 10.1021/acs.macromol.5b01401 10.1021/ma980860o 10.1122/1.1595099 10.1122/1.4903495 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Aug 11, 2017 |
| Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Aug 11, 2017 |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
| DOI | 10.1016/j.polymer.2017.06.051 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1873-2291 |
| EndPage | 391 |
| ExternalDocumentID | 10_1016_j_polymer_2017_06_051 S0032386117306213 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSK SSM SSZ T5K TN5 WH7 XPP ZMT ~G- .-4 29O 6TJ 6TU 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDEX ABDPE ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SCB SEW T9H WUQ ~HD 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD AGCQF C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
| ID | FETCH-LOGICAL-c385t-f6c7376fb77e4774886e5824c3c16ea51444e9da03a080fb120dcc51b58cb49d3 |
| ISICitedReferencesCount | 242 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000407399000040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0032-3861 |
| IngestDate | Wed Aug 13 08:08:57 EDT 2025 Sat Nov 29 07:29:08 EST 2025 Tue Nov 18 20:36:07 EST 2025 Fri Feb 23 02:33:30 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Disentanglement Non-isothermal Fused filament fabrication Welding Polymer melt |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c385t-f6c7376fb77e4774886e5824c3c16ea51444e9da03a080fb120dcc51b58cb49d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5302-5920 |
| PQID | 1956485184 |
| PQPubID | 2045419 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_1956485184 crossref_primary_10_1016_j_polymer_2017_06_051 crossref_citationtrail_10_1016_j_polymer_2017_06_051 elsevier_sciencedirect_doi_10_1016_j_polymer_2017_06_051 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-08-11 |
| PublicationDateYYYYMMDD | 2017-08-11 |
| PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-11 day: 11 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Polymer (Guilford) |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Turner, Strong, Gold (bib2) 2014; 20 Kline, Wool (bib6) 1988; 28 Graham, Likhtman, McLeish, Milner (bib36) 2003; 47 Hill, Haghi (bib3) 2014; 20 Yang, Pitchumani (bib20) 2002; 35 Ianniruberto (bib44) 2015; 59 Hunt, Todd (bib25) 2009; 131 Brown (bib9) 2001; 34 Mark (bib42) 1996 Likhtman, Graham (bib22) 2003; 114 Ianniruberto (bib28) 2015; 48 Wool (bib13) 1995 Ianniruberto, Marrucci (bib24) 1996; 65 Kramer, Green, Palmstrøm (bib30) 1984; 25 Graham (bib45) 2002 Zhao, Macosko (bib33) 2007; 53 Croccolo, De Agostinis, Olmi (bib21) 2013; 79 Sun, Rizvi, Bellehumeur, Gu (bib18) 2008; 14 Uneyama, Horio, Watanabe (bib26) 2011; 83 Williams, Landel, Ferry (bib38) 1955; 77 Chua, Leong (bib1) 2003; vol. 1 De Gennes (bib10) 1981; 7 Schnell, Stamm, Creton (bib7) 1999; 32 Likhtman, McLeish (bib39) 2002; 35 Schach, Creton (bib16) 2008; 52 Brochard, Jouffroy, Levinson (bib29) 1983; 16 Prager, Tirrell (bib11) 1981; 75 Ilg, Kröger (bib27) 2011; 55 Composto, Mayer, Kramer, White (bib31) 1986; 57 Wool, O'Connor (bib8) 1981; 52 Jud, Kausch, Williams (bib5) 1981; 16 Zhang, Hendro, Fujii, Tomimura, Imaishi (bib35) 2002; 23 Jordan, Ball, Donald, Fetters, Jones, Klein (bib32) 1988; 21 Sha, Hui, Ruina, Kramer (bib40) 1995; 28 Seppala, Migler (bib19) 2016; 12 Ianniruberto, Marrucci (bib23) 2014; 58 Doi, Edwards (bib37) 1988 De Gennes (bib43) 1989; 50 Ge, Pierce, Perahia, Grest, Robbins (bib12) 2013; 110 McIlroy, Olmsted (bib17) 2017; 61 Mackay, Swain, Banbury, Phan, Edwards (bib34) 2017; 61 Benkoski, Fredrickson, Kramer (bib14) 2002; 40 Adolf, Tirrell, Prager (bib15) 1985; 23 Drummer, Cifuentes-Cuéllar, Rietzel (bib4) 2012; 18 Rottler, Barsky, Robbins (bib41) 2002; 89 Composto (10.1016/j.polymer.2017.06.051_bib31) 1986; 57 Sha (10.1016/j.polymer.2017.06.051_bib40) 1995; 28 Chua (10.1016/j.polymer.2017.06.051_bib1) 2003; vol. 1 Seppala (10.1016/j.polymer.2017.06.051_bib19) 2016; 12 Brown (10.1016/j.polymer.2017.06.051_bib9) 2001; 34 Graham (10.1016/j.polymer.2017.06.051_bib36) 2003; 47 Jud (10.1016/j.polymer.2017.06.051_bib5) 1981; 16 Wool (10.1016/j.polymer.2017.06.051_bib8) 1981; 52 Sun (10.1016/j.polymer.2017.06.051_bib18) 2008; 14 Ianniruberto (10.1016/j.polymer.2017.06.051_bib24) 1996; 65 De Gennes (10.1016/j.polymer.2017.06.051_bib43) 1989; 50 Hunt (10.1016/j.polymer.2017.06.051_bib25) 2009; 131 Uneyama (10.1016/j.polymer.2017.06.051_bib26) 2011; 83 De Gennes (10.1016/j.polymer.2017.06.051_bib10) 1981; 7 Kramer (10.1016/j.polymer.2017.06.051_bib30) 1984; 25 Doi (10.1016/j.polymer.2017.06.051_bib37) 1988 Wool (10.1016/j.polymer.2017.06.051_bib13) 1995 Schnell (10.1016/j.polymer.2017.06.051_bib7) 1999; 32 Ianniruberto (10.1016/j.polymer.2017.06.051_bib28) 2015; 48 Rottler (10.1016/j.polymer.2017.06.051_bib41) 2002; 89 Likhtman (10.1016/j.polymer.2017.06.051_bib39) 2002; 35 Zhao (10.1016/j.polymer.2017.06.051_bib33) 2007; 53 Hill (10.1016/j.polymer.2017.06.051_bib3) 2014; 20 Kline (10.1016/j.polymer.2017.06.051_bib6) 1988; 28 Likhtman (10.1016/j.polymer.2017.06.051_bib22) 2003; 114 Jordan (10.1016/j.polymer.2017.06.051_bib32) 1988; 21 Mackay (10.1016/j.polymer.2017.06.051_bib34) 2017; 61 Adolf (10.1016/j.polymer.2017.06.051_bib15) 1985; 23 Yang (10.1016/j.polymer.2017.06.051_bib20) 2002; 35 Ianniruberto (10.1016/j.polymer.2017.06.051_bib23) 2014; 58 Williams (10.1016/j.polymer.2017.06.051_bib38) 1955; 77 Prager (10.1016/j.polymer.2017.06.051_bib11) 1981; 75 Benkoski (10.1016/j.polymer.2017.06.051_bib14) 2002; 40 Brochard (10.1016/j.polymer.2017.06.051_bib29) 1983; 16 Schach (10.1016/j.polymer.2017.06.051_bib16) 2008; 52 Croccolo (10.1016/j.polymer.2017.06.051_bib21) 2013; 79 Ianniruberto (10.1016/j.polymer.2017.06.051_bib44) 2015; 59 Graham (10.1016/j.polymer.2017.06.051_bib45) 2002 Mark (10.1016/j.polymer.2017.06.051_bib42) 1996 Ilg (10.1016/j.polymer.2017.06.051_bib27) 2011; 55 Zhang (10.1016/j.polymer.2017.06.051_bib35) 2002; 23 Ge (10.1016/j.polymer.2017.06.051_bib12) 2013; 110 Turner (10.1016/j.polymer.2017.06.051_bib2) 2014; 20 Drummer (10.1016/j.polymer.2017.06.051_bib4) 2012; 18 McIlroy (10.1016/j.polymer.2017.06.051_bib17) 2017; 61 |
| References_xml | – year: 1995 ident: bib13 article-title: Polymer Interfaces: Structure and Strength – volume: 61 start-page: 229 year: 2017 end-page: 236 ident: bib34 article-title: The performance of the hot end in a plasticating 3D printer publication-title: J. Rheol. – volume: 79 start-page: 506 year: 2013 end-page: 518 ident: bib21 article-title: Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30 publication-title: Comput. Mater. Sci. – volume: vol. 1 year: 2003 ident: bib1 publication-title: Rapid Prototyping: Principles and Applications – volume: 28 start-page: 52 year: 1988 end-page: 57 ident: bib6 article-title: Polymer welding relations investigated by a lap shear joint method publication-title: Polym. Eng. Sci. – volume: 59 start-page: 211 year: 2015 end-page: 235 ident: bib44 article-title: Quantitative appraisal of a new CCR model for entangled linear polymers publication-title: J. Rheol. – volume: 131 start-page: 054904 year: 2009 ident: bib25 article-title: Diffusion of linear polymer melts in shear and extensional flows publication-title: J. Chem. Phys. – volume: 16 start-page: 1638 year: 1983 end-page: 1641 ident: bib29 article-title: Polymer-polymer diffusion in melts publication-title: Macromolecules – volume: 25 start-page: 473 year: 1984 end-page: 480 ident: bib30 article-title: Interdiffusion and marker movements in concentrated polymer-polymer diffusion couples publication-title: Polymer – volume: 55 start-page: 69 year: 2011 end-page: 93 ident: bib27 article-title: Molecularly derived constitutive equation for low-molecular polymer melts from thermodynamically guided simulation publication-title: J. Rheol. – volume: 28 start-page: 2450 year: 1995 end-page: 2459 ident: bib40 article-title: Continuum and discrete modeling of craze failure at a crack-tip in a glassy polymer publication-title: Macromolecules – volume: 20 start-page: 221 year: 2014 end-page: 227 ident: bib3 article-title: Deposition direction-dependent failure criteria for fused deposition modeling polycarbonate publication-title: Rapid Prototyp. J. – volume: 65 start-page: 241 year: 1996 end-page: 246 ident: bib24 article-title: On compatibility of the Cox-Merz rule with the model of Doi and Edwards publication-title: J. Newt. Fluid Mech. – volume: 75 start-page: 5194 year: 1981 end-page: 5198 ident: bib11 article-title: The healing process at polymer–polymer interfaces publication-title: J. Chem. Phys. – volume: 47 start-page: 1171 year: 2003 end-page: 1200 ident: bib36 article-title: Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release publication-title: J. Rheol. – volume: 50 start-page: 2551 year: 1989 end-page: 2562 ident: bib43 article-title: Weak adhesive junctions publication-title: J. de Phys. – year: 1988 ident: bib37 article-title: The Theory of Polymer Dynamics – volume: 110 start-page: 098301 year: 2013 ident: bib12 article-title: Molecular dynamics simulations of polymer welding: strength from interfacial entanglements publication-title: Phys. Rev. Lett. – volume: 53 start-page: 978 year: 2007 end-page: 985 ident: bib33 article-title: Polymer–polymer mutual diffusion via rheology of coextruded multilayers publication-title: AIChE J. – volume: 21 start-page: 235 year: 1988 end-page: 239 ident: bib32 article-title: Mutual diffusion in blends of long and short entangled polymer chains publication-title: Macromolecules – volume: 35 start-page: 6332 year: 2002 end-page: 6343 ident: bib39 article-title: Quantitative theory for linear dynamics of linear entangled polymers publication-title: Macromolecules – volume: 23 start-page: 1077 year: 2002 end-page: 1090 ident: bib35 article-title: Measurements of the thermal conductivity and thermal diffusivity of polymer melts with the short-hot-wire method publication-title: Int. J. Thermophys. – volume: 32 start-page: 3420 year: 1999 end-page: 3425 ident: bib7 article-title: Mechanical properties of homopolymer interfaces: transition from simple pullout to crazing with increasing interfacial width publication-title: Macromolecules – volume: 48 start-page: 6306 year: 2015 end-page: 6312 ident: bib28 article-title: Extensional flows of solutions of entangled polymers confirm reduction of friction coefficient publication-title: Macromolecules – volume: 14 start-page: 72 year: 2008 end-page: 80 ident: bib18 article-title: Effect of processing conditions on the bonding quality of FDM polymer filaments publication-title: Rapid Prototyp. J. – volume: 83 start-page: 061802 year: 2011 ident: bib26 article-title: Anisotropic mobility model for polymers under shear and its linear response functions publication-title: Phys. Rev. E – volume: 61 start-page: 379 year: 2017 end-page: 397 ident: bib17 article-title: Deformation of an amorphous polymer during the fused-filament-fabrication method for additive manufacturing publication-title: J. Rheol. – volume: 77 start-page: 3701 year: 1955 end-page: 3707 ident: bib38 article-title: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids publication-title: J. Am. Chem. Soc. – year: 2002 ident: bib45 article-title: Molecular Modelling of Entangled Polymers under Flow – volume: 18 start-page: 500 year: 2012 end-page: 507 ident: bib4 article-title: Suitability of PLA/TCP for fused deposition modeling publication-title: Rapid Prototyp. J. – volume: 23 start-page: 413 year: 1985 end-page: 427 ident: bib15 article-title: Molecular weight dependence of healing and brittle fracture in amorphous polymers above the entanglement molecular weight publication-title: J. Polym. Sci. Polym. Phys. Ed. – volume: 52 start-page: 749 year: 2008 end-page: 767 ident: bib16 article-title: Adhesion at interfaces between highly entangled polymer melts publication-title: J. Rheol. – volume: 89 start-page: 148304 year: 2002 ident: bib41 article-title: Cracks and crazes: on calculating the macroscopic fracture energy of glassy polymers from molecular simulations publication-title: Phys. Rev. Lett. – volume: 40 start-page: 2377 year: 2002 end-page: 2386 ident: bib14 article-title: Model for the fracture energy of glassy polymer–polymer interfaces publication-title: J. Polym. Sci. Part B Polym. Phys. – volume: 12 start-page: 71 year: 2016 end-page: 76 ident: bib19 article-title: Infrared thermography of welding zones produced by polymer extrusion additive manufacturing publication-title: Addit. Manuf. – volume: 35 start-page: 3213 year: 2002 end-page: 3224 ident: bib20 article-title: Healing of thermoplastic polymers at an interface under nonisothermal conditions publication-title: Macromolecules – volume: 57 start-page: 1312 year: 1986 ident: bib31 article-title: Fast mutual diffusion in polymer blends publication-title: Phys. Rev. Lett. – volume: 52 start-page: 5953 year: 1981 end-page: 5963 ident: bib8 article-title: A theory of crack healing in polymers publication-title: J. Appl. Phys. – volume: 16 start-page: 204 year: 1981 end-page: 210 ident: bib5 article-title: Fracture mechanics studies of crack healing and welding of polymers publication-title: J. Mater. Sci. – volume: 114 start-page: 1 year: 2003 end-page: 12 ident: bib22 article-title: Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie–poly equation publication-title: J. Newt. Fluid Mech. – volume: 20 start-page: 192 year: 2014 end-page: 204 ident: bib2 article-title: A review of melt extrusion additive manufacturing processes: I publication-title: Process Des. Model., Rapid Prototyp. J. – volume: 58 start-page: 89 year: 2014 end-page: 102 ident: bib23 article-title: Convective constraint release (CCR) revisited publication-title: J. Rheol. – volume: 7 start-page: 355 year: 1981 end-page: 367 ident: bib10 article-title: The formation of polymer/polymer junctions publication-title: Tribol. Ser. – year: 1996 ident: bib42 article-title: Physical Properties of Polymers Handbook – volume: 34 start-page: 3720 year: 2001 end-page: 3724 ident: bib9 article-title: Relation between the width of an interface between two polymers and its toughness publication-title: Macromolecules – volume: 52 start-page: 749 issue: 3 year: 2008 ident: 10.1016/j.polymer.2017.06.051_bib16 article-title: Adhesion at interfaces between highly entangled polymer melts publication-title: J. Rheol. doi: 10.1122/1.2901231 – volume: 25 start-page: 473 issue: 4 year: 1984 ident: 10.1016/j.polymer.2017.06.051_bib30 article-title: Interdiffusion and marker movements in concentrated polymer-polymer diffusion couples publication-title: Polymer doi: 10.1016/0032-3861(84)90205-2 – year: 2002 ident: 10.1016/j.polymer.2017.06.051_bib45 – volume: 16 start-page: 204 issue: 1 year: 1981 ident: 10.1016/j.polymer.2017.06.051_bib5 article-title: Fracture mechanics studies of crack healing and welding of polymers publication-title: J. Mater. Sci. doi: 10.1007/BF00552073 – volume: 28 start-page: 52 issue: 1 year: 1988 ident: 10.1016/j.polymer.2017.06.051_bib6 article-title: Polymer welding relations investigated by a lap shear joint method publication-title: Polym. Eng. Sci. doi: 10.1002/pen.760280109 – volume: 131 start-page: 054904 issue: 5 year: 2009 ident: 10.1016/j.polymer.2017.06.051_bib25 article-title: Diffusion of linear polymer melts in shear and extensional flows publication-title: J. Chem. Phys. doi: 10.1063/1.3202868 – volume: 57 start-page: 1312 issue: 11 year: 1986 ident: 10.1016/j.polymer.2017.06.051_bib31 article-title: Fast mutual diffusion in polymer blends publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.57.1312 – year: 1996 ident: 10.1016/j.polymer.2017.06.051_bib42 – volume: 34 start-page: 3720 issue: 11 year: 2001 ident: 10.1016/j.polymer.2017.06.051_bib9 article-title: Relation between the width of an interface between two polymers and its toughness publication-title: Macromolecules doi: 10.1021/ma991821v – volume: 52 start-page: 5953 issue: 10 year: 1981 ident: 10.1016/j.polymer.2017.06.051_bib8 article-title: A theory of crack healing in polymers publication-title: J. Appl. Phys. doi: 10.1063/1.328526 – volume: 114 start-page: 1 issue: 1 year: 2003 ident: 10.1016/j.polymer.2017.06.051_bib22 article-title: Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie–poly equation publication-title: J. Newt. Fluid Mech. – volume: 55 start-page: 69 issue: 1 year: 2011 ident: 10.1016/j.polymer.2017.06.051_bib27 article-title: Molecularly derived constitutive equation for low-molecular polymer melts from thermodynamically guided simulation publication-title: J. Rheol. doi: 10.1122/1.3523485 – volume: 40 start-page: 2377 issue: 20 year: 2002 ident: 10.1016/j.polymer.2017.06.051_bib14 article-title: Model for the fracture energy of glassy polymer–polymer interfaces publication-title: J. Polym. Sci. Part B Polym. Phys. doi: 10.1002/polb.10288 – volume: 21 start-page: 235 issue: 1 year: 1988 ident: 10.1016/j.polymer.2017.06.051_bib32 article-title: Mutual diffusion in blends of long and short entangled polymer chains publication-title: Macromolecules doi: 10.1021/ma00179a045 – volume: 58 start-page: 89 issue: 1 year: 2014 ident: 10.1016/j.polymer.2017.06.051_bib23 article-title: Convective constraint release (CCR) revisited publication-title: J. Rheol. doi: 10.1122/1.4843957 – volume: 83 start-page: 061802 issue: 6 year: 2011 ident: 10.1016/j.polymer.2017.06.051_bib26 article-title: Anisotropic mobility model for polymers under shear and its linear response functions publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.83.061802 – volume: 16 start-page: 1638 issue: 10 year: 1983 ident: 10.1016/j.polymer.2017.06.051_bib29 article-title: Polymer-polymer diffusion in melts publication-title: Macromolecules doi: 10.1021/ma00244a016 – volume: 61 start-page: 379 issue: 2 year: 2017 ident: 10.1016/j.polymer.2017.06.051_bib17 article-title: Deformation of an amorphous polymer during the fused-filament-fabrication method for additive manufacturing publication-title: J. Rheol. doi: 10.1122/1.4976839 – volume: 50 start-page: 2551 issue: 18 year: 1989 ident: 10.1016/j.polymer.2017.06.051_bib43 article-title: Weak adhesive junctions publication-title: J. de Phys. doi: 10.1051/jphys:0198900500180255100 – volume: 7 start-page: 355 year: 1981 ident: 10.1016/j.polymer.2017.06.051_bib10 article-title: The formation of polymer/polymer junctions publication-title: Tribol. Ser. doi: 10.1016/S0167-8922(08)70894-0 – volume: 79 start-page: 506 year: 2013 ident: 10.1016/j.polymer.2017.06.051_bib21 article-title: Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2013.06.041 – volume: 12 start-page: 71 year: 2016 ident: 10.1016/j.polymer.2017.06.051_bib19 article-title: Infrared thermography of welding zones produced by polymer extrusion additive manufacturing publication-title: Addit. Manuf. – volume: 20 start-page: 221 issue: 3 year: 2014 ident: 10.1016/j.polymer.2017.06.051_bib3 article-title: Deposition direction-dependent failure criteria for fused deposition modeling polycarbonate publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-04-2013-0039 – volume: 110 start-page: 098301 issue: 9 year: 2013 ident: 10.1016/j.polymer.2017.06.051_bib12 article-title: Molecular dynamics simulations of polymer welding: strength from interfacial entanglements publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.098301 – year: 1995 ident: 10.1016/j.polymer.2017.06.051_bib13 – volume: 61 start-page: 229 issue: 2 year: 2017 ident: 10.1016/j.polymer.2017.06.051_bib34 article-title: The performance of the hot end in a plasticating 3D printer publication-title: J. Rheol. doi: 10.1122/1.4973852 – volume: 75 start-page: 5194 issue: 10 year: 1981 ident: 10.1016/j.polymer.2017.06.051_bib11 article-title: The healing process at polymer–polymer interfaces publication-title: J. Chem. Phys. doi: 10.1063/1.441871 – year: 1988 ident: 10.1016/j.polymer.2017.06.051_bib37 – volume: 35 start-page: 6332 issue: 16 year: 2002 ident: 10.1016/j.polymer.2017.06.051_bib39 article-title: Quantitative theory for linear dynamics of linear entangled polymers publication-title: Macromolecules doi: 10.1021/ma0200219 – volume: 28 start-page: 2450 issue: 7 year: 1995 ident: 10.1016/j.polymer.2017.06.051_bib40 article-title: Continuum and discrete modeling of craze failure at a crack-tip in a glassy polymer publication-title: Macromolecules doi: 10.1021/ma00111a044 – volume: 65 start-page: 241 issue: 2 year: 1996 ident: 10.1016/j.polymer.2017.06.051_bib24 article-title: On compatibility of the Cox-Merz rule with the model of Doi and Edwards publication-title: J. Newt. Fluid Mech. – volume: 14 start-page: 72 issue: 2 year: 2008 ident: 10.1016/j.polymer.2017.06.051_bib18 article-title: Effect of processing conditions on the bonding quality of FDM polymer filaments publication-title: Rapid Prototyp. J. doi: 10.1108/13552540810862028 – volume: vol. 1 year: 2003 ident: 10.1016/j.polymer.2017.06.051_bib1 – volume: 18 start-page: 500 issue: 6 year: 2012 ident: 10.1016/j.polymer.2017.06.051_bib4 article-title: Suitability of PLA/TCP for fused deposition modeling publication-title: Rapid Prototyp. J. doi: 10.1108/13552541211272045 – volume: 53 start-page: 978 issue: 4 year: 2007 ident: 10.1016/j.polymer.2017.06.051_bib33 article-title: Polymer–polymer mutual diffusion via rheology of coextruded multilayers publication-title: AIChE J. doi: 10.1002/aic.11136 – volume: 89 start-page: 148304 issue: 14 year: 2002 ident: 10.1016/j.polymer.2017.06.051_bib41 article-title: Cracks and crazes: on calculating the macroscopic fracture energy of glassy polymers from molecular simulations publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.148304 – volume: 77 start-page: 3701 issue: 14 year: 1955 ident: 10.1016/j.polymer.2017.06.051_bib38 article-title: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01619a008 – volume: 35 start-page: 3213 issue: 8 year: 2002 ident: 10.1016/j.polymer.2017.06.051_bib20 article-title: Healing of thermoplastic polymers at an interface under nonisothermal conditions publication-title: Macromolecules doi: 10.1021/ma010858o – volume: 20 start-page: 192 issue: 3 year: 2014 ident: 10.1016/j.polymer.2017.06.051_bib2 article-title: A review of melt extrusion additive manufacturing processes: I publication-title: Process Des. Model., Rapid Prototyp. J. doi: 10.1108/RPJ-01-2013-0012 – volume: 23 start-page: 1077 issue: 4 year: 2002 ident: 10.1016/j.polymer.2017.06.051_bib35 article-title: Measurements of the thermal conductivity and thermal diffusivity of polymer melts with the short-hot-wire method publication-title: Int. J. Thermophys. doi: 10.1023/A:1016394104244 – volume: 23 start-page: 413 issue: 2 year: 1985 ident: 10.1016/j.polymer.2017.06.051_bib15 article-title: Molecular weight dependence of healing and brittle fracture in amorphous polymers above the entanglement molecular weight publication-title: J. Polym. Sci. Polym. Phys. Ed. doi: 10.1002/pol.1985.180230214 – volume: 48 start-page: 6306 issue: 17 year: 2015 ident: 10.1016/j.polymer.2017.06.051_bib28 article-title: Extensional flows of solutions of entangled polymers confirm reduction of friction coefficient publication-title: Macromolecules doi: 10.1021/acs.macromol.5b01401 – volume: 32 start-page: 3420 issue: 10 year: 1999 ident: 10.1016/j.polymer.2017.06.051_bib7 article-title: Mechanical properties of homopolymer interfaces: transition from simple pullout to crazing with increasing interfacial width publication-title: Macromolecules doi: 10.1021/ma980860o – volume: 47 start-page: 1171 issue: 5 year: 2003 ident: 10.1016/j.polymer.2017.06.051_bib36 article-title: Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release publication-title: J. Rheol. doi: 10.1122/1.1595099 – volume: 59 start-page: 211 issue: 1 year: 2015 ident: 10.1016/j.polymer.2017.06.051_bib44 article-title: Quantitative appraisal of a new CCR model for entangled linear polymers publication-title: J. Rheol. doi: 10.1122/1.4903495 |
| SSID | ssj0002524 |
| Score | 2.6362076 |
| Snippet | Although 3D printing has the potential to transform manufacturing processes, the strength of printed parts often does not rival that of... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 376 |
| SubjectTerms | Additive manufacturing Anisotropy Deformation Diffusion Diffusion layers Diffusion rate Disentanglement Entanglement Extrusion Fabrication Fused deposition modeling Fused filament fabrication Glass transition temperature Interdiffusion Manufacturing industry Mechanical properties Melts Non-isothermal Polymer melt Polymer melts Polymers Printing Rheological properties Rheology Studies Three dimensional printing Transition temperatures Viscoelasticity Welded joints Welding |
| Title | Disentanglement effects on welding behaviour of polymer melts during the fused-filament-fabrication method for additive manufacturing |
| URI | https://dx.doi.org/10.1016/j.polymer.2017.06.051 https://www.proquest.com/docview/1956485184 |
| Volume | 123 |
| WOSCitedRecordID | wos000407399000040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002524 issn: 0032-3861 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5FLRJwqKCA6AO0B26Vjb1ee3ePVVpEEVQ5FCk3y16vUSrHiZK6j1sv_G9mvbuOGyilBy5WZMWTjefzzOx45huEPrSTT0JSeDl4a49mofIyEWSeyEWQh0omtGhJXL-y01M-HovRYHDremEuK1bX_PpazP-rquEcKFu3zj5C3Z1QOAGfQelwBLXD8Z8UfzRp-4nqH6YwfFWxUR9cqfZVk-vNb9o3BPNZdTNVi4OpquBbtm1Rh6Nls1SFV04AMyDHK7N8YRN8du60qcAsClN-NM3qRrdJtAL6Me_I_oBOSDSTylTTd_mHb_LEJQSH_irlO3Vp2JF_5PdTE-DuNFVs2De3EfEibtjWO3NLop7BjFjS872Rmdz1m1k3GYZz394RXZHHWtpVS1Z7h0Z7zb11RYeunu08tWJSLSbVdX26B3-TsFiAad88PDkef-m8OYmJYfK2f2XVBfbxj-u5L75Z8_Rt-HL2Am3ZfQc-NHh5iQaq3kZPh27c3zZ63mOmfIV-rqEIWxThWY0tinCHIjwrsV0jblGEDYowoAjfjyJsUIQBENihCN9B0Wv0_dPx2fCzZyd2eDLiMchIJDz8SZkzpihsLDhPVMwJlZEME5VBcE6pEkUWRBnsVMo8JEEhZRzmMZc5FUX0Bm3Us1q9RZgHhaZuUnEWK5oHJSeMSdgLSxHzRAiyg6i7z6m0dPZ6qkqV_lXPO8jvLpsbPpeHLuBOiakNSk2wmQI4H7p03yk9tQZimer-XArbHE53H7uUPfRs9ZTto42LRaPeoSfy8mKyXLy3wP0FaRXAUg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disentanglement+effects+on+welding+behaviour+of+polymer+melts+during+the+fused-filament-fabrication+method+for+additive+manufacturing&rft.jtitle=Polymer+%28Guilford%29&rft.au=McIlroy%2C+C.&rft.au=Olmsted%2C+P.D.&rft.date=2017-08-11&rft.issn=0032-3861&rft.volume=123&rft.spage=376&rft.epage=391&rft_id=info:doi/10.1016%2Fj.polymer.2017.06.051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_polymer_2017_06_051 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3861&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3861&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3861&client=summon |