Adaptive piecewise linear relaxations for enclosure computations for nonconvex multiobjective mixed-integer quadratically constrained programs

In this paper, a new method for computing an enclosure of the nondominated set of multiobjective mixed-integer quadratically constrained programs without any convexity requirements is presented. In fact, our criterion space method makes use of piecewise linear relaxations in order to bypass the nonc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of global optimization Ročník 87; číslo 1; s. 97 - 132
Hlavní autori: Link, Moritz, Volkwein, Stefan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY Springer US 01.09.2023
Springer Nature B.V
Predmet:
ISSN:1573-2916, 0925-5001, 1573-2916
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, a new method for computing an enclosure of the nondominated set of multiobjective mixed-integer quadratically constrained programs without any convexity requirements is presented. In fact, our criterion space method makes use of piecewise linear relaxations in order to bypass the nonconvexity of the original problem. The method chooses adaptively which level of relaxation is needed in which parts of the image space. Furthermore, it is guaranteed that after finitely many iterations, an enclosure of the nondominated set of prescribed quality is returned. We demonstrate the advantages of this approach by applying it to multiobjective energy supply network problems.
AbstractList In this paper, a new method for computing an enclosure of the nondominated set of multiobjective mixed-integer quadratically constrained programs without any convexity requirements is presented. In fact, our criterion space method makes use of piecewise linear relaxations in order to bypass the nonconvexity of the original problem. The method chooses adaptively which level of relaxation is needed in which parts of the image space. Furthermore, it is guaranteed that after finitely many iterations, an enclosure of the nondominated set of prescribed quality is returned. We demonstrate the advantages of this approach by applying it to multiobjective energy supply network problems.
Author Link, Moritz
Volkwein, Stefan
Author_xml – sequence: 1
  givenname: Moritz
  surname: Link
  fullname: Link, Moritz
– sequence: 2
  givenname: Stefan
  surname: Volkwein
  fullname: Volkwein, Stefan
BookMark eNp9kM1q3TAQhUVJoPl7gUBB0LUb_ViWvQwhaQOBbNq10B2Ngy625Eh2evMSeeYq14WELLLSoJlvzplzTA5CDEjIOWc_OGP6InPWdm3FhKwYl6yr1BdyxJWWleh4c_Cu_kqOc94yxrpWiSPycunsNPsnpJNHwL8-Ix18QJtowsHu7OxjyLSPiWKAIeYlIYU4Tsv8rlXcQAxPuKPjMpTvzRZhv3T0O3SVDzM-YKKPi3WpYGCH4blsCXlOtog5OqX4kOyYT8lhb4eMZ__fE_Ln5vr31a_q7v7n7dXlXQWyVXOFulzqWs0dOOQgmqYFBOaUc1Y5LQWA6KFW2PQboRA3SthmA1r1KOrSkCfk-7q3CD8umGezjUsKRdKItpa1bjqhy1S7TkGKOSfsDfj17Fffg-HMvKZv1vRN8WT26RtVUPEBnZIfbXr-HJIrlMtwKIm9ufqU-rZSWBL12eA-2JiMZJrJWv4DKvSp5w
CitedBy_id crossref_primary_10_1007_s11081_025_09999_4
crossref_primary_10_1007_s10796_024_10492_z
Cites_doi 10.1007/BF01580665
10.1007/s10898-021-01109-9
10.1080/10556788.2018.1556661
10.1007/s10107-017-1149-0
10.1007/s11590-021-01740-1
10.1007/s10898-020-00984-y
10.1016/j.ejor.2015.12.018
10.1080/0305215X.2021.1939695
10.1007/978-1-4614-1927-3_10
10.1007/BF02592064
10.1007/s10898-021-01006-1
10.1007/s101070050128
10.1016/S0098-1354(98)00027-1
10.1007/BF01099647 10.1007/BF01099647
10.1016/j.ejco.2021.100014
10.1007/978-1-4614-1927-3 10.1007/978-1-4614-1927-3
10.1007/s00158-004-0465-1
10.1007/s00158-005-0557-6
10.1287/ijoc.2019.0887
10.1016/j.ejor.2016.05.029
10.1016/j.disopt.2018.02.001
10.1007/s10957-023-02285-2
10.1007/978-3-030-79393-7_3
10.1017/S0962492913000032
10.1016/0098-1354(95)87027-X
10.1080/02331934.2021.1939699
10.1016/j.cor.2005.10.003
10.1007/s10288-004-0038-6
10.1287/opre.1090.0721
10.1007/978-3-642-38189-8_18
10.1007/s10107-012-0555-6
10.1007/BF00934564
10.1007/978-3-319-42432-3_37
10.1007/s10898-012-9877-4
10.1007/s10898-015-0322-3
10.1287/ijoc.2016.0697
10.1002/nme.6013
10.1007/978-3-319-39929-4_37
10.1007/s10898-018-00734-1
10.1007/978-3-0348-0436-3_3
10.1137/19M1264709
10.1007/978-1-4757-3532-1
10.1016/j.ejor.2015.03.031
10.1007/BF01581153
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID OT2
C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10898-023-01309-5
DatabaseName EconStor
Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
CrossRef

ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Mathematics
Computer Science
EISSN 1573-2916
EndPage 132
ExternalDocumentID 10_1007_s10898_023_01309_5
307034
GrantInformation_xml – fundername: Universität Konstanz (3156)
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OT2
OVD
P19
P2P
P62
P9M
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
ZY4
~EX
-52
-57
-5G
-BR
-EM
3V.
AAAVM
AAYOK
AAYZH
ABTAH
ADINQ
AESKC
C6C
GQ6
GROUPED_ABI_INFORM_COMPLETE
M0N
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
AAYXX
CITATION
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c385t-e7023d871dcde1c2668cec0d5dda5d732cc2fc45e6fb25eeb52a6bc75fe24fc43
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001020560200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1573-2916
0925-5001
IngestDate Wed Nov 05 04:11:33 EST 2025
Sat Nov 29 01:59:37 EST 2025
Tue Nov 18 22:40:11 EST 2025
Fri Feb 21 02:42:40 EST 2025
Fri Dec 05 12:07:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Adaptive piecewise linear relaxation
65K05
Mixed-integer nonlinear programming
90C35
Multiobjective optimization
Energy supply networks
90C11
90C29
Box enclosure
90C26
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-e7023d871dcde1c2668cec0d5dda5d732cc2fc45e6fb25eeb52a6bc75fe24fc43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0010-083X
OpenAccessLink https://link.springer.com/10.1007/s10898-023-01309-5
PQID 2843476927
PQPubID 29930
PageCount 36
ParticipantIDs proquest_journals_2843476927
crossref_citationtrail_10_1007_s10898_023_01309_5
crossref_primary_10_1007_s10898_023_01309_5
springer_journals_10_1007_s10898_023_01309_5
econis_econstor_307034
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References PeriniTBolandNPecinDSavelsberghMA criterion space method for biobjective mixed integer programming: the boxed line methodINFORMS J. Comput.20203211639406317410.1287/ijoc.2019.088707284451
KirlikGSayınSBilevel programming for generating discrete representations in multiobjective optimizationMath. Program.20181692585604380087110.1007/s10107-017-1149-01391.90555
EichfelderGKirstPMengLSteinOA general branch-and-bound framework for continuous global multiobjective optimizationJ. Global Optim.2021801195227426067710.1007/s10898-020-00984-y1470.90114
De SantisMEichfelderGNieblingJRocktäschelSSolving multiobjective mixed integer convex optimization problemsSIAM J. Optim.202030431223145416821610.1137/19M12647091453.90139
Iapichino, L., Trenz, S., Volkwein, S.: Reduced-order multiobjective optimal control of semilinear parabolic problems. In: Numerical Mathematics and Advanced Applications—ENUMATH 2015. Lect. Notes Comput. Sci. Eng., vol. 112, pp. 389–397. Springer, Cham (2016)
Banholzer, S., Gebken, B., Dellnitz, M., Peitz, S., Volkwein, S.: ROM-based multiobjective optimization of elliptic PDEs via numerical continuation. In: Non-smooth and Complementarity-based Distributed Parameter Systems—Simulation and Hierarchical Optimization. Int. Ser. Numer. Math., vol. 172, pp. 43–76. Birkhäuser/Springer, Cham (2022). https://doi.org/10.1007/978-3-030-79393-7_3
Lee, J., Leyffer, S. (eds.): Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol. 154, p. 690. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-1927-3. Selected papers based on the IMA Hot Topics Workshop “Mixed-Integer Nonlinear Optimization: Algorithmic Advances and Applications” held in Minneapolis, MN, November 17–21, 2008. https://doi.org/10.1007/978-1-4614-1927-3
LundellASkjälAWesterlundTA reformulation framework for global optimizationJ. Global Optim.2013571115141309528210.1007/s10898-012-9877-41277.90102
Eichfelder, G., Warnow, L.: A hybrid patch decomposition approach to compute an enclosure for multiobjective mixed-integer convex optimization problems (2021)
BoukouvalaFMisenerRFloudasCAGlobal optimization advances in mixed-integer nonlinear programming, MINLP, and constrained derivative-free optimization, CDFOEur. J. Oper. Res.20162523701727347349210.1016/j.ejor.2015.12.0181346.90677
Bestuzheva, K., Besançon, M., Chen, W.-K., Chmiela, A., Donkiewicz, T., van Doornmalen, J., Eifler, L., Gaul, O., Gamrath, G., Gleixner, A., Gottwald, L., Graczyk, C., Halbig, K., Hoen, A., Hojny, C., van der Hulst, R., Koch, T., Lübbecke, M., Maher, S.J., Matter, F., Mühmer, E., Müller, B., Pfetsch, M.E., Rehfeldt, D., Schlein, S., Schlösser, F., Serrano, F., Shinano, Y., Sofranac, B., Turner, M., Vigerske, S., Wegscheider, F., Wellner, P., Weninger, D., Witzig, J.: The SCIP Optimization Suite 8.0. ZIB-Report 21-41, Zuse Institute Berlin (2021). http://nbn-resolving.de/urn:nbn:de:0297-zib-85309
NagarajanHLuMWangSBentRSundarKAn adaptive, multivariate partitioning algorithm for global optimization of nonconvex programsJ. Global Optim.2019744639675399209210.1007/s10898-018-00734-11429.90056
Maher, S., Miltenberger, M., Pedroso, J.P., Rehfeldt, D., Schwarz, R., Serrano, F.: PySCIPOpt: mathematical programming in python with the SCIP optimization suite. In: Mathematical Software—ICMS 2016, pp. 301–307. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42432-3_37
McCormickGPComputability of global solutions to factorable nonconvex programs. I. Convex underestimating problemsMath. Program.197610214717546928110.1007/BF015806650349.90100
StidsenTAndersenKAA hybrid approach for biobjective optimizationDiscrete Optim.20182889114379903910.1016/j.disopt.2018.02.0011506.90241
EichfelderGTwenty years of continuous multiobjective optimization in the twenty-first centuryEURO J. Comput. Optim.20219439774510.1016/j.ejco.2021.10001407711234
CplexIIV12. 1: user’s manual for CPLEXInt. Bus. Mach. Corp.20094653157
Skjäl, A.: On the use of convex under estimators in global optimization. Ph.D. thesis, Abo Akademi University (2014)
Morsi, A., Geißler, B., Martin, A.: Mixed integer optimization of water supply networks. In: Mathematical Optimization of Water Networks. Internat. Ser. Numer. Math., vol. 162, pp. 35–54. Birkhäuser/Springer Basel AG, Basel (2012). https://doi.org/10.1007/978-3-0348-0436-3_3
EhrgottMMulticriteria Optimization20052BerlinSpringer3231132.90001
Eichfelder, G., Stein, O., Warnow, L.: A deterministic solver for multiobjective mixed-integer convex and nonconvex optimization (2022)
Westerlund, T., Pettersson, F.: An extended cutting plane method for solving convex MINLP problems. Comput. Chem. Eng. 19, 131–136 (1995). https://doi.org/10.1016/0098-1354(95)87027-X. European Symposium on Computer Aided Process Engineering 3–5
BelottiPKirchesCLeyfferSLinderothJLuedtkeJMahajanAMixed-integer nonlinear optimizationActa Numer.2013221131303869610.1017/S09624929130000321291.65172
KlamrothKLacourRVanderpootenDOn the representation of the search region in multi-objective optimizationEur. J. Oper. Res.20152453767778334590810.1016/j.ejor.2015.03.0311346.90739
Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-integer Nonlinear Programming. Nonconvex Optimization and its Applications, vol. 65, p. 475. Kluwer Academic Publishers, Dordrecht (2002). https://doi.org/10.1007/978-1-4757-3532-1. Theory, algorithms, software, and applications
AdjimanCSDallwigSFloudasCANeumaierAA global optimization method, α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}BB, for general twice-differentiable constrained NLPs—I. Theoretical advancesComput. Chem. Eng.19982291137115810.1016/S0098-1354(98)00027-1
DächertKKlamrothKLacourRVanderpootenDEfficient computation of the search region in multi-objective optimizationEur. J. Oper. Res.20172603841855362617410.1016/j.ejor.2016.05.0291403.90602
Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2022). https://www.gurobi.com
BurachikRSKayaCYRizviMMAlgorithms for generating pareto fronts of multi-objective integer and mixed-integer programming problemsEng. Optim.202110.1080/0305215X.2021.1939695
FletcherRLeyfferSSolving mixed integer nonlinear programs by outer approximationMath. Program.1994663, Ser. A327349129707010.1007/BF015811530833.90088
DuranMAGrossmannIEAn outer-approximation algorithm for a class of mixed-integer nonlinear programsMath. Program.198636330733986641310.1007/BF025920640619.90052
PascolettiASerafiniPScalarizing vector optimization problemsJ. Optim. Theory Appl.198442449952473943210.1007/BF009345640505.90072
VielmaJPAhmedSNemhauserGMixed-integer models for nonseparable piecewise-linear optimization: unifying framework and extensionsOper. Res.2010582303315267479810.1287/opre.1090.07211226.90046
KimIYde WeckOAdaptive weighted sum method for bi-objective optimization: Pareto front generationStruct. Multidiscip. Optim.20052914915810.1007/s00158-004-0465-1
KronqvistJLundellAWesterlundTThe extended supporting hyperplane algorithm for convex mixed-integer nonlinear programmingJ. Global Optim.2016642249272345519910.1007/s10898-015-0322-31339.90247
Eichfelder, G., Warnow, L.: An approximation algorithm for multi-objective optimization problems using a box-coverage. J. Global Optim. (2021)
Banholzer, S.: Rom-Based Multiobjective Optimization with PDE Constraints. Ph.D. thesis, Universität Konstanz, Konstanz (2021)
DiesselEAn adaptive patch approximation algorithm for bicriteria convex mixed-integer problemsOptimization202100146451985310.1080/02331934.2021.1939699
Androulakis, I.P., Maranas, C.D., Floudas, C.A.: αBB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \text{BB}$$\end{document}: a global optimization method for general constrained nonconvex problems, vol. 7, pp. 337–363 (1995). https://doi.org/10.1007/BF01099647. State of the art in global optimization: computational methods and applications (Princeton, NJ, 1995). https://doi.org/10.1007/BF01099647
RyuNMinSMultiobjective optimization with an adaptive weight determination scheme using the concept of hyperplaneInt. J. Numer. Methods Eng.20191186303319394133210.1002/nme.6013
Borraz-SánchezCBentRBackhausSHijaziHVan HentenryckPConvex relaxations for gas expansion planningINFORMS J. Comput.2016284645656355002710.1287/ijoc.2016.06971355.90063
BurlacuROn refinement strategies for solving MINLPs by piecewise linear relaxations: a general red refinementOptim. Lett.202110.1007/s11590-021-01740-1
Burlacu, R.: Adaptive mixed-integer refinements for solving nonlinear problems with discrete decisions. Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (2019)
KimIYde WeckOAdaptive weighted sum method for multiobjective optimization: a new method for Pareto front generationStruct. Multidiscip. Optim.2006312105116219954510.1007/s00158-005-0557-61245.90117
MisenerRFloudasCAGlobal optimization of mixed-integer quadratically-constrained quadratic programs (MIQCQP) through piecewise-linear and edge-concave relaxationsMath. Program.20121361, Ser. B155182300058610.1007/s10107-012-0555-61257.90079
EhrgottMGandibleuxXBound sets for biobjective combinatorial optimization problemsComput. Oper. Res.200734926742694230835610.1016/j.cor.2005.10.0031141.90509
Eggen, C., Huynh, T.-V., Link, M., Stephan, P., Volkwein, S.: An MINLP model for designing decentralized energy supply networks. Technical report. arXiv:2212.06527 (2022)
Lu, J.: Mixed-Integer Nonlinear Modeling and Optimization of Designing Decentralized Energy Supply Networks. Ph.D. thesis, Universität Konstanz, Konstanz (2023)
SayınSMeasuring the quality of discrete representations of efficient sets in multiple objec
G Eichfelder (1309_CR26) 2021; 80
K Dächert (1309_CR15) 2017; 260
J Kronqvist (1309_CR35) 2016; 64
R Misener (1309_CR43) 2012; 136
1309_CR38
E Diessel (1309_CR17) 2021; 0
1309_CR36
1309_CR30
1309_CR1
T Stidsen (1309_CR51) 2018; 28
JP Vielma (1309_CR53) 2010; 58
GP McCormick (1309_CR42) 1976; 10
M De Santis (1309_CR16) 2020; 30
MA Duran (1309_CR18) 1986; 36
K Klamroth (1309_CR34) 2015; 245
1309_CR29
M Ehrgott (1309_CR20) 2005
1309_CR28
IY Kim (1309_CR32) 2006; 31
1309_CR25
1309_CR23
1309_CR7
1309_CR24
L Liberti (1309_CR37) 2004; 2
1309_CR5
1309_CR4
1309_CR3
RS Burachik (1309_CR10) 2021
F Boukouvala (1309_CR9) 2016; 252
II Cplex (1309_CR14) 2009; 46
1309_CR19
T Perini (1309_CR47) 2020; 32
CS Adjiman (1309_CR2) 1998; 22
A Lundell (1309_CR40) 2013; 57
N Ryu (1309_CR48) 2019; 118
1309_CR54
1309_CR11
1309_CR52
R Burlacu (1309_CR12) 2021
1309_CR50
M Ehrgott (1309_CR21) 2007; 34
R Fletcher (1309_CR27) 1994; 66
C Borraz-Sánchez (1309_CR8) 2016; 28
R Burlacu (1309_CR13) 2020; 35
G Eichfelder (1309_CR22) 2021; 9
H Nagarajan (1309_CR45) 2019; 74
P Belotti (1309_CR6) 2013; 22
G Kirlik (1309_CR33) 2018; 169
S Sayın (1309_CR49) 2000; 87
IY Kim (1309_CR31) 2005; 29
A Pascoletti (1309_CR46) 1984; 42
1309_CR44
1309_CR41
A Lundell (1309_CR39) 2022; 82
References_xml – reference: Achterberg, T., Wunderling, R.: Mixed integer programming: analyzing 12 years of progress. In: Facets of Combinatorial Optimization, pp. 449–481. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38189-8_18
– reference: Bestuzheva, K., Besançon, M., Chen, W.-K., Chmiela, A., Donkiewicz, T., van Doornmalen, J., Eifler, L., Gaul, O., Gamrath, G., Gleixner, A., Gottwald, L., Graczyk, C., Halbig, K., Hoen, A., Hojny, C., van der Hulst, R., Koch, T., Lübbecke, M., Maher, S.J., Matter, F., Mühmer, E., Müller, B., Pfetsch, M.E., Rehfeldt, D., Schlein, S., Schlösser, F., Serrano, F., Shinano, Y., Sofranac, B., Turner, M., Vigerske, S., Wegscheider, F., Wellner, P., Weninger, D., Witzig, J.: The SCIP Optimization Suite 8.0. ZIB-Report 21-41, Zuse Institute Berlin (2021). http://nbn-resolving.de/urn:nbn:de:0297-zib-85309
– reference: Banholzer, S.: Rom-Based Multiobjective Optimization with PDE Constraints. Ph.D. thesis, Universität Konstanz, Konstanz (2021)
– reference: LundellAKronqvistJPolyhedral approximation strategies for nonconvex mixed-integer nonlinear programming in SHOTJ. Global Optim.2022824863896440465310.1007/s10898-021-01006-11490.90200
– reference: Eggen, C., Huynh, T.-V., Link, M., Stephan, P., Volkwein, S.: An MINLP model for designing decentralized energy supply networks. Technical report. arXiv:2212.06527 (2022)
– reference: Geißler, B., Martin, A., Morsi, A., Schewe, L.: Using piecewise linear functions for solving MINLPs. In: Mixed Integer Nonlinear Programming. IMA Vol. Math. Appl., vol. 154, pp. 287–314. Springer, New York (2012)
– reference: FletcherRLeyfferSSolving mixed integer nonlinear programs by outer approximationMath. Program.1994663, Ser. A327349129707010.1007/BF015811530833.90088
– reference: Lu, J.: Mixed-Integer Nonlinear Modeling and Optimization of Designing Decentralized Energy Supply Networks. Ph.D. thesis, Universität Konstanz, Konstanz (2023)
– reference: NagarajanHLuMWangSBentRSundarKAn adaptive, multivariate partitioning algorithm for global optimization of nonconvex programsJ. Global Optim.2019744639675399209210.1007/s10898-018-00734-11429.90056
– reference: BurachikRSKayaCYRizviMMAlgorithms for generating pareto fronts of multi-objective integer and mixed-integer programming problemsEng. Optim.202110.1080/0305215X.2021.1939695
– reference: Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-integer Nonlinear Programming. Nonconvex Optimization and its Applications, vol. 65, p. 475. Kluwer Academic Publishers, Dordrecht (2002). https://doi.org/10.1007/978-1-4757-3532-1. Theory, algorithms, software, and applications
– reference: DiesselEAn adaptive patch approximation algorithm for bicriteria convex mixed-integer problemsOptimization202100146451985310.1080/02331934.2021.1939699
– reference: BelottiPKirchesCLeyfferSLinderothJLuedtkeJMahajanAMixed-integer nonlinear optimizationActa Numer.2013221131303869610.1017/S09624929130000321291.65172
– reference: LibertiLReformulation and convex relaxation techniques for global optimizationQ. J. Belg. Fr. Ital. Oper. Res. Soc.2004225525810.1007/s10288-004-0038-61136.90442
– reference: Westerlund, T., Pettersson, F.: An extended cutting plane method for solving convex MINLP problems. Comput. Chem. Eng. 19, 131–136 (1995). https://doi.org/10.1016/0098-1354(95)87027-X. European Symposium on Computer Aided Process Engineering 3–5
– reference: Androulakis, I.P., Maranas, C.D., Floudas, C.A.: αBB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \text{BB}$$\end{document}: a global optimization method for general constrained nonconvex problems, vol. 7, pp. 337–363 (1995). https://doi.org/10.1007/BF01099647. State of the art in global optimization: computational methods and applications (Princeton, NJ, 1995). https://doi.org/10.1007/BF01099647
– reference: MisenerRFloudasCAGlobal optimization of mixed-integer quadratically-constrained quadratic programs (MIQCQP) through piecewise-linear and edge-concave relaxationsMath. Program.20121361, Ser. B155182300058610.1007/s10107-012-0555-61257.90079
– reference: Iapichino, L., Trenz, S., Volkwein, S.: Reduced-order multiobjective optimal control of semilinear parabolic problems. In: Numerical Mathematics and Advanced Applications—ENUMATH 2015. Lect. Notes Comput. Sci. Eng., vol. 112, pp. 389–397. Springer, Cham (2016)
– reference: BurlacuRGeißlerBScheweLSolving mixed-integer nonlinear programmes using adaptively refined mixed-integer linear programmesOptim. Methods Softw.20203513764403294010.1080/10556788.2018.15566611432.90089
– reference: Eichfelder, G., Warnow, L.: A hybrid patch decomposition approach to compute an enclosure for multiobjective mixed-integer convex optimization problems (2021)
– reference: Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2022). https://www.gurobi.com
– reference: EichfelderGTwenty years of continuous multiobjective optimization in the twenty-first centuryEURO J. Comput. Optim.20219439774510.1016/j.ejco.2021.10001407711234
– reference: Borraz-SánchezCBentRBackhausSHijaziHVan HentenryckPConvex relaxations for gas expansion planningINFORMS J. Comput.2016284645656355002710.1287/ijoc.2016.06971355.90063
– reference: BurlacuROn refinement strategies for solving MINLPs by piecewise linear relaxations: a general red refinementOptim. Lett.202110.1007/s11590-021-01740-1
– reference: Eichfelder, G., Warnow, L.: An approximation algorithm for multi-objective optimization problems using a box-coverage. J. Global Optim. (2021)
– reference: BoukouvalaFMisenerRFloudasCAGlobal optimization advances in mixed-integer nonlinear programming, MINLP, and constrained derivative-free optimization, CDFOEur. J. Oper. Res.20162523701727347349210.1016/j.ejor.2015.12.0181346.90677
– reference: DuranMAGrossmannIEAn outer-approximation algorithm for a class of mixed-integer nonlinear programsMath. Program.198636330733986641310.1007/BF025920640619.90052
– reference: Eichfelder, G., Stein, O., Warnow, L.: A deterministic solver for multiobjective mixed-integer convex and nonconvex optimization (2022)
– reference: KimIYde WeckOAdaptive weighted sum method for multiobjective optimization: a new method for Pareto front generationStruct. Multidiscip. Optim.2006312105116219954510.1007/s00158-005-0557-61245.90117
– reference: Banholzer, S., Gebken, B., Dellnitz, M., Peitz, S., Volkwein, S.: ROM-based multiobjective optimization of elliptic PDEs via numerical continuation. In: Non-smooth and Complementarity-based Distributed Parameter Systems—Simulation and Hierarchical Optimization. Int. Ser. Numer. Math., vol. 172, pp. 43–76. Birkhäuser/Springer, Cham (2022). https://doi.org/10.1007/978-3-030-79393-7_3
– reference: Morsi, A., Geißler, B., Martin, A.: Mixed integer optimization of water supply networks. In: Mathematical Optimization of Water Networks. Internat. Ser. Numer. Math., vol. 162, pp. 35–54. Birkhäuser/Springer Basel AG, Basel (2012). https://doi.org/10.1007/978-3-0348-0436-3_3
– reference: LundellASkjälAWesterlundTA reformulation framework for global optimizationJ. Global Optim.2013571115141309528210.1007/s10898-012-9877-41277.90102
– reference: PascolettiASerafiniPScalarizing vector optimization problemsJ. Optim. Theory Appl.198442449952473943210.1007/BF009345640505.90072
– reference: AdjimanCSDallwigSFloudasCANeumaierAA global optimization method, α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}BB, for general twice-differentiable constrained NLPs—I. Theoretical advancesComput. Chem. Eng.19982291137115810.1016/S0098-1354(98)00027-1
– reference: EichfelderGKirstPMengLSteinOA general branch-and-bound framework for continuous global multiobjective optimizationJ. Global Optim.2021801195227426067710.1007/s10898-020-00984-y1470.90114
– reference: RyuNMinSMultiobjective optimization with an adaptive weight determination scheme using the concept of hyperplaneInt. J. Numer. Methods Eng.20191186303319394133210.1002/nme.6013
– reference: KronqvistJLundellAWesterlundTThe extended supporting hyperplane algorithm for convex mixed-integer nonlinear programmingJ. Global Optim.2016642249272345519910.1007/s10898-015-0322-31339.90247
– reference: Maher, S., Miltenberger, M., Pedroso, J.P., Rehfeldt, D., Schwarz, R., Serrano, F.: PySCIPOpt: mathematical programming in python with the SCIP optimization suite. In: Mathematical Software—ICMS 2016, pp. 301–307. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42432-3_37
– reference: McCormickGPComputability of global solutions to factorable nonconvex programs. I. Convex underestimating problemsMath. Program.197610214717546928110.1007/BF015806650349.90100
– reference: Burlacu, R.: Adaptive mixed-integer refinements for solving nonlinear problems with discrete decisions. Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (2019)
– reference: EhrgottMGandibleuxXBound sets for biobjective combinatorial optimization problemsComput. Oper. Res.200734926742694230835610.1016/j.cor.2005.10.0031141.90509
– reference: Lee, J., Leyffer, S. (eds.): Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol. 154, p. 690. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-1927-3. Selected papers based on the IMA Hot Topics Workshop “Mixed-Integer Nonlinear Optimization: Algorithmic Advances and Applications” held in Minneapolis, MN, November 17–21, 2008. https://doi.org/10.1007/978-1-4614-1927-3
– reference: KimIYde WeckOAdaptive weighted sum method for bi-objective optimization: Pareto front generationStruct. Multidiscip. Optim.20052914915810.1007/s00158-004-0465-1
– reference: EhrgottMMulticriteria Optimization20052BerlinSpringer3231132.90001
– reference: PeriniTBolandNPecinDSavelsberghMA criterion space method for biobjective mixed integer programming: the boxed line methodINFORMS J. Comput.20203211639406317410.1287/ijoc.2019.088707284451
– reference: KlamrothKLacourRVanderpootenDOn the representation of the search region in multi-objective optimizationEur. J. Oper. Res.20152453767778334590810.1016/j.ejor.2015.03.0311346.90739
– reference: De SantisMEichfelderGNieblingJRocktäschelSSolving multiobjective mixed integer convex optimization problemsSIAM J. Optim.202030431223145416821610.1137/19M12647091453.90139
– reference: Skjäl, A.: On the use of convex under estimators in global optimization. Ph.D. thesis, Abo Akademi University (2014)
– reference: CplexIIV12. 1: user’s manual for CPLEXInt. Bus. Mach. Corp.20094653157
– reference: DächertKKlamrothKLacourRVanderpootenDEfficient computation of the search region in multi-objective optimizationEur. J. Oper. Res.20172603841855362617410.1016/j.ejor.2016.05.0291403.90602
– reference: KirlikGSayınSBilevel programming for generating discrete representations in multiobjective optimizationMath. Program.20181692585604380087110.1007/s10107-017-1149-01391.90555
– reference: VielmaJPAhmedSNemhauserGMixed-integer models for nonseparable piecewise-linear optimization: unifying framework and extensionsOper. Res.2010582303315267479810.1287/opre.1090.07211226.90046
– reference: SayınSMeasuring the quality of discrete representations of efficient sets in multiple objective mathematical programmingMath. Program.2000873, Ser. A543560175756310.1007/s1010700501280970.90090
– reference: StidsenTAndersenKAA hybrid approach for biobjective optimizationDiscrete Optim.20182889114379903910.1016/j.disopt.2018.02.0011506.90241
– ident: 1309_CR50
– volume: 10
  start-page: 147
  issue: 2
  year: 1976
  ident: 1309_CR42
  publication-title: Math. Program.
  doi: 10.1007/BF01580665
– ident: 1309_CR19
– start-page: 323
  volume-title: Multicriteria Optimization
  year: 2005
  ident: 1309_CR20
– ident: 1309_CR23
  doi: 10.1007/s10898-021-01109-9
– volume: 35
  start-page: 37
  issue: 1
  year: 2020
  ident: 1309_CR13
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2018.1556661
– volume: 169
  start-page: 585
  issue: 2
  year: 2018
  ident: 1309_CR33
  publication-title: Math. Program.
  doi: 10.1007/s10107-017-1149-0
– ident: 1309_CR7
– year: 2021
  ident: 1309_CR12
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-021-01740-1
– volume: 80
  start-page: 195
  issue: 1
  year: 2021
  ident: 1309_CR26
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-020-00984-y
– ident: 1309_CR29
– volume: 252
  start-page: 701
  issue: 3
  year: 2016
  ident: 1309_CR9
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2015.12.018
– year: 2021
  ident: 1309_CR10
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2021.1939695
– ident: 1309_CR28
  doi: 10.1007/978-1-4614-1927-3_10
– volume: 36
  start-page: 307
  issue: 3
  year: 1986
  ident: 1309_CR18
  publication-title: Math. Program.
  doi: 10.1007/BF02592064
– volume: 82
  start-page: 863
  issue: 4
  year: 2022
  ident: 1309_CR39
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-021-01006-1
– volume: 87
  start-page: 543
  issue: 3, Ser. A
  year: 2000
  ident: 1309_CR49
  publication-title: Math. Program.
  doi: 10.1007/s101070050128
– volume: 22
  start-page: 1137
  issue: 9
  year: 1998
  ident: 1309_CR2
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(98)00027-1
– ident: 1309_CR3
  doi: 10.1007/BF01099647 10.1007/BF01099647
– volume: 9
  year: 2021
  ident: 1309_CR22
  publication-title: EURO J. Comput. Optim.
  doi: 10.1016/j.ejco.2021.100014
– ident: 1309_CR36
  doi: 10.1007/978-1-4614-1927-3 10.1007/978-1-4614-1927-3
– ident: 1309_CR11
– volume: 29
  start-page: 149
  year: 2005
  ident: 1309_CR31
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-004-0465-1
– volume: 31
  start-page: 105
  issue: 2
  year: 2006
  ident: 1309_CR32
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-005-0557-6
– volume: 32
  start-page: 16
  issue: 1
  year: 2020
  ident: 1309_CR47
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2019.0887
– volume: 260
  start-page: 841
  issue: 3
  year: 2017
  ident: 1309_CR15
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2016.05.029
– volume: 28
  start-page: 89
  year: 2018
  ident: 1309_CR51
  publication-title: Discrete Optim.
  doi: 10.1016/j.disopt.2018.02.001
– ident: 1309_CR25
  doi: 10.1007/s10957-023-02285-2
– ident: 1309_CR5
  doi: 10.1007/978-3-030-79393-7_3
– volume: 22
  start-page: 1
  year: 2013
  ident: 1309_CR6
  publication-title: Acta Numer.
  doi: 10.1017/S0962492913000032
– ident: 1309_CR54
  doi: 10.1016/0098-1354(95)87027-X
– volume: 0
  start-page: 1
  issue: 0
  year: 2021
  ident: 1309_CR17
  publication-title: Optimization
  doi: 10.1080/02331934.2021.1939699
– volume: 34
  start-page: 2674
  issue: 9
  year: 2007
  ident: 1309_CR21
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2005.10.003
– volume: 2
  start-page: 255
  year: 2004
  ident: 1309_CR37
  publication-title: Q. J. Belg. Fr. Ital. Oper. Res. Soc.
  doi: 10.1007/s10288-004-0038-6
– volume: 58
  start-page: 303
  issue: 2
  year: 2010
  ident: 1309_CR53
  publication-title: Oper. Res.
  doi: 10.1287/opre.1090.0721
– ident: 1309_CR1
  doi: 10.1007/978-3-642-38189-8_18
– volume: 136
  start-page: 155
  issue: 1, Ser. B
  year: 2012
  ident: 1309_CR43
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0555-6
– volume: 42
  start-page: 499
  issue: 4
  year: 1984
  ident: 1309_CR46
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00934564
– ident: 1309_CR41
  doi: 10.1007/978-3-319-42432-3_37
– volume: 57
  start-page: 115
  issue: 1
  year: 2013
  ident: 1309_CR40
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-012-9877-4
– volume: 64
  start-page: 249
  issue: 2
  year: 2016
  ident: 1309_CR35
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-015-0322-3
– volume: 28
  start-page: 645
  issue: 4
  year: 2016
  ident: 1309_CR8
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2016.0697
– ident: 1309_CR38
– volume: 118
  start-page: 303
  issue: 6
  year: 2019
  ident: 1309_CR48
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.6013
– ident: 1309_CR30
  doi: 10.1007/978-3-319-39929-4_37
– volume: 46
  start-page: 157
  issue: 53
  year: 2009
  ident: 1309_CR14
  publication-title: Int. Bus. Mach. Corp.
– ident: 1309_CR4
– volume: 74
  start-page: 639
  issue: 4
  year: 2019
  ident: 1309_CR45
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-018-00734-1
– ident: 1309_CR44
  doi: 10.1007/978-3-0348-0436-3_3
– volume: 30
  start-page: 3122
  issue: 4
  year: 2020
  ident: 1309_CR16
  publication-title: SIAM J. Optim.
  doi: 10.1137/19M1264709
– ident: 1309_CR52
  doi: 10.1007/978-1-4757-3532-1
– volume: 245
  start-page: 767
  issue: 3
  year: 2015
  ident: 1309_CR34
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2015.03.031
– ident: 1309_CR24
– volume: 66
  start-page: 327
  issue: 3, Ser. A
  year: 1994
  ident: 1309_CR27
  publication-title: Math. Program.
  doi: 10.1007/BF01581153
SSID ssj0009852
Score 2.380418
Snippet In this paper, a new method for computing an enclosure of the nondominated set of multiobjective mixed-integer quadratically constrained programs without any...
SourceID proquest
crossref
springer
econis
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 97
SubjectTerms Adaptive piecewise linear relaxation
Approximation
Box enclosure
Computer Science
Convexity
Enclosures
Energy supply networks
Linear programming
Mathematics
Mathematics and Statistics
Mixed integer
Mixed-integer nonlinear programming
Multiobjective optimization
Network management systems
Operations Research/Decision Theory
Optimization
Real Functions
Variables
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQwcASlBzhQWqhYWpAPHEBgsXbiODmhqqJCAlUcAPVmJWNbClo222QLy0_wzfU4XrZFohdukRzbI894PO8BeC6L0iqbl3zqRREUlAp5KWvLtWi09mhFEx3tXz_q09Py7Kz6lAxuQwqrXPPEyKhth2QjfxPYaJbropL67eKcU9co8q6mFhq34Y6QUhCdf9B8U3S3jB13ppVUXAV-nJJmUupcScllkqKJyMugrj1M26SNtsM1sfMvT2l8gE52_hf0B3A_iZ7saKSVXbjl5ntw70pBwj3YTVd9YC9SPeqXD-H3ka0XxBXZonXofraDYySc1j2jTJjVaPNjQfplYe6sI5sjw9gt4srQvJvHCPcVizGMXfNtZLXse7tylseyFa5n5xe1JaIMpDP7FVahArd12MyyFEk2PIIvJ-8-H7_nqY0Dx6xUS-50OGUbFDOL1gkMEkGJDqeBRGytrM4kovSYK1f4RirnGiXrokGtvJN5GMj2YSvA6B4Ds77IhPS1yqltO_rKe1uhDWq2CN-6moBY49BgqnFOUM7Mpjoz4d0EiEzEu1ETePVnzmKs8HHj3_sjaRgXj6DrTeSa-QQO18g3iQ0MZoP5Cbxek89m-N_bPLl5tQO4KyPpUqzbIWwt-wv3FLbxx7Id-mfxElwCb2cQ1A
  priority: 102
  providerName: ProQuest
Title Adaptive piecewise linear relaxations for enclosure computations for nonconvex multiobjective mixed-integer quadratically constrained programs
URI https://www.econstor.eu/handle/10419/307034
https://link.springer.com/article/10.1007/s10898-023-01309-5
https://www.proquest.com/docview/2843476927
Volume 87
WOSCitedRecordID wos001020560200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 1573-2916
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xjwf2sLHCRGFUfuABBJEaJ46dxzFtQoKVaoMxeLESf0hBXVuabpR_gr-Zs-OsHQIkeDkl8tfJPp_P9t3PAE9pJjTTqYj6Ns5wg5KrSNBCRzwuObdKx6W_aD9_ywcDcXGRD0NQWN16u7dXkl5TrwS7CRcORp3_j7sXYGuwgcudcNPx9Ox8CbUr_Ds7_ZyyiKEWDqEyv6_j1nK06fagVX3L2PzlftQvO8c7_8fwPdgOZiY5aORiF-6YcQd22iccSJjRHdhawSPEv5MbENe6A7shV02eBXDq5_fhx4Eupk5FkmlllPlW1YY4S7WYERcWs2gOAAmawgTLjibuAJIo3-5K0ngy9u7uC-IdGifll0bvkstqYXTkMSyQza9XhXYSinI0-o61OLTbAhvTJLiV1Q_gw_HR-8PXUXjTIVKJYPPIcOwPjbs0rbSJFZoHQhnVR3nRBdM8oUpRq1JmMltSZkzJaJGVijNraIoJyR6sI4_mIRBtsySmtmCpe8Nd2dxanSuNe-4Yv3nehbgdWqkC4LnjciSXUM1uhCRyJP0ISdaFFzdlpg3cx19z7zUSI43vgslMehWadmG_lSAZdEIt0RBIUp7llHfhZSsxy-Q_N_Po37I_hrvUC51zhNuH9fnsyjyBTXU9r-pZD9b4x0892Hh1NBie4t8bHiE96R86St95OnSUnyEdss89P7t-AqaxGhE
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VUgk4AC1ULBTwASQQRGycOE4OCFWFqlWXFYeCejOJH1LQstkmW7r9E_wUfiMzTsK2SPTWA7dIjh3L-ebleQE840lqhInTYOjCBA2UTAcpz00gw0JKp01YeEf7l5Ecj9Ojo-zTCvzqc2EorLLniZ5Rm0rTHfkbZKNRLJOMy3ez44C6RpF3tW-h0cLiwJ6dosnWvN1_j__3Oee7Hw539oKuq0Cgo1TMAytRTBm0E4w2NtQooFJt9RB3bHJhZMS15k7Hwiau4MLaQvA8KbQUzvIYByJc9xpcj2MkBwoVHO4si_ymvsPPMOMiEMj_uySdLlUvpWQ2TtFL5NUQFwThGlm_ZXNBzf3LM-sF3u6d_-2o7sLtTrVm2y0trMOKnW7ArXMFFzdgvWNlDXvR1dt-eQ9-bpt8RlyfzUqr7WnZWEbKd14zyvRZtHeaDLV7hnMnFd2pMu27YZwbmlZTH8G_YD5Gsyq-taKEfS8X1gS-LIet2fFJbojokDQmZ7gKFfDN8WOGdZFyzX34fCWntAmruEf7AJhxSRRyl4uY2tJrlzlnMm0iVKvwWWYDCHvMKN3VcKddTtSy-jThTOGOlMeZEgN49WfOrK1gcunbmy0UlfVHUNXKS4V4AFs92FTH5hq1RNoAXvdwXQ7_-zMPL1_tKdzYO_w4UqP98cEjuMk92VBc3xaszusT-xjW9I952dRPPAEy-HrVMP4NY9xyCQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VUiE4AC1ULBTwASQQWGycOE4OCFWUFdVWqx4A9WYS_0hBy2abbOn2JXggno6x47AtEr31wG0lbxzL-Wa-GXt-AJ6xNNNcJxkd2ihFByVXNGOFpiIqhbBKR6W_aP9yICaT7OgoP1yDX30ujAur7HWiV9S6Vu6M_A2q0TgRaY6uug1hEYd7o3fzY-o6SLmb1r6dRgeRsTk7Rfetfbu_h9_6OWOjD5_ef6ShwwBVccYX1AikLI0-g1baRArJKlNGDXH1uuBaxEwpZlXCTWpLxo0pOSvSUgluDUtwIMZ5r8F1ZGHuZGws6Krgb-a7_QxzxilHLggJOyFtL3OJbcxFMrkbDn6BFDecJ1y1F0zev25pPfmN7vzP23YXbgeTm-x2MrIJa2a2BbfOFWLcgs2g4lryItThfnkPfu7qYu7YgMwro8xp1RrijPKiIS4DaNmddRK0-gk-O63dWStRvkvGuaFZPfOR_UviYzfr8ltHMeR7tTSa-nIdpiHHJ4V2wogiMz3DWVxh3wJfpkmIoGvvw-cr2aVtWMc1mgdAtE3jiNmCJ65dvbK5tTpXOkZzC3-LfABRjx-pQm13t8qpXFWldpiTuCLpMSf5AF79eWbeVTa59N_bHSyl8VtQN9KzRTKAnR54Mqi_Vq5QN4DXPXRXw_9-zcPLZ3sKNxC98mB_Mn4EN5mXIBfutwPri-bEPIYN9WNRtc0TL4sEvl41in8D4uJ6rw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+piecewise+linear+relaxations+for+enclosure+computations+for+nonconvex+multiobjective+mixed-integer+quadratically+constrained+programs&rft.jtitle=Journal+of+global+optimization&rft.au=Link%2C+Moritz&rft.au=Volkwein%2C+Stefan&rft.date=2023-09-01&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=87&rft.issue=1&rft.spage=97&rft.epage=132&rft_id=info:doi/10.1007%2Fs10898-023-01309-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10898_023_01309_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-2916&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-2916&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-2916&client=summon