Deep packet: a novel approach for encrypted traffic classification using deep learning
Network traffic classification has become more important with the rapid growth of Internet and online applications. Numerous studies have been done on this topic which have led to many different approaches. Most of these approaches use predefined features extracted by an expert in order to classify...
Gespeichert in:
| Veröffentlicht in: | Soft computing (Berlin, Germany) Jg. 24; H. 3; S. 1999 - 2012 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2020
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1432-7643, 1433-7479 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Network traffic classification has become more important with the rapid growth of Internet and online applications. Numerous studies have been done on this topic which have led to many different approaches. Most of these approaches use predefined features extracted by an expert in order to classify network traffic. In contrast, in this study, we propose a
deep learning
-based approach which integrates both feature extraction and classification phases into one system. Our proposed scheme, called “Deep Packet,” can handle both
traffic characterization
in which the network traffic is categorized into major classes (e.g., FTP and P2P) and
application identification
in which identifying end-user applications (e.g., BitTorrent and Skype) is desired. Contrary to most of the current methods, Deep Packet can identify encrypted traffic and also distinguishes between VPN and non-VPN network traffic. The Deep Packet framework employs two deep neural network structures, namely stacked autoencoder (SAE) and convolution neural network (CNN) in order to classify network traffic. Our experiments show that the best result is achieved when Deep Packet uses CNN as its classification model where it achieves recall of 0.98 in application identification task and 0.94 in traffic categorization task. To the best of our knowledge, Deep Packet outperforms all of the proposed classification methods on UNB ISCX VPN-nonVPN dataset. |
|---|---|
| AbstractList | Network traffic classification has become more important with the rapid growth of Internet and online applications. Numerous studies have been done on this topic which have led to many different approaches. Most of these approaches use predefined features extracted by an expert in order to classify network traffic. In contrast, in this study, we propose a deep learning-based approach which integrates both feature extraction and classification phases into one system. Our proposed scheme, called “Deep Packet,” can handle both traffic characterization in which the network traffic is categorized into major classes (e.g., FTP and P2P) and application identification in which identifying end-user applications (e.g., BitTorrent and Skype) is desired. Contrary to most of the current methods, Deep Packet can identify encrypted traffic and also distinguishes between VPN and non-VPN network traffic. The Deep Packet framework employs two deep neural network structures, namely stacked autoencoder (SAE) and convolution neural network (CNN) in order to classify network traffic. Our experiments show that the best result is achieved when Deep Packet uses CNN as its classification model where it achieves recall of 0.98 in application identification task and 0.94 in traffic categorization task. To the best of our knowledge, Deep Packet outperforms all of the proposed classification methods on UNB ISCX VPN-nonVPN dataset. Network traffic classification has become more important with the rapid growth of Internet and online applications. Numerous studies have been done on this topic which have led to many different approaches. Most of these approaches use predefined features extracted by an expert in order to classify network traffic. In contrast, in this study, we propose a deep learning -based approach which integrates both feature extraction and classification phases into one system. Our proposed scheme, called “Deep Packet,” can handle both traffic characterization in which the network traffic is categorized into major classes (e.g., FTP and P2P) and application identification in which identifying end-user applications (e.g., BitTorrent and Skype) is desired. Contrary to most of the current methods, Deep Packet can identify encrypted traffic and also distinguishes between VPN and non-VPN network traffic. The Deep Packet framework employs two deep neural network structures, namely stacked autoencoder (SAE) and convolution neural network (CNN) in order to classify network traffic. Our experiments show that the best result is achieved when Deep Packet uses CNN as its classification model where it achieves recall of 0.98 in application identification task and 0.94 in traffic categorization task. To the best of our knowledge, Deep Packet outperforms all of the proposed classification methods on UNB ISCX VPN-nonVPN dataset. |
| Author | Saberian, Mohammdsadegh Shirali Hossein Zade, Ramin Lotfollahi, Mohammad Jafari Siavoshani, Mahdi |
| Author_xml | – sequence: 1 givenname: Mohammad orcidid: 0000-0001-6858-7985 surname: Lotfollahi fullname: Lotfollahi, Mohammad organization: Sharif University of Technology – sequence: 2 givenname: Mahdi orcidid: 0000-0003-3860-5999 surname: Jafari Siavoshani fullname: Jafari Siavoshani, Mahdi email: mjafari@sharif.edu organization: Sharif University of Technology – sequence: 3 givenname: Ramin surname: Shirali Hossein Zade fullname: Shirali Hossein Zade, Ramin organization: Sharif University of Technology – sequence: 4 givenname: Mohammdsadegh surname: Saberian fullname: Saberian, Mohammdsadegh organization: Sharif University of Technology |
| BookMark | eNp9kEtLAzEQgINUsK3-AU8Bz6uTzWaT9Sb1CQUv6jVk00ndumbXZCv035u2guChp5mB-ebxTcjIdx4JOWdwyQDkVQQQABmwKoMCOGT5ERmzgvNMFrIa7fI8k2XBT8gkxhVAzqTgY_J2i9jT3tgPHK6pob77xpaavg-dse_UdYGit2HTD7igQzDONZba1sTYpMwMTefpOjZ-SRfbQS2a4FN1So6daSOe_cYpeb2_e5k9ZvPnh6fZzTyzXIkhW7gahQArLVtwVVpZCsVROSEQQSHKAmoFSlW14VZVsmQoCssFOmdtXSKfkov93HTv1xrjoFfdOvi0UucVkxVILqvUle-7bOhiDOh0H5pPEzaagd7603t_OvnTO386T5D6B9lm2D2cNDTtYZTv0Zj2-CWGv6sOUD-7LodL |
| CitedBy_id | crossref_primary_10_1002_cpe_8316 crossref_primary_10_1007_s11042_023_17338_x crossref_primary_10_3390_app15189879 crossref_primary_10_1109_TCE_2024_3471573 crossref_primary_10_1109_TNSM_2021_3112283 crossref_primary_10_12677_mos_2025_145416 crossref_primary_10_32604_cmc_2024_050474 crossref_primary_10_1186_s13635_023_00141_4 crossref_primary_10_1109_ACCESS_2021_3081504 crossref_primary_10_1145_3447382 crossref_primary_10_1007_s00607_024_01306_w crossref_primary_10_1007_s10723_024_09767_1 crossref_primary_10_1007_s12530_022_09471_z crossref_primary_10_1016_j_jnca_2025_104109 crossref_primary_10_1016_j_comnet_2023_109648 crossref_primary_10_1016_j_phycom_2023_102002 crossref_primary_10_3390_computers14070248 crossref_primary_10_1016_j_compeleceng_2022_108024 crossref_primary_10_1109_JIOT_2025_3559902 crossref_primary_10_1109_TIFS_2025_3574971 crossref_primary_10_1016_j_comnet_2021_108550 crossref_primary_10_3390_electronics10010036 crossref_primary_10_1007_s11432_023_3978_y crossref_primary_10_1109_ACCESS_2020_2973023 crossref_primary_10_1109_JIOT_2023_3244544 crossref_primary_10_22399_ijcesen_1377 crossref_primary_10_1080_09540091_2023_2197172 crossref_primary_10_1145_3543516_3453921 crossref_primary_10_1109_TNSM_2022_3218843 crossref_primary_10_1007_s12083_024_01665_3 crossref_primary_10_1155_2023_2801421 crossref_primary_10_1007_s12243_025_01114_z crossref_primary_10_3390_electronics12030516 crossref_primary_10_1016_j_comnet_2024_110591 crossref_primary_10_1016_j_comnet_2023_109991 crossref_primary_10_1109_TNSM_2021_3129610 crossref_primary_10_1109_ACCESS_2023_3279120 crossref_primary_10_1109_TNSM_2024_3382393 crossref_primary_10_1109_JSEN_2022_3219253 crossref_primary_10_3390_electronics10010027 crossref_primary_10_3390_sym12091458 crossref_primary_10_3390_electronics12040789 crossref_primary_10_1016_j_adhoc_2025_103916 crossref_primary_10_3390_math10193482 crossref_primary_10_1515_itit_2023_0050 crossref_primary_10_1109_ACCESS_2022_3188866 crossref_primary_10_1109_JSAC_2021_3087268 crossref_primary_10_1109_TNET_2022_3215507 crossref_primary_10_54097_zfm1nx90 crossref_primary_10_1016_j_future_2024_107487 crossref_primary_10_1109_COMST_2021_3086296 crossref_primary_10_1016_j_pmcj_2022_101737 crossref_primary_10_1109_TNET_2023_3287091 crossref_primary_10_1007_s00500_023_08915_1 crossref_primary_10_1109_ACCESS_2022_3227073 crossref_primary_10_3390_electronics12010115 crossref_primary_10_1109_JIOT_2023_3320046 crossref_primary_10_3233_JIFS_201075 crossref_primary_10_1109_TNSE_2025_3535577 crossref_primary_10_1016_j_comcom_2022_01_006 crossref_primary_10_1109_TNET_2023_3335253 crossref_primary_10_1016_j_comnet_2024_110824 crossref_primary_10_1109_ACCESS_2019_2962018 crossref_primary_10_1109_MNET_2025_3532109 crossref_primary_10_1109_TGCN_2022_3165221 crossref_primary_10_1109_ACCESS_2025_3559068 crossref_primary_10_1007_s11280_021_00940_0 crossref_primary_10_1007_s00354_021_00152_0 crossref_primary_10_1007_s10462_022_10143_2 crossref_primary_10_1093_comjnl_bxac049 crossref_primary_10_3390_electronics13071236 crossref_primary_10_1016_j_cose_2024_104067 crossref_primary_10_1016_j_knosys_2025_113419 crossref_primary_10_1016_j_procs_2024_09_635 crossref_primary_10_1016_j_cose_2024_103892 crossref_primary_10_3390_app15095002 crossref_primary_10_1007_s10489_021_03032_8 crossref_primary_10_1007_s12652_022_03810_3 crossref_primary_10_1007_s00500_023_07949_9 crossref_primary_10_1016_j_comnet_2024_110372 crossref_primary_10_1016_j_neucom_2022_06_055 crossref_primary_10_1016_j_eswa_2025_127281 crossref_primary_10_1109_ACCESS_2025_3545476 crossref_primary_10_1016_j_adhoc_2024_103676 crossref_primary_10_1016_j_comnet_2023_109652 crossref_primary_10_1155_2020_8826038 crossref_primary_10_1016_j_eswa_2022_116618 crossref_primary_10_1109_ACCESS_2020_2992556 crossref_primary_10_1155_2021_4054435 crossref_primary_10_3390_electronics11213577 crossref_primary_10_1155_2022_4274139 crossref_primary_10_1007_s00500_024_10383_0 crossref_primary_10_1109_TNSM_2022_3229706 crossref_primary_10_1186_s13677_023_00430_w crossref_primary_10_1109_ACCESS_2021_3087528 crossref_primary_10_1016_j_comnet_2025_111530 crossref_primary_10_1155_2023_9041355 crossref_primary_10_1016_j_adhoc_2024_103601 crossref_primary_10_1109_ACCESS_2022_3214506 crossref_primary_10_1007_s11831_021_09551_4 crossref_primary_10_1109_TNSM_2021_3071441 crossref_primary_10_3390_sym16050589 crossref_primary_10_3390_app132111776 crossref_primary_10_1016_j_comnet_2021_108472 crossref_primary_10_1016_j_future_2022_02_012 crossref_primary_10_1016_j_cmpb_2020_105555 crossref_primary_10_1109_ACCESS_2020_3008250 crossref_primary_10_1109_ACCESS_2020_3029190 crossref_primary_10_1016_j_jnca_2025_104254 crossref_primary_10_1109_ACCESS_2025_3593613 crossref_primary_10_1109_TIFS_2025_3529316 crossref_primary_10_1109_TNSE_2023_3279427 crossref_primary_10_1007_s10115_023_01915_5 crossref_primary_10_1109_ACCESS_2023_3311889 crossref_primary_10_3390_sym14112329 crossref_primary_10_1109_JIOT_2025_3577245 crossref_primary_10_1016_j_comnet_2025_111662 crossref_primary_10_1016_j_jnca_2020_102890 crossref_primary_10_1007_s11416_020_00353_z crossref_primary_10_1145_3696012 crossref_primary_10_3233_JIFS_231099 crossref_primary_10_1145_3712307 crossref_primary_10_1109_JPROC_2022_3153408 crossref_primary_10_7717_peerj_cs_3126 crossref_primary_10_1016_j_comnet_2025_111549 crossref_primary_10_32604_cmc_2022_020727 crossref_primary_10_1109_TVT_2020_3005724 crossref_primary_10_1016_j_comnet_2023_109904 crossref_primary_10_3390_app14135466 crossref_primary_10_3390_bdcc9080216 crossref_primary_10_3390_ijgi9070456 crossref_primary_10_1109_TNSM_2021_3122940 crossref_primary_10_1186_s42400_023_00201_9 crossref_primary_10_3390_s22114167 crossref_primary_10_1016_j_asoc_2024_111423 crossref_primary_10_1109_TIFS_2022_3179955 crossref_primary_10_1155_2021_5518460 crossref_primary_10_32604_cmc_2024_056165 crossref_primary_10_1016_j_comnet_2024_110984 crossref_primary_10_1109_JIOT_2023_3310794 crossref_primary_10_1016_j_scs_2020_102655 crossref_primary_10_3390_app13084725 crossref_primary_10_1016_j_comnet_2024_110747 crossref_primary_10_1016_j_comnet_2024_110746 crossref_primary_10_3390_electronics9020324 crossref_primary_10_32604_cmc_2024_059417 crossref_primary_10_1016_j_dcan_2024_02_003 crossref_primary_10_3390_fi17080323 crossref_primary_10_1007_s00500_020_05189_9 crossref_primary_10_1117_1_JEI_32_4_043032 crossref_primary_10_1016_j_eswa_2024_125729 crossref_primary_10_1155_2023_7117863 crossref_primary_10_3390_s22197643 crossref_primary_10_1016_j_compeleceng_2024_109406 crossref_primary_10_1109_TIFS_2024_3433446 crossref_primary_10_1007_s10922_024_09841_9 crossref_primary_10_1016_j_vehcom_2022_100471 crossref_primary_10_1016_j_jisa_2023_103519 crossref_primary_10_1016_j_comnet_2024_110298 crossref_primary_10_1109_JIOT_2024_3360039 crossref_primary_10_1016_j_comnet_2024_110973 crossref_primary_10_1155_2021_6633250 crossref_primary_10_3390_s23167215 crossref_primary_10_1134_S0361768822070052 crossref_primary_10_1016_j_comcom_2024_04_022 crossref_primary_10_1155_2021_6674325 crossref_primary_10_1007_s11276_025_03946_y crossref_primary_10_1007_s13748_021_00243_5 crossref_primary_10_1007_s44443_025_00233_w crossref_primary_10_1109_TNSM_2023_3322861 crossref_primary_10_3390_app14073073 crossref_primary_10_1038_s41598_024_73342_7 crossref_primary_10_1109_ACCESS_2023_3251745 crossref_primary_10_32604_cmc_2024_059688 crossref_primary_10_3390_electronics10162042 crossref_primary_10_1016_j_comcom_2021_01_021 crossref_primary_10_1016_j_cose_2023_103624 crossref_primary_10_1109_ACCESS_2025_3592152 crossref_primary_10_1007_s42979_023_01944_5 crossref_primary_10_1016_j_cose_2023_103623 crossref_primary_10_1109_ACCESS_2024_3421299 crossref_primary_10_3390_s24103078 crossref_primary_10_3390_electronics9030486 crossref_primary_10_1007_s00521_021_06093_5 crossref_primary_10_1109_ACCESS_2021_3073967 crossref_primary_10_1109_ACCESS_2021_3064561 crossref_primary_10_3390_app12136434 crossref_primary_10_3390_s23052548 crossref_primary_10_1016_j_comnet_2023_110120 crossref_primary_10_32604_cmes_2023_023764 crossref_primary_10_1109_ACCESS_2023_3334212 crossref_primary_10_1109_TNSM_2023_3246794 crossref_primary_10_1109_TNSM_2025_3554824 crossref_primary_10_1007_s10922_025_09930_3 crossref_primary_10_1109_TNSM_2022_3193748 crossref_primary_10_1007_s11554_019_00930_6 crossref_primary_10_1016_j_comnet_2022_109084 crossref_primary_10_1007_s00500_022_06907_1 crossref_primary_10_1155_sec_4469975 crossref_primary_10_1016_j_comnet_2022_109537 crossref_primary_10_3390_math12111624 crossref_primary_10_1016_j_cose_2023_103297 crossref_primary_10_1016_j_comnet_2021_107974 crossref_primary_10_1109_TNSM_2023_3262246 crossref_primary_10_1016_j_cose_2023_103175 crossref_primary_10_1007_s10586_022_03729_6 crossref_primary_10_1088_1742_6596_2504_1_012061 crossref_primary_10_1007_s10922_024_09892_y crossref_primary_10_1016_j_patrec_2025_01_010 crossref_primary_10_3390_app11114783 crossref_primary_10_1109_ACCESS_2025_3594580 crossref_primary_10_1109_ACCESS_2022_3157716 crossref_primary_10_1051_itmconf_20235701009 crossref_primary_10_3390_iot6020022 crossref_primary_10_1109_TNSM_2023_3286446 crossref_primary_10_1016_j_engappai_2023_107196 crossref_primary_10_1080_10255842_2021_1995721 crossref_primary_10_1109_ACCESS_2024_3525000 crossref_primary_10_1007_s10489_024_05375_4 crossref_primary_10_1109_TNSM_2022_3183247 crossref_primary_10_1109_TNSM_2022_3223902 crossref_primary_10_1109_TIFS_2024_3396624 crossref_primary_10_1007_s12243_025_01106_z crossref_primary_10_1016_j_compeleceng_2022_108447 crossref_primary_10_1007_s12083_024_01817_5 crossref_primary_10_1145_3639037 crossref_primary_10_1007_s10922_020_09566_5 crossref_primary_10_1016_j_cose_2023_103645 crossref_primary_10_1155_2023_2879563 crossref_primary_10_1016_j_inffus_2025_103581 crossref_primary_10_1109_TNSE_2025_3538564 crossref_primary_10_1109_TNSM_2024_3383851 crossref_primary_10_1016_j_neucom_2024_128444 crossref_primary_10_12677_mos_2024_133215 crossref_primary_10_3390_electronics13153060 crossref_primary_10_3390_electronics11070977 crossref_primary_10_1109_TNSM_2023_3324936 crossref_primary_10_1587_transinf_2020EDL8130 crossref_primary_10_1109_OJCS_2025_3576495 crossref_primary_10_32604_cmc_2024_047918 crossref_primary_10_1016_j_patcog_2024_111215 crossref_primary_10_1109_TNSM_2025_3534791 crossref_primary_10_1145_3673660_3655071 crossref_primary_10_1080_23742917_2022_2058836 crossref_primary_10_1109_ACCESS_2023_3343189 crossref_primary_10_1145_3523057 crossref_primary_10_3390_app15062977 crossref_primary_10_3390_sym13061080 crossref_primary_10_1007_s10207_025_01064_6 crossref_primary_10_1016_j_segan_2023_101269 crossref_primary_10_1109_TIM_2021_3094223 crossref_primary_10_1016_j_compeleceng_2023_108852 crossref_primary_10_1016_j_comnet_2023_110114 crossref_primary_10_1016_j_compeleceng_2025_110561 crossref_primary_10_1109_TDSC_2024_3478838 crossref_primary_10_1038_s41598_021_91805_z crossref_primary_10_1186_s42400_025_00369_2 crossref_primary_10_1016_j_comnet_2024_110656 crossref_primary_10_3390_a14080250 crossref_primary_10_1016_j_cose_2023_103300 crossref_primary_10_1016_j_future_2021_02_001 crossref_primary_10_3233_AIS_230620 crossref_primary_10_3390_sym13091743 crossref_primary_10_1007_s13042_021_01415_4 crossref_primary_10_3390_app10238476 crossref_primary_10_3390_s22135006 crossref_primary_10_1016_j_comnet_2023_109602 crossref_primary_10_1016_j_comnet_2023_109723 crossref_primary_10_1016_j_comnet_2023_109965 crossref_primary_10_1080_23335777_2021_1924284 crossref_primary_10_3390_electronics10121376 crossref_primary_10_1007_s00500_025_10462_w crossref_primary_10_1109_TNSM_2022_3213758 crossref_primary_10_1007_s13042_025_02682_1 crossref_primary_10_3390_a18080457 crossref_primary_10_1016_j_cose_2025_104470 crossref_primary_10_3390_s22052017 crossref_primary_10_1038_s41598_024_51933_8 crossref_primary_10_3390_s21041140 crossref_primary_10_3390_e23081009 crossref_primary_10_3390_fi14020067 crossref_primary_10_1016_j_iswa_2023_200199 crossref_primary_10_3390_computers12100202 crossref_primary_10_1109_TNSM_2025_3543903 crossref_primary_10_3390_e25050821 crossref_primary_10_1109_TII_2023_3241689 crossref_primary_10_1007_s10586_022_03709_w crossref_primary_10_1109_TIFS_2021_3071595 crossref_primary_10_1007_s10922_020_09512_5 crossref_primary_10_1109_TIFS_2025_3530702 crossref_primary_10_1016_j_comnet_2020_107557 crossref_primary_10_1016_j_jnca_2021_102985 crossref_primary_10_1016_j_comcom_2023_05_010 crossref_primary_10_3390_electronics12122668 crossref_primary_10_1109_TNSM_2022_3149933 crossref_primary_10_1109_TBDATA_2024_3484674 crossref_primary_10_21833_ijaas_2025_05_024 crossref_primary_10_1016_j_comnet_2024_110790 crossref_primary_10_1016_j_comcom_2024_02_010 crossref_primary_10_1007_s10207_021_00555_6 crossref_primary_10_1016_j_comnet_2022_109452 crossref_primary_10_1109_TIFS_2024_3428839 crossref_primary_10_1155_2020_8863169 crossref_primary_10_1109_TC_2023_3333253 crossref_primary_10_3390_math13060973 crossref_primary_10_38124_ijisrt_25jul473 crossref_primary_10_1016_j_cose_2022_103000 crossref_primary_10_1007_s11063_021_10534_6 crossref_primary_10_1016_j_comcom_2022_02_003 crossref_primary_10_1016_j_cosrev_2025_100781 crossref_primary_10_1109_ACCESS_2021_3116876 crossref_primary_10_1016_j_cose_2022_102834 crossref_primary_10_1109_ACCESS_2025_3538170 crossref_primary_10_1109_ACCESS_2022_3191431 crossref_primary_10_1016_j_cose_2024_104134 crossref_primary_10_1093_comjnl_bxae017 crossref_primary_10_1155_2020_8850550 crossref_primary_10_1016_j_cose_2022_102830 crossref_primary_10_1016_j_neucom_2022_03_007 crossref_primary_10_3390_info16040314 crossref_primary_10_1109_TITS_2022_3154884 crossref_primary_10_1016_j_compeleceng_2024_109139 crossref_primary_10_1155_2022_1419804 crossref_primary_10_1177_0926227X251325484 crossref_primary_10_1007_s10586_023_04234_0 crossref_primary_10_1016_j_comnet_2025_111714 crossref_primary_10_3390_sym14102002 crossref_primary_10_1016_j_comnet_2021_108297 crossref_primary_10_1109_JIOT_2023_3263487 crossref_primary_10_1109_TIFS_2024_3442530 crossref_primary_10_1155_2023_3629831 crossref_primary_10_3390_app14167426 crossref_primary_10_1016_j_comnet_2023_109731 crossref_primary_10_1109_TNSM_2021_3052888 crossref_primary_10_3390_app122211731 crossref_primary_10_7717_peerj_cs_860 crossref_primary_10_1016_j_comnet_2023_109614 crossref_primary_10_1016_j_cose_2021_102542 crossref_primary_10_1007_s10922_021_09639_z crossref_primary_10_1088_1742_6596_1693_1_012097 crossref_primary_10_1109_MWC_014_2200271 crossref_primary_10_1109_TNET_2022_3203227 crossref_primary_10_1109_ACCESS_2023_3263206 crossref_primary_10_3390_electronics14132584 crossref_primary_10_1016_j_comnet_2025_111283 crossref_primary_10_3390_s22114216 crossref_primary_10_1007_s00500_022_07450_9 crossref_primary_10_1109_ACCESS_2023_3260977 crossref_primary_10_1016_j_heliyon_2024_e35962 crossref_primary_10_1109_ACCESS_2020_3010637 crossref_primary_10_3390_electronics13193933 crossref_primary_10_1016_j_comnet_2025_111723 crossref_primary_10_1155_sec_5729035 crossref_primary_10_32604_cmc_2024_049904 crossref_primary_10_1109_TNSM_2023_3287430 |
| Cites_doi | 10.1145/988672.988742 10.1101/478503 10.1109/ICCNC.2017.7876241 10.1002/nem.1901 10.1002/nem.1855 10.1109/ACCESS.2018.2807385 10.1109/SURV.2013.100613.00161 10.1145/1553374.1553453 10.1109/INFCOM.2009.5061972 10.7551/mitpress/7503.003.0024 10.1038/nbt.3300 10.1109/ICCCN.2012.6289207 10.1145/2829988.2787502 10.1109/ICNC.2010.5584648 10.1561/2200000006 10.1145/1071690.1064220 10.1016/j.comnet.2009.10.017 10.1145/1390156.1390294 10.1109/TIFS.2017.2768018 10.1109/ISI.2017.8004872 10.1016/j.dsp.2017.10.011 10.21236/ADA465464 10.1109/CTRQ.2010.24 10.1109/ICISS.2010.5657079 10.1145/1198255.1198257 10.1016/j.comnet.2010.12.002 10.1109/MASCOTS.2006.6 10.1109/SPW.2018.00009 10.1007/978-3-319-70087-8_47 10.1109/TNN.2006.883010 10.1109/MSP.2012.2205597 10.1007/s11859-014-1034-0 10.1113/jphysiol.1968.sp008455 10.1080/23742917.2017.1321891 10.1109/MNET.2012.6135854 10.1038/nature14539 10.1145/2684746.2689060 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2019 Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s00500-019-04030-2 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1433-7479 |
| EndPage | 2012 |
| ExternalDocumentID | 10_1007_s00500_019_04030_2 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c385t-dfbe550c7c1d386c76583e8f55ee08ee740b80889ba3c89761e54c35effccb6e3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 639 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000518595800026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1432-7643 |
| IngestDate | Wed Nov 05 02:29:11 EST 2025 Sat Nov 29 03:35:55 EST 2025 Tue Nov 18 22:32:06 EST 2025 Fri Feb 21 02:33:24 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Deep learning Stacked autoencoder Deep Packet Application identification Convolutional neural networks Network traffic classification Traffic characterization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c385t-dfbe550c7c1d386c76583e8f55ee08ee740b80889ba3c89761e54c35effccb6e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6858-7985 0000-0003-3860-5999 |
| PQID | 2917907379 |
| PQPubID | 2043697 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2917907379 crossref_primary_10_1007_s00500_019_04030_2 crossref_citationtrail_10_1007_s00500_019_04030_2 springer_journals_10_1007_s00500_019_04030_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-01 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
| PublicationTitle | Soft computing (Berlin, Germany) |
| PublicationTitleAbbrev | Soft Comput |
| PublicationYear | 2020 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | MontavonGSamekWMüllerKRMethods for interpreting and understanding deep neural networksDigit Signal Process201873115373787010.1016/j.dsp.2017.10.011 Sen S, Spatscheck O, Wang D (2004) Accurate, scalable in-network identification of p2p traffic using application signatures. In: Proceedings of the 13th international conference on world wide web, ACM, New York, NY, USA, pp 512–521 FinsterbuschMRichterCRochaEMullerJAHanssgenKA survey of payload-based traffic classification approachesIEEE Commun Surv Tutor20141621135115610.1109/SURV.2013.100613.00161 Lin DD, Talathi SS, Annapureddy VS (2016) Fixed point quantization of deep convolutional networks. In: Proceedings of the 33rd international conference on international conference on machine learning, vol 48, ICML’16, pp 2849–2858 Lee H, Grosse R, Ranganath R, Ng AY (2009) Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the 26th annual international conference on machine learning, ACM, New York, NY, USA, ICML ’09, pp 609–616 VelanPČermákMČeledaPDrašarMA survey of methods for encrypted traffic classification and analysisInt J Netw Manag201525535537410.1002/nem.1901 Vincent P, Larochelle H, Bengio Y, Manzagol PA (2008) Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on machine learning, ACM, pp 1096–1103 dos Santos CN, Gatti M (2014) Deep convolutional neural networks for sentiment analysis of short texts. In: Proceedings of the 25th international conference on computational linguistics (COLING), Dublin, Ireland Longadge R, Dongre S (2013) Class imbalance problem in data mining review. arXiv preprint. arXiv:1305.1707 WangZThe applications of deep learning on traffic identification2015USABlackHat Lotfollahi M, Shirali Hossein Zade R, Jafari Siavoshani M, Saberian M (2017) Deep packet: a novel approach for encrypted traffic classification using deep learning. CoRR abs/1709.02656. arXiv:1709.02656 Qi Y, Xu L, Yang B, Xue Y, Li J (2009) Packet classification algorithms: from theory to practice. In: INFOCOM 2009, IEEE, IEEE, pp 648–656 Sun R, Yang B, Peng L, Chen Z, Zhang L, Jing S (2010) Traffic classification using probabilistic neural networks. In: Natural computation (ICNC), 2010 sixth international conference on, IEEE, vol 4, pp 1914–1919 Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning, pp 448–456 HubaraICourbariauxMSoudryDEl-YanivRBengioYQuantized neural networks: training neural networks with low precision weights and activationsJ Mach Learn Res201718168696898382707506982943 KhalifeJHajjarADiaz-VerdejoJA multilevel taxonomy and requirements for an optimal traffic-classification modelInt J Netw Manag201424210112010.1002/nem.1855 LvJZhuCTangSYangCDeepflow: hiding anonymous communication traffic in p2p streaming networksWuhan Univ J Nat Sci201419541742510.1007/s11859-014-1034-0 Wang W, Zhu M, Wang J, Zeng X, Yang Z (2017) End-to-end encrypted traffic classification with one-dimensional convolution neural networks. In: Intelligence and security informatics (ISI), 2017 IEEE international conference on, IEEE, pp 43–48 Zhang C, Li P, Sun G, Guan Y, Xiao B, Cong J (2015) Optimizing fpga-based accelerator design for deep convolutional neural networks. In: Proceedings of the 2015 ACM/SIGDA international symposium on field-programmable gate arrays, ACM, pp 161–170 BaguiSFangXKalaimannanEBaguiSCSheehanJComparison of machine-learning algorithms for classification of vpn network traffic flow using time-related featuresJ Cyber Secur Technol20171210812610.1080/23742917.2017.1321891 Ting H, Yong W, Xiaoling T (2010) Network traffic classification based on kernel self-organizing maps. In: Intelligent computing and integrated systems (ICISS), 2010 international conference on, IEEE, pp 310–314 LeCunYBengioYHintonGDeep learningNature2015521755343644410.1038/nature14539 Socher R, Perelygin A, Wu JY, Chuang J, Manning CD, Ng AY, Potts CP (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: EMNLP CoverTMThomasJAElements of information theory2006New JersyWiley-Interscience1140.94001 Perera P, Tian YC, Fidge C, Kelly W (2017) A comparison of supervised machine learning algorithms for classification of communications network traffic. In: Neural information processing. Springer, Cham, Lecture Notes in Computer Science, pp 445–454. https://doi.org/10.1007/978-3-319-70087-8_47 HubelDHWieselTNReceptive fields and functional architecture of monkey striate cortexJ Physiol1968195121524310.1113/jphysiol.1968.sp008455 ChowdhuryNMKBoutabaRA survey of network virtualizationComput Netw201054586287610.1016/j.comnet.2009.10.017 Lotfollahi M, Wolf FA, Theis FJ (2018) Generative modeling and latent space arithmetics predict single-cell perturbation response across cell types, studies and species. bioRxiv p 478503 Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. http://tensorflow.org/, software available from tensorflow.org Yamansavascilar B, Guvensan MA, Yavuz AG, Karsligil ME (2017) Application identification via network traffic classification. In: Computing, networking and communications (ICNC), 2017 international conference on, IEEE, pp 843–848 Dingledine R, Mathewson N, Syverson P (2004) Tor: the second-generation onion router. Tech. rep., Naval Research Lab Washington DC AuldTMooreAWGullSFBayesian neural networks for internet traffic classificationIEEE Trans Neural Netw200718122323910.1109/TNN.2006.883010 Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy layer-wise training of deep networks. In: Advances in neural information processing systems, pp 153–160 Wang X, Parish DJ (2010) Optimised multi-stage tcp traffic classifier based on packet size distributions. In: Communication theory, reliability, and quality of service (CTRQ), 2010 third international conference on, IEEE, pp 98–103 Yosinski J, Clune J, Nguyen AM, Fuchs TJ, Lipson H (2015) Understanding neural networks through deep visualization. arXiv:1506.06579 Moore A, Zuev D, Crogan M (2013) Discriminators for use in flow-based classification. Tech. rep Carlini N, Wagner D (2018) Audio adversarial examples: targeted attacks on speech-to-text. arXiv:1801.01944 Vanhoucke V, Senior A, Mao MZ (2011) Improving the speed of neural networks on cpus. In: Deep learning and unsupervised feature learning workshop, NIPS 2011 KohoutJPevnýTNetwork traffic fingerprinting based on approximated kernel two-sample testIEEE Trans Inf Forensics Secur201810.1109/TIFS.2017.2768018 BengioYLearning deep architectures for aiFound Trends Mach Learn2009211127248072310.1561/2200000006 PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: machine learning in PythonJ Mach Learn Res2011122825283028543481280.68189 Du M, Liu N, Hu X (2018) Techniques for interpretable machine learning. arXiv preprint. arXiv:1808.00033 Prechelt L (1998) Early stopping-but when? Neural networks: tricks of the trade. Springer, pp 55–69 CrottiMDusiMGringoliFSalgarelliLTraffic classification through simple statistical fingerprintingACM SIGCOMM Comput Commun Rev200737151610.1145/1198255.1198257 Chollet F et al (2017) Keras. https://github.com/fchollet/keras Yeganeh SH, Eftekhar M, Ganjali Y, Keralapura R, Nucci A (2012) Cute: traffic classification using terms. In: Computer communications and networks (ICCCN), 2012 21st international conference on, IEEE, pp 1–9 MooreAWPapagiannakiKToward the accurate identification of network applicationsPAM, Springer200554154 MooreAWZuevDInternet traffic classification using Bayesian analysis techniquesACM SIGMETRICS Perform Eval Rev ACM200533506010.1145/1071690.1064220 Huang SH, Papernot N, Goodfellow IJ, Duan Y, Abbeel P (2017) Adversarial attacks on neural network policies. arXiv:1702.02284 SherryJLanCPopaRARatnasamySBlindbox: deep packet inspection over encrypted trafficACM SIGCOMM Comput Commun Rev ACM20154521322610.1145/2829988.2787502 CaudillMNeural networks primer, part iAI Expert19872124652 HintonGDengLYuDDahlGEArMohamedJaitlyNSeniorAVanhouckeVNguyenPSainathTNDeep neural networks for acoustic modeling in speech recognition: the shared views of four research groupsIEEE Signal Process Mag2012296829710.1109/MSP.2012.2205597 AlshammariRZincir-HeywoodANCan encrypted traffic be identified without port numbers, ip addresses and payload inspection?Comput Netw20115561326135010.1016/j.comnet.2010.12.002 Kingma D, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint. arXiv:1412.6980 Yuan X, He P, Zhu Q, Bhat RR, Li X (2017) Adversarial examples: attacks and defenses for deep learning. arXiv:1712.07107 Madhukar A, Williamson C (2006) A longitudinal study of p2p traffic classification. In: Modeling, analysis, and simulation of computer and telecommunication systems, 2006. MASCOTS 2006. 14th IEEE international symposium on, IEEE, pp 179–188 Gil GD, Lashkari AH, Mamun M, Ghorbani AA (2016) Characterization of encrypted and vpn traffic using time-related features. In: Proceedings of the 2nd international conference on information systems security and privacy (ICISSP 2016), pp 407–414 Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint. arXiv:1409.1556 SamekWWiegandTMüllerKRExplainable artificial intelligence: understanding, visualizing and interpreting deep learning modelsITU J ICT Discov Special Issue 1 Impact Artif Intell (A 4030_CR2 AW Moore (4030_CR39) 2005; 33 4030_CR1 4030_CR36 4030_CR34 4030_CR33 4030_CR32 Y Bengio (4030_CR7) 2009; 2 4030_CR31 4030_CR30 Z Wang (4030_CR55) 2015 S Bagui (4030_CR6) 2017; 1 Y LeCun (4030_CR29) 2015; 521 J Lv (4030_CR35) 2014; 19 T Auld (4030_CR5) 2007; 18 4030_CR27 4030_CR25 M Caudill (4030_CR10) 1987; 2 4030_CR22 4030_CR20 4030_CR62 4030_CR61 4030_CR60 I Hubara (4030_CR23) 2017; 18 M Finsterbusch (4030_CR19) 2014; 16 G Montavon (4030_CR37) 2018; 73 AW Moore (4030_CR38) 2005; 5 B Alipanahi (4030_CR3) 2015; 33 4030_CR18 4030_CR17 4030_CR16 4030_CR15 4030_CR59 4030_CR58 4030_CR57 4030_CR56 4030_CR11 4030_CR54 4030_CR52 P Velan (4030_CR53) 2015; 25 DH Hubel (4030_CR24) 1968; 195 4030_CR51 M Crotti (4030_CR14) 2007; 37 4030_CR50 J Khalife (4030_CR26) 2014; 24 J Sherry (4030_CR47) 2015; 45 TM Cover (4030_CR13) 2006 W Samek (4030_CR45) 2018; 1 G Hinton (4030_CR21) 2012; 29 4030_CR49 4030_CR48 NMK Chowdhury (4030_CR12) 2010; 54 4030_CR46 4030_CR44 4030_CR43 4030_CR42 4030_CR40 R Alshammari (4030_CR4) 2011; 55 F Pedregosa (4030_CR41) 2011; 12 J Kohout (4030_CR28) 2018 4030_CR9 4030_CR8 |
| References_xml | – reference: Lotfollahi M, Shirali Hossein Zade R, Jafari Siavoshani M, Saberian M (2017) Deep packet: a novel approach for encrypted traffic classification using deep learning. CoRR abs/1709.02656. arXiv:1709.02656 – reference: Madhukar A, Williamson C (2006) A longitudinal study of p2p traffic classification. In: Modeling, analysis, and simulation of computer and telecommunication systems, 2006. MASCOTS 2006. 14th IEEE international symposium on, IEEE, pp 179–188 – reference: Chollet F et al (2017) Keras. https://github.com/fchollet/keras – reference: MontavonGSamekWMüllerKRMethods for interpreting and understanding deep neural networksDigit Signal Process201873115373787010.1016/j.dsp.2017.10.011 – reference: Sun R, Yang B, Peng L, Chen Z, Zhang L, Jing S (2010) Traffic classification using probabilistic neural networks. In: Natural computation (ICNC), 2010 sixth international conference on, IEEE, vol 4, pp 1914–1919 – reference: MooreAWPapagiannakiKToward the accurate identification of network applicationsPAM, Springer200554154 – reference: Vanhoucke V, Senior A, Mao MZ (2011) Improving the speed of neural networks on cpus. In: Deep learning and unsupervised feature learning workshop, NIPS 2011 – reference: KhalifeJHajjarADiaz-VerdejoJA multilevel taxonomy and requirements for an optimal traffic-classification modelInt J Netw Manag201424210112010.1002/nem.1855 – reference: CoverTMThomasJAElements of information theory2006New JersyWiley-Interscience1140.94001 – reference: CaudillMNeural networks primer, part iAI Expert19872124652 – reference: SamekWWiegandTMüllerKRExplainable artificial intelligence: understanding, visualizing and interpreting deep learning modelsITU J ICT Discov Special Issue 1 Impact Artif Intell (AI) Commun Netw Serv2018113948 – reference: KohoutJPevnýTNetwork traffic fingerprinting based on approximated kernel two-sample testIEEE Trans Inf Forensics Secur201810.1109/TIFS.2017.2768018 – reference: PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: machine learning in PythonJ Mach Learn Res2011122825283028543481280.68189 – reference: Ting H, Yong W, Xiaoling T (2010) Network traffic classification based on kernel self-organizing maps. In: Intelligent computing and integrated systems (ICISS), 2010 international conference on, IEEE, pp 310–314 – reference: Yuan X, He P, Zhu Q, Bhat RR, Li X (2017) Adversarial examples: attacks and defenses for deep learning. arXiv:1712.07107 – reference: Akhtar N, Mian A (2018) Threat of adversarial attacks on deep learning in computer vision: a survey. arXiv:1801.00553 – reference: Yamansavascilar B, Guvensan MA, Yavuz AG, Karsligil ME (2017) Application identification via network traffic classification. In: Computing, networking and communications (ICNC), 2017 international conference on, IEEE, pp 843–848 – reference: Prechelt L (1998) Early stopping-but when? Neural networks: tricks of the trade. Springer, pp 55–69 – reference: CrottiMDusiMGringoliFSalgarelliLTraffic classification through simple statistical fingerprintingACM SIGCOMM Comput Commun Rev200737151610.1145/1198255.1198257 – reference: Lee H, Grosse R, Ranganath R, Ng AY (2009) Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the 26th annual international conference on machine learning, ACM, New York, NY, USA, ICML ’09, pp 609–616 – reference: WangZThe applications of deep learning on traffic identification2015USABlackHat – reference: Sen S, Spatscheck O, Wang D (2004) Accurate, scalable in-network identification of p2p traffic using application signatures. In: Proceedings of the 13th international conference on world wide web, ACM, New York, NY, USA, pp 512–521 – reference: Gil GD, Lashkari AH, Mamun M, Ghorbani AA (2016) Characterization of encrypted and vpn traffic using time-related features. In: Proceedings of the 2nd international conference on information systems security and privacy (ICISSP 2016), pp 407–414 – reference: LeCunYBengioYHintonGDeep learningNature2015521755343644410.1038/nature14539 – reference: Wang X, Parish DJ (2010) Optimised multi-stage tcp traffic classifier based on packet size distributions. In: Communication theory, reliability, and quality of service (CTRQ), 2010 third international conference on, IEEE, pp 98–103 – reference: VelanPČermákMČeledaPDrašarMA survey of methods for encrypted traffic classification and analysisInt J Netw Manag201525535537410.1002/nem.1901 – reference: Huang SH, Papernot N, Goodfellow IJ, Duan Y, Abbeel P (2017) Adversarial attacks on neural network policies. arXiv:1702.02284 – reference: Kingma D, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint. arXiv:1412.6980 – reference: ChowdhuryNMKBoutabaRA survey of network virtualizationComput Netw201054586287610.1016/j.comnet.2009.10.017 – reference: Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint. arXiv:1409.1556 – reference: AlshammariRZincir-HeywoodANCan encrypted traffic be identified without port numbers, ip addresses and payload inspection?Comput Netw20115561326135010.1016/j.comnet.2010.12.002 – reference: Dainotti A, Pescape A, Claffy KC (2012) Issues and future directions in traffic classification. IEEE Netw 26(1):35-40 – reference: Dingledine R, Mathewson N, Syverson P (2004) Tor: the second-generation onion router. Tech. rep., Naval Research Lab Washington DC – reference: MooreAWZuevDInternet traffic classification using Bayesian analysis techniquesACM SIGMETRICS Perform Eval Rev ACM200533506010.1145/1071690.1064220 – reference: Yosinski J, Clune J, Nguyen AM, Fuchs TJ, Lipson H (2015) Understanding neural networks through deep visualization. arXiv:1506.06579 – reference: Yeganeh SH, Eftekhar M, Ganjali Y, Keralapura R, Nucci A (2012) Cute: traffic classification using terms. In: Computer communications and networks (ICCCN), 2012 21st international conference on, IEEE, pp 1–9 – reference: HubaraICourbariauxMSoudryDEl-YanivRBengioYQuantized neural networks: training neural networks with low precision weights and activationsJ Mach Learn Res201718168696898382707506982943 – reference: Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning, pp 448–456 – reference: Wang W, Zhu M, Wang J, Zeng X, Yang Z (2017) End-to-end encrypted traffic classification with one-dimensional convolution neural networks. In: Intelligence and security informatics (ISI), 2017 IEEE international conference on, IEEE, pp 43–48 – reference: HintonGDengLYuDDahlGEArMohamedJaitlyNSeniorAVanhouckeVNguyenPSainathTNDeep neural networks for acoustic modeling in speech recognition: the shared views of four research groupsIEEE Signal Process Mag2012296829710.1109/MSP.2012.2205597 – reference: Carlini N, Wagner D (2018) Audio adversarial examples: targeted attacks on speech-to-text. arXiv:1801.01944 – reference: BengioYLearning deep architectures for aiFound Trends Mach Learn2009211127248072310.1561/2200000006 – reference: Perera P, Tian YC, Fidge C, Kelly W (2017) A comparison of supervised machine learning algorithms for classification of communications network traffic. In: Neural information processing. Springer, Cham, Lecture Notes in Computer Science, pp 445–454. https://doi.org/10.1007/978-3-319-70087-8_47 – reference: Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. http://tensorflow.org/, software available from tensorflow.org – reference: FinsterbuschMRichterCRochaEMullerJAHanssgenKA survey of payload-based traffic classification approachesIEEE Commun Surv Tutor20141621135115610.1109/SURV.2013.100613.00161 – reference: HubelDHWieselTNReceptive fields and functional architecture of monkey striate cortexJ Physiol1968195121524310.1113/jphysiol.1968.sp008455 – reference: Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy layer-wise training of deep networks. In: Advances in neural information processing systems, pp 153–160 – reference: Longadge R, Dongre S (2013) Class imbalance problem in data mining review. arXiv preprint. arXiv:1305.1707 – reference: Lin DD, Talathi SS, Annapureddy VS (2016) Fixed point quantization of deep convolutional networks. In: Proceedings of the 33rd international conference on international conference on machine learning, vol 48, ICML’16, pp 2849–2858 – reference: Zhang C, Li P, Sun G, Guan Y, Xiao B, Cong J (2015) Optimizing fpga-based accelerator design for deep convolutional neural networks. In: Proceedings of the 2015 ACM/SIGDA international symposium on field-programmable gate arrays, ACM, pp 161–170 – reference: LvJZhuCTangSYangCDeepflow: hiding anonymous communication traffic in p2p streaming networksWuhan Univ J Nat Sci201419541742510.1007/s11859-014-1034-0 – reference: Socher R, Perelygin A, Wu JY, Chuang J, Manning CD, Ng AY, Potts CP (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: EMNLP – reference: Lotfollahi M, Wolf FA, Theis FJ (2018) Generative modeling and latent space arithmetics predict single-cell perturbation response across cell types, studies and species. bioRxiv p 478503 – reference: Qi Y, Xu L, Yang B, Xue Y, Li J (2009) Packet classification algorithms: from theory to practice. In: INFOCOM 2009, IEEE, IEEE, pp 648–656 – reference: Moore A, Zuev D, Crogan M (2013) Discriminators for use in flow-based classification. Tech. rep – reference: BaguiSFangXKalaimannanEBaguiSCSheehanJComparison of machine-learning algorithms for classification of vpn network traffic flow using time-related featuresJ Cyber Secur Technol20171210812610.1080/23742917.2017.1321891 – reference: dos Santos CN, Gatti M (2014) Deep convolutional neural networks for sentiment analysis of short texts. In: Proceedings of the 25th international conference on computational linguistics (COLING), Dublin, Ireland – reference: AlipanahiBDelongAWeirauchMTFreyBJPredicting the sequence specificities of dna-and rna-binding proteins by deep learningNat Biotechnol201533883183810.1038/nbt.3300 – reference: Vincent P, Larochelle H, Bengio Y, Manzagol PA (2008) Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on machine learning, ACM, pp 1096–1103 – reference: SherryJLanCPopaRARatnasamySBlindbox: deep packet inspection over encrypted trafficACM SIGCOMM Comput Commun Rev ACM20154521322610.1145/2829988.2787502 – reference: Du M, Liu N, Hu X (2018) Techniques for interpretable machine learning. arXiv preprint. arXiv:1808.00033 – reference: AuldTMooreAWGullSFBayesian neural networks for internet traffic classificationIEEE Trans Neural Netw200718122323910.1109/TNN.2006.883010 – ident: 4030_CR18 – ident: 4030_CR43 – ident: 4030_CR20 – ident: 4030_CR46 doi: 10.1145/988672.988742 – volume: 12 start-page: 2825 year: 2011 ident: 4030_CR41 publication-title: J Mach Learn Res – ident: 4030_CR34 doi: 10.1101/478503 – ident: 4030_CR58 doi: 10.1109/ICCNC.2017.7876241 – ident: 4030_CR27 – volume: 25 start-page: 355 issue: 5 year: 2015 ident: 4030_CR53 publication-title: Int J Netw Manag doi: 10.1002/nem.1901 – volume: 24 start-page: 101 issue: 2 year: 2014 ident: 4030_CR26 publication-title: Int J Netw Manag doi: 10.1002/nem.1855 – ident: 4030_CR2 doi: 10.1109/ACCESS.2018.2807385 – volume: 16 start-page: 1135 issue: 2 year: 2014 ident: 4030_CR19 publication-title: IEEE Commun Surv Tutor doi: 10.1109/SURV.2013.100613.00161 – volume: 1 start-page: 39 issue: 1 year: 2018 ident: 4030_CR45 publication-title: ITU J ICT Discov Special Issue 1 Impact Artif Intell (AI) Commun Netw Serv – ident: 4030_CR11 – ident: 4030_CR30 doi: 10.1145/1553374.1553453 – ident: 4030_CR44 doi: 10.1109/INFCOM.2009.5061972 – ident: 4030_CR40 – volume-title: The applications of deep learning on traffic identification year: 2015 ident: 4030_CR55 – volume: 2 start-page: 46 issue: 12 year: 1987 ident: 4030_CR10 publication-title: AI Expert – ident: 4030_CR61 – volume: 18 start-page: 6869 issue: 1 year: 2017 ident: 4030_CR23 publication-title: J Mach Learn Res – ident: 4030_CR8 doi: 10.7551/mitpress/7503.003.0024 – volume: 33 start-page: 831 issue: 8 year: 2015 ident: 4030_CR3 publication-title: Nat Biotechnol doi: 10.1038/nbt.3300 – ident: 4030_CR59 doi: 10.1109/ICCCN.2012.6289207 – volume: 45 start-page: 213 year: 2015 ident: 4030_CR47 publication-title: ACM SIGCOMM Comput Commun Rev ACM doi: 10.1145/2829988.2787502 – ident: 4030_CR50 doi: 10.1109/ICNC.2010.5584648 – volume: 2 start-page: 1 issue: 1 year: 2009 ident: 4030_CR7 publication-title: Found Trends Mach Learn doi: 10.1561/2200000006 – ident: 4030_CR33 – volume: 33 start-page: 50 year: 2005 ident: 4030_CR39 publication-title: ACM SIGMETRICS Perform Eval Rev ACM doi: 10.1145/1071690.1064220 – volume: 54 start-page: 862 issue: 5 year: 2010 ident: 4030_CR12 publication-title: Comput Netw doi: 10.1016/j.comnet.2009.10.017 – ident: 4030_CR54 doi: 10.1145/1390156.1390294 – year: 2018 ident: 4030_CR28 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2017.2768018 – ident: 4030_CR57 doi: 10.1109/ISI.2017.8004872 – ident: 4030_CR60 – ident: 4030_CR22 – volume: 73 start-page: 1 year: 2018 ident: 4030_CR37 publication-title: Digit Signal Process doi: 10.1016/j.dsp.2017.10.011 – ident: 4030_CR1 – ident: 4030_CR16 doi: 10.21236/ADA465464 – ident: 4030_CR56 doi: 10.1109/CTRQ.2010.24 – ident: 4030_CR51 doi: 10.1109/ICISS.2010.5657079 – ident: 4030_CR32 – ident: 4030_CR25 – ident: 4030_CR48 – volume: 37 start-page: 5 issue: 1 year: 2007 ident: 4030_CR14 publication-title: ACM SIGCOMM Comput Commun Rev doi: 10.1145/1198255.1198257 – volume: 5 start-page: 41 year: 2005 ident: 4030_CR38 publication-title: PAM, Springer – volume: 55 start-page: 1326 issue: 6 year: 2011 ident: 4030_CR4 publication-title: Comput Netw doi: 10.1016/j.comnet.2010.12.002 – volume-title: Elements of information theory year: 2006 ident: 4030_CR13 – ident: 4030_CR17 – ident: 4030_CR36 doi: 10.1109/MASCOTS.2006.6 – ident: 4030_CR9 doi: 10.1109/SPW.2018.00009 – ident: 4030_CR42 doi: 10.1007/978-3-319-70087-8_47 – volume: 18 start-page: 223 issue: 1 year: 2007 ident: 4030_CR5 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2006.883010 – ident: 4030_CR52 – volume: 29 start-page: 82 issue: 6 year: 2012 ident: 4030_CR21 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2012.2205597 – ident: 4030_CR49 – ident: 4030_CR31 – volume: 19 start-page: 417 issue: 5 year: 2014 ident: 4030_CR35 publication-title: Wuhan Univ J Nat Sci doi: 10.1007/s11859-014-1034-0 – volume: 195 start-page: 215 issue: 1 year: 1968 ident: 4030_CR24 publication-title: J Physiol doi: 10.1113/jphysiol.1968.sp008455 – volume: 1 start-page: 108 issue: 2 year: 2017 ident: 4030_CR6 publication-title: J Cyber Secur Technol doi: 10.1080/23742917.2017.1321891 – ident: 4030_CR15 doi: 10.1109/MNET.2012.6135854 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 4030_CR29 publication-title: Nature doi: 10.1038/nature14539 – ident: 4030_CR62 doi: 10.1145/2684746.2689060 |
| SSID | ssj0021753 |
| Score | 2.687861 |
| Snippet | Network traffic classification has become more important with the rapid growth of Internet and online applications. Numerous studies have been done on this... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1999 |
| SubjectTerms | Access control Accuracy Artificial Intelligence Artificial neural networks Classification Communications traffic Computational Intelligence Control Data encryption Datasets Deep learning Engineering Feature extraction Identification Internet service providers Machine learning Mathematical Logic and Foundations Mechatronics Methodologies and Application Methods Neural networks Privacy Protocol Robotics Statistical analysis Streaming media Virtual private networks |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yfdAHp1NxOiUPvmmhS78S30QdPsgQP8beSpNchzi60dWB_72XLu1UVNC3QpNQ7i653zV3vyPkJEWvJqIkcVJg0vEBnySDyFFMMp4y4eqSnX9wG_X7fDgUd7YobFZlu1dXkuVJXRe7GaoSk0RlfuajaTp48K6iu-NmO94_DOowy3JPIhBA7IgO15bKfL_GZ3e0xJhfrkVLb9Nr_u87t8imRZf0YmEO22QFshZpVp0bqN3ILbLxgYZwhwyuAKYUg-cXKM5pQrPJHMa0YhunCGspTsvfpohOaZEnhnWCKgO7TZ5RqVpq8udHVJuFbCOK0S556l0_Xt44tt-CozweFI5OJWDAoiLV1R4PVYR69ICnQQDgcoDIdyU3aVEy8RRqOOxC4CsvgDRVSobg7ZFGNslgn1BXhokMhdZCaF_5LOEsTdBYhHZDpZluk24l9lhZMnLTE2Mc1zTKpRhjFGNcijFmbXJaz5kuqDh-Hd2ptBnbbTmLmTCEZJEXiTY5q7S3fP3zagd_G35I1pmJy8vs7g5pFPkrHJE1NS-eZ_lxaa7vF13kbA priority: 102 providerName: Springer Nature |
| Title | Deep packet: a novel approach for encrypted traffic classification using deep learning |
| URI | https://link.springer.com/article/10.1007/s00500-019-04030-2 https://www.proquest.com/docview/2917907379 |
| Volume | 24 |
| WOSCitedRecordID | wos000518595800026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-7479 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1433-7479 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central - New (Subscription) customDbUrl: eissn: 1433-7479 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: RSV dateStart: 19970401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0V6IELSymIhQX5wI1aTZwPx1xQy4cqtVqtoKxQL1FsTxAC7S67AYl_z9g4u6JSufQSRYpjRXljzxt7_AbgoCavpmRV8RqF5inSnRYouRFaFLVQkfXq_MNfst8vrq_VICy4zUJaZTsn-onajo1bI_8qlNOSkolUx5MH7qpGud3VUEJjCVZiIWJn5z8lnwdcQYWSKAGxSHK94dCMPzrnhE9cSpbbGiBD5-KtY1qwzb82SL3fOe_87xevw1pgnOzbq4l8gg842oBOW82BhcH9GYaniBNGIfQdNkesYqPxE96zVnOcEbll1HD6PCGOyppp5bQnmHHk22UbeYCZy6K_YdZ1FMpR3GzC1fnZ75MfPFRd4CYpsobbWiOFLUaa2CZFbiShmWBRZxliVCDKNNKFS47SVWII5zzGLDVJhnVtjM4x2YLl0XiE28AinVc6V9YqZVOTiqoQdUUmo2yUGytsF-L2l5cmSJK7yhj35VxM2cNUEkylh6kUXTicvzN5FeR4t3WvxaYMg3NWLoDpwpcW3cXjf_e2835vu7AqXDTuc7p7sNxMH3EPPpqn5nY23YeV72f9wcW-N1G6DrI_dL24HL4Ael_tsQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6FggSXhlfVtKHsAU5g4ayfWwkhRKlSNUQ5hCjiYvYxjipFiUlMUf5Uf2NnN3YiKpFbD9wseT2yvd88dnfmG4A3OXk1kUjp5ciVFyJdKY6Jp7niac6Fbxw7_6iX9PvpeCwGDbipa2FsWmVtE52hNnNt98g_cGG5pJIgEZ-KX57tGmVPV-sWGmtYXOLqDy3Zlh8vzmh-33J-_nX4petVXQU8HaRR6ZlcIYXlOtEdE6SxTuhtA0zzKEL0U8Qk9FVqk3-UDDR9R9zBKNRBhHmutYoxILkP4GEY0mKJ9GcQ_dgs8CrWSwpBKGolV18V6bhSPUu0YlPA7FEEKZbH_3aE2-j2zoGs83Pnzf_tDz2F_SqiZp_XKvAMGjh7Ds26WwWrjNcLGJ0hFqyQZLbKUybZbH6NU1ZzqjMK3hkNXKwKisFZuZCWW4Npu7iw2VQOwMxWCUyYsYKqdhuTl_D9Xr7uAPZm8xkeAvNVLFUsjBHChDrkMuW5JJUQxo-14aYFnXqKM11RrtvOH9NsQxbtYJERLDIHi4y34N3mmWJNOLJzdLvGQlYZn2W2BUIL3tdo2t7-t7Sj3dJew-Pu8Fsv6130L4_hCbc7Dy5_vQ175eI3voJH-rq8Wi5OnFow-HnfKLsFuAxJMA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED5ERfTB6VScTs2Db1rWpT_jmziH4hgDdeytNMlliKMbWx3435t07TZFBfGt0OQouUvuu-buO4Bzpb0aC-LYUki55aJ-4hQDS1BOQ0WZLTN2_m4raLfDXo91lqr4s2z34kpyVtNgWJqStDaSqjYvfDO0JSahyvzY12Zq6UN4zTVNg0y8_tidh1w5D6UGBRpHauebl818L-Oza1rgzS9XpJnnaZb-_807sJ2jTnI9M5NdWMGkDKWiowPJN3gZtpboCfeg20AcER1Uv2J6RWKSDKc4IAULOdFwl-hp4_eRRq0kHceGjYIIA8dN_lGmcmLy6vtEGkF5g4r-Pjw3b59u7qy8D4MlnNBLLak46kBGBKIundAXgdavg6HyPEQ7RAxcm4cmXYrHjtCa9-voucLxUCkhuI_OAawmwwQPgdjcj7nPpGRMusKlcUhVrI2ISdsXksoK1AsVRCInKTe9MgbRnF45W8ZIL2OULWNEK3AxnzOaUXT8OrpaaDbKt-skoswQlQVOwCpwWWhy8fpnaUd_G34GG51GM2rdtx-OYZOa0D1LAK_Cajp-wxNYF9P0ZTI-zaz4A_yP8DQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+packet%3A+a+novel+approach+for+encrypted+traffic+classification+using+deep+learning&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Lotfollahi%2C+Mohammad&rft.au=Jafari+Siavoshani%2C+Mahdi&rft.au=Shirali+Hossein+Zade%2C+Ramin&rft.au=Saberian%2C+Mohammdsadegh&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=24&rft.issue=3&rft.spage=1999&rft.epage=2012&rft_id=info:doi/10.1007%2Fs00500-019-04030-2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |