Deep packet: a novel approach for encrypted traffic classification using deep learning

Network traffic classification has become more important with the rapid growth of Internet and online applications. Numerous studies have been done on this topic which have led to many different approaches. Most of these approaches use predefined features extracted by an expert in order to classify...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Soft computing (Berlin, Germany) Ročník 24; číslo 3; s. 1999 - 2012
Hlavní autoři: Lotfollahi, Mohammad, Jafari Siavoshani, Mahdi, Shirali Hossein Zade, Ramin, Saberian, Mohammdsadegh
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2020
Springer Nature B.V
Témata:
ISSN:1432-7643, 1433-7479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Network traffic classification has become more important with the rapid growth of Internet and online applications. Numerous studies have been done on this topic which have led to many different approaches. Most of these approaches use predefined features extracted by an expert in order to classify network traffic. In contrast, in this study, we propose a deep learning -based approach which integrates both feature extraction and classification phases into one system. Our proposed scheme, called “Deep Packet,” can handle both traffic characterization in which the network traffic is categorized into major classes (e.g., FTP and P2P) and application identification in which identifying end-user applications (e.g., BitTorrent and Skype) is desired. Contrary to most of the current methods, Deep Packet can identify encrypted traffic and also distinguishes between VPN and non-VPN network traffic. The Deep Packet framework employs two deep neural network structures, namely stacked autoencoder (SAE) and convolution neural network (CNN) in order to classify network traffic. Our experiments show that the best result is achieved when Deep Packet uses CNN as its classification model where it achieves recall of 0.98 in application identification task and 0.94 in traffic categorization task. To the best of our knowledge, Deep Packet outperforms all of the proposed classification methods on UNB ISCX VPN-nonVPN dataset.
AbstractList Network traffic classification has become more important with the rapid growth of Internet and online applications. Numerous studies have been done on this topic which have led to many different approaches. Most of these approaches use predefined features extracted by an expert in order to classify network traffic. In contrast, in this study, we propose a deep learning-based approach which integrates both feature extraction and classification phases into one system. Our proposed scheme, called “Deep Packet,” can handle both traffic characterization in which the network traffic is categorized into major classes (e.g., FTP and P2P) and application identification in which identifying end-user applications (e.g., BitTorrent and Skype) is desired. Contrary to most of the current methods, Deep Packet can identify encrypted traffic and also distinguishes between VPN and non-VPN network traffic. The Deep Packet framework employs two deep neural network structures, namely stacked autoencoder (SAE) and convolution neural network (CNN) in order to classify network traffic. Our experiments show that the best result is achieved when Deep Packet uses CNN as its classification model where it achieves recall of 0.98 in application identification task and 0.94 in traffic categorization task. To the best of our knowledge, Deep Packet outperforms all of the proposed classification methods on UNB ISCX VPN-nonVPN dataset.
Network traffic classification has become more important with the rapid growth of Internet and online applications. Numerous studies have been done on this topic which have led to many different approaches. Most of these approaches use predefined features extracted by an expert in order to classify network traffic. In contrast, in this study, we propose a deep learning -based approach which integrates both feature extraction and classification phases into one system. Our proposed scheme, called “Deep Packet,” can handle both traffic characterization in which the network traffic is categorized into major classes (e.g., FTP and P2P) and application identification in which identifying end-user applications (e.g., BitTorrent and Skype) is desired. Contrary to most of the current methods, Deep Packet can identify encrypted traffic and also distinguishes between VPN and non-VPN network traffic. The Deep Packet framework employs two deep neural network structures, namely stacked autoencoder (SAE) and convolution neural network (CNN) in order to classify network traffic. Our experiments show that the best result is achieved when Deep Packet uses CNN as its classification model where it achieves recall of 0.98 in application identification task and 0.94 in traffic categorization task. To the best of our knowledge, Deep Packet outperforms all of the proposed classification methods on UNB ISCX VPN-nonVPN dataset.
Author Saberian, Mohammdsadegh
Shirali Hossein Zade, Ramin
Lotfollahi, Mohammad
Jafari Siavoshani, Mahdi
Author_xml – sequence: 1
  givenname: Mohammad
  orcidid: 0000-0001-6858-7985
  surname: Lotfollahi
  fullname: Lotfollahi, Mohammad
  organization: Sharif University of Technology
– sequence: 2
  givenname: Mahdi
  orcidid: 0000-0003-3860-5999
  surname: Jafari Siavoshani
  fullname: Jafari Siavoshani, Mahdi
  email: mjafari@sharif.edu
  organization: Sharif University of Technology
– sequence: 3
  givenname: Ramin
  surname: Shirali Hossein Zade
  fullname: Shirali Hossein Zade, Ramin
  organization: Sharif University of Technology
– sequence: 4
  givenname: Mohammdsadegh
  surname: Saberian
  fullname: Saberian, Mohammdsadegh
  organization: Sharif University of Technology
BookMark eNp9kEtLAzEQgINUsK3-AU8Bz6uTzWaT9Sb1CQUv6jVk00ndumbXZCv035u2guChp5mB-ebxTcjIdx4JOWdwyQDkVQQQABmwKoMCOGT5ERmzgvNMFrIa7fI8k2XBT8gkxhVAzqTgY_J2i9jT3tgPHK6pob77xpaavg-dse_UdYGit2HTD7igQzDONZba1sTYpMwMTefpOjZ-SRfbQS2a4FN1So6daSOe_cYpeb2_e5k9ZvPnh6fZzTyzXIkhW7gahQArLVtwVVpZCsVROSEQQSHKAmoFSlW14VZVsmQoCssFOmdtXSKfkov93HTv1xrjoFfdOvi0UucVkxVILqvUle-7bOhiDOh0H5pPEzaagd7603t_OvnTO386T5D6B9lm2D2cNDTtYZTv0Zj2-CWGv6sOUD-7LodL
CitedBy_id crossref_primary_10_1002_cpe_8316
crossref_primary_10_1007_s11042_023_17338_x
crossref_primary_10_3390_app15189879
crossref_primary_10_1109_TCE_2024_3471573
crossref_primary_10_1109_TNSM_2021_3112283
crossref_primary_10_12677_mos_2025_145416
crossref_primary_10_32604_cmc_2024_050474
crossref_primary_10_1186_s13635_023_00141_4
crossref_primary_10_1109_ACCESS_2021_3081504
crossref_primary_10_1145_3447382
crossref_primary_10_1007_s00607_024_01306_w
crossref_primary_10_1007_s10723_024_09767_1
crossref_primary_10_1007_s12530_022_09471_z
crossref_primary_10_1016_j_jnca_2025_104109
crossref_primary_10_1016_j_comnet_2023_109648
crossref_primary_10_1016_j_phycom_2023_102002
crossref_primary_10_3390_computers14070248
crossref_primary_10_1016_j_compeleceng_2022_108024
crossref_primary_10_1109_JIOT_2025_3559902
crossref_primary_10_1109_TIFS_2025_3574971
crossref_primary_10_1016_j_comnet_2021_108550
crossref_primary_10_3390_electronics10010036
crossref_primary_10_1007_s11432_023_3978_y
crossref_primary_10_1109_ACCESS_2020_2973023
crossref_primary_10_1109_JIOT_2023_3244544
crossref_primary_10_22399_ijcesen_1377
crossref_primary_10_1080_09540091_2023_2197172
crossref_primary_10_1145_3543516_3453921
crossref_primary_10_1109_TNSM_2022_3218843
crossref_primary_10_1007_s12083_024_01665_3
crossref_primary_10_1155_2023_2801421
crossref_primary_10_1007_s12243_025_01114_z
crossref_primary_10_3390_electronics12030516
crossref_primary_10_1016_j_comnet_2024_110591
crossref_primary_10_1016_j_comnet_2023_109991
crossref_primary_10_1109_TNSM_2021_3129610
crossref_primary_10_1109_ACCESS_2023_3279120
crossref_primary_10_1109_TNSM_2024_3382393
crossref_primary_10_1109_JSEN_2022_3219253
crossref_primary_10_3390_electronics10010027
crossref_primary_10_3390_sym12091458
crossref_primary_10_3390_electronics12040789
crossref_primary_10_1016_j_adhoc_2025_103916
crossref_primary_10_3390_math10193482
crossref_primary_10_1515_itit_2023_0050
crossref_primary_10_1109_ACCESS_2022_3188866
crossref_primary_10_1109_JSAC_2021_3087268
crossref_primary_10_1109_TNET_2022_3215507
crossref_primary_10_54097_zfm1nx90
crossref_primary_10_1016_j_future_2024_107487
crossref_primary_10_1109_COMST_2021_3086296
crossref_primary_10_1016_j_pmcj_2022_101737
crossref_primary_10_1109_TNET_2023_3287091
crossref_primary_10_1007_s00500_023_08915_1
crossref_primary_10_1109_ACCESS_2022_3227073
crossref_primary_10_3390_electronics12010115
crossref_primary_10_1109_JIOT_2023_3320046
crossref_primary_10_3233_JIFS_201075
crossref_primary_10_1109_TNSE_2025_3535577
crossref_primary_10_1016_j_comcom_2022_01_006
crossref_primary_10_1109_TNET_2023_3335253
crossref_primary_10_1016_j_comnet_2024_110824
crossref_primary_10_1109_ACCESS_2019_2962018
crossref_primary_10_1109_MNET_2025_3532109
crossref_primary_10_1109_TGCN_2022_3165221
crossref_primary_10_1109_ACCESS_2025_3559068
crossref_primary_10_1007_s11280_021_00940_0
crossref_primary_10_1007_s00354_021_00152_0
crossref_primary_10_1007_s10462_022_10143_2
crossref_primary_10_1093_comjnl_bxac049
crossref_primary_10_3390_electronics13071236
crossref_primary_10_1016_j_cose_2024_104067
crossref_primary_10_1016_j_knosys_2025_113419
crossref_primary_10_1016_j_procs_2024_09_635
crossref_primary_10_1016_j_cose_2024_103892
crossref_primary_10_3390_app15095002
crossref_primary_10_1007_s10489_021_03032_8
crossref_primary_10_1007_s12652_022_03810_3
crossref_primary_10_1007_s00500_023_07949_9
crossref_primary_10_1016_j_comnet_2024_110372
crossref_primary_10_1016_j_neucom_2022_06_055
crossref_primary_10_1016_j_eswa_2025_127281
crossref_primary_10_1109_ACCESS_2025_3545476
crossref_primary_10_1016_j_adhoc_2024_103676
crossref_primary_10_1016_j_comnet_2023_109652
crossref_primary_10_1155_2020_8826038
crossref_primary_10_1016_j_eswa_2022_116618
crossref_primary_10_1109_ACCESS_2020_2992556
crossref_primary_10_1155_2021_4054435
crossref_primary_10_3390_electronics11213577
crossref_primary_10_1155_2022_4274139
crossref_primary_10_1007_s00500_024_10383_0
crossref_primary_10_1109_TNSM_2022_3229706
crossref_primary_10_1186_s13677_023_00430_w
crossref_primary_10_1109_ACCESS_2021_3087528
crossref_primary_10_1016_j_comnet_2025_111530
crossref_primary_10_1155_2023_9041355
crossref_primary_10_1016_j_adhoc_2024_103601
crossref_primary_10_1109_ACCESS_2022_3214506
crossref_primary_10_1007_s11831_021_09551_4
crossref_primary_10_1109_TNSM_2021_3071441
crossref_primary_10_3390_sym16050589
crossref_primary_10_3390_app132111776
crossref_primary_10_1016_j_comnet_2021_108472
crossref_primary_10_1016_j_future_2022_02_012
crossref_primary_10_1016_j_cmpb_2020_105555
crossref_primary_10_1109_ACCESS_2020_3008250
crossref_primary_10_1109_ACCESS_2020_3029190
crossref_primary_10_1016_j_jnca_2025_104254
crossref_primary_10_1109_ACCESS_2025_3593613
crossref_primary_10_1109_TIFS_2025_3529316
crossref_primary_10_1109_TNSE_2023_3279427
crossref_primary_10_1007_s10115_023_01915_5
crossref_primary_10_1109_ACCESS_2023_3311889
crossref_primary_10_3390_sym14112329
crossref_primary_10_1109_JIOT_2025_3577245
crossref_primary_10_1016_j_comnet_2025_111662
crossref_primary_10_1016_j_jnca_2020_102890
crossref_primary_10_1007_s11416_020_00353_z
crossref_primary_10_1145_3696012
crossref_primary_10_3233_JIFS_231099
crossref_primary_10_1145_3712307
crossref_primary_10_1109_JPROC_2022_3153408
crossref_primary_10_7717_peerj_cs_3126
crossref_primary_10_1016_j_comnet_2025_111549
crossref_primary_10_32604_cmc_2022_020727
crossref_primary_10_1109_TVT_2020_3005724
crossref_primary_10_1016_j_comnet_2023_109904
crossref_primary_10_3390_app14135466
crossref_primary_10_3390_bdcc9080216
crossref_primary_10_3390_ijgi9070456
crossref_primary_10_1109_TNSM_2021_3122940
crossref_primary_10_1186_s42400_023_00201_9
crossref_primary_10_3390_s22114167
crossref_primary_10_1016_j_asoc_2024_111423
crossref_primary_10_1109_TIFS_2022_3179955
crossref_primary_10_1155_2021_5518460
crossref_primary_10_32604_cmc_2024_056165
crossref_primary_10_1016_j_comnet_2024_110984
crossref_primary_10_1109_JIOT_2023_3310794
crossref_primary_10_1016_j_scs_2020_102655
crossref_primary_10_3390_app13084725
crossref_primary_10_1016_j_comnet_2024_110747
crossref_primary_10_1016_j_comnet_2024_110746
crossref_primary_10_3390_electronics9020324
crossref_primary_10_32604_cmc_2024_059417
crossref_primary_10_1016_j_dcan_2024_02_003
crossref_primary_10_3390_fi17080323
crossref_primary_10_1007_s00500_020_05189_9
crossref_primary_10_1117_1_JEI_32_4_043032
crossref_primary_10_1016_j_eswa_2024_125729
crossref_primary_10_1155_2023_7117863
crossref_primary_10_3390_s22197643
crossref_primary_10_1016_j_compeleceng_2024_109406
crossref_primary_10_1109_TIFS_2024_3433446
crossref_primary_10_1007_s10922_024_09841_9
crossref_primary_10_1016_j_vehcom_2022_100471
crossref_primary_10_1016_j_jisa_2023_103519
crossref_primary_10_1016_j_comnet_2024_110298
crossref_primary_10_1109_JIOT_2024_3360039
crossref_primary_10_1016_j_comnet_2024_110973
crossref_primary_10_1155_2021_6633250
crossref_primary_10_3390_s23167215
crossref_primary_10_1134_S0361768822070052
crossref_primary_10_1016_j_comcom_2024_04_022
crossref_primary_10_1155_2021_6674325
crossref_primary_10_1007_s11276_025_03946_y
crossref_primary_10_1007_s13748_021_00243_5
crossref_primary_10_1007_s44443_025_00233_w
crossref_primary_10_1109_TNSM_2023_3322861
crossref_primary_10_3390_app14073073
crossref_primary_10_1038_s41598_024_73342_7
crossref_primary_10_1109_ACCESS_2023_3251745
crossref_primary_10_32604_cmc_2024_059688
crossref_primary_10_3390_electronics10162042
crossref_primary_10_1016_j_comcom_2021_01_021
crossref_primary_10_1016_j_cose_2023_103624
crossref_primary_10_1109_ACCESS_2025_3592152
crossref_primary_10_1007_s42979_023_01944_5
crossref_primary_10_1016_j_cose_2023_103623
crossref_primary_10_1109_ACCESS_2024_3421299
crossref_primary_10_3390_s24103078
crossref_primary_10_3390_electronics9030486
crossref_primary_10_1007_s00521_021_06093_5
crossref_primary_10_1109_ACCESS_2021_3073967
crossref_primary_10_1109_ACCESS_2021_3064561
crossref_primary_10_3390_app12136434
crossref_primary_10_3390_s23052548
crossref_primary_10_1016_j_comnet_2023_110120
crossref_primary_10_32604_cmes_2023_023764
crossref_primary_10_1109_ACCESS_2023_3334212
crossref_primary_10_1109_TNSM_2023_3246794
crossref_primary_10_1109_TNSM_2025_3554824
crossref_primary_10_1007_s10922_025_09930_3
crossref_primary_10_1109_TNSM_2022_3193748
crossref_primary_10_1007_s11554_019_00930_6
crossref_primary_10_1016_j_comnet_2022_109084
crossref_primary_10_1007_s00500_022_06907_1
crossref_primary_10_1155_sec_4469975
crossref_primary_10_1016_j_comnet_2022_109537
crossref_primary_10_3390_math12111624
crossref_primary_10_1016_j_cose_2023_103297
crossref_primary_10_1016_j_comnet_2021_107974
crossref_primary_10_1109_TNSM_2023_3262246
crossref_primary_10_1016_j_cose_2023_103175
crossref_primary_10_1007_s10586_022_03729_6
crossref_primary_10_1088_1742_6596_2504_1_012061
crossref_primary_10_1007_s10922_024_09892_y
crossref_primary_10_1016_j_patrec_2025_01_010
crossref_primary_10_3390_app11114783
crossref_primary_10_1109_ACCESS_2025_3594580
crossref_primary_10_1109_ACCESS_2022_3157716
crossref_primary_10_1051_itmconf_20235701009
crossref_primary_10_3390_iot6020022
crossref_primary_10_1109_TNSM_2023_3286446
crossref_primary_10_1016_j_engappai_2023_107196
crossref_primary_10_1080_10255842_2021_1995721
crossref_primary_10_1109_ACCESS_2024_3525000
crossref_primary_10_1007_s10489_024_05375_4
crossref_primary_10_1109_TNSM_2022_3183247
crossref_primary_10_1109_TNSM_2022_3223902
crossref_primary_10_1109_TIFS_2024_3396624
crossref_primary_10_1007_s12243_025_01106_z
crossref_primary_10_1016_j_compeleceng_2022_108447
crossref_primary_10_1007_s12083_024_01817_5
crossref_primary_10_1145_3639037
crossref_primary_10_1007_s10922_020_09566_5
crossref_primary_10_1016_j_cose_2023_103645
crossref_primary_10_1155_2023_2879563
crossref_primary_10_1016_j_inffus_2025_103581
crossref_primary_10_1109_TNSE_2025_3538564
crossref_primary_10_1109_TNSM_2024_3383851
crossref_primary_10_1016_j_neucom_2024_128444
crossref_primary_10_12677_mos_2024_133215
crossref_primary_10_3390_electronics13153060
crossref_primary_10_3390_electronics11070977
crossref_primary_10_1109_TNSM_2023_3324936
crossref_primary_10_1587_transinf_2020EDL8130
crossref_primary_10_1109_OJCS_2025_3576495
crossref_primary_10_32604_cmc_2024_047918
crossref_primary_10_1016_j_patcog_2024_111215
crossref_primary_10_1109_TNSM_2025_3534791
crossref_primary_10_1145_3673660_3655071
crossref_primary_10_1080_23742917_2022_2058836
crossref_primary_10_1109_ACCESS_2023_3343189
crossref_primary_10_1145_3523057
crossref_primary_10_3390_app15062977
crossref_primary_10_3390_sym13061080
crossref_primary_10_1007_s10207_025_01064_6
crossref_primary_10_1016_j_segan_2023_101269
crossref_primary_10_1109_TIM_2021_3094223
crossref_primary_10_1016_j_compeleceng_2023_108852
crossref_primary_10_1016_j_comnet_2023_110114
crossref_primary_10_1016_j_compeleceng_2025_110561
crossref_primary_10_1109_TDSC_2024_3478838
crossref_primary_10_1038_s41598_021_91805_z
crossref_primary_10_1186_s42400_025_00369_2
crossref_primary_10_1016_j_comnet_2024_110656
crossref_primary_10_3390_a14080250
crossref_primary_10_1016_j_cose_2023_103300
crossref_primary_10_1016_j_future_2021_02_001
crossref_primary_10_3233_AIS_230620
crossref_primary_10_3390_sym13091743
crossref_primary_10_1007_s13042_021_01415_4
crossref_primary_10_3390_app10238476
crossref_primary_10_3390_s22135006
crossref_primary_10_1016_j_comnet_2023_109602
crossref_primary_10_1016_j_comnet_2023_109723
crossref_primary_10_1016_j_comnet_2023_109965
crossref_primary_10_1080_23335777_2021_1924284
crossref_primary_10_3390_electronics10121376
crossref_primary_10_1007_s00500_025_10462_w
crossref_primary_10_1109_TNSM_2022_3213758
crossref_primary_10_1007_s13042_025_02682_1
crossref_primary_10_3390_a18080457
crossref_primary_10_1016_j_cose_2025_104470
crossref_primary_10_3390_s22052017
crossref_primary_10_1038_s41598_024_51933_8
crossref_primary_10_3390_s21041140
crossref_primary_10_3390_e23081009
crossref_primary_10_3390_fi14020067
crossref_primary_10_1016_j_iswa_2023_200199
crossref_primary_10_3390_computers12100202
crossref_primary_10_1109_TNSM_2025_3543903
crossref_primary_10_3390_e25050821
crossref_primary_10_1109_TII_2023_3241689
crossref_primary_10_1007_s10586_022_03709_w
crossref_primary_10_1109_TIFS_2021_3071595
crossref_primary_10_1007_s10922_020_09512_5
crossref_primary_10_1109_TIFS_2025_3530702
crossref_primary_10_1016_j_comnet_2020_107557
crossref_primary_10_1016_j_jnca_2021_102985
crossref_primary_10_1016_j_comcom_2023_05_010
crossref_primary_10_3390_electronics12122668
crossref_primary_10_1109_TNSM_2022_3149933
crossref_primary_10_1109_TBDATA_2024_3484674
crossref_primary_10_21833_ijaas_2025_05_024
crossref_primary_10_1016_j_comnet_2024_110790
crossref_primary_10_1016_j_comcom_2024_02_010
crossref_primary_10_1007_s10207_021_00555_6
crossref_primary_10_1016_j_comnet_2022_109452
crossref_primary_10_1109_TIFS_2024_3428839
crossref_primary_10_1155_2020_8863169
crossref_primary_10_1109_TC_2023_3333253
crossref_primary_10_3390_math13060973
crossref_primary_10_38124_ijisrt_25jul473
crossref_primary_10_1016_j_cose_2022_103000
crossref_primary_10_1007_s11063_021_10534_6
crossref_primary_10_1016_j_comcom_2022_02_003
crossref_primary_10_1016_j_cosrev_2025_100781
crossref_primary_10_1109_ACCESS_2021_3116876
crossref_primary_10_1016_j_cose_2022_102834
crossref_primary_10_1109_ACCESS_2025_3538170
crossref_primary_10_1109_ACCESS_2022_3191431
crossref_primary_10_1016_j_cose_2024_104134
crossref_primary_10_1093_comjnl_bxae017
crossref_primary_10_1155_2020_8850550
crossref_primary_10_1016_j_cose_2022_102830
crossref_primary_10_1016_j_neucom_2022_03_007
crossref_primary_10_3390_info16040314
crossref_primary_10_1109_TITS_2022_3154884
crossref_primary_10_1016_j_compeleceng_2024_109139
crossref_primary_10_1155_2022_1419804
crossref_primary_10_1177_0926227X251325484
crossref_primary_10_1007_s10586_023_04234_0
crossref_primary_10_1016_j_comnet_2025_111714
crossref_primary_10_3390_sym14102002
crossref_primary_10_1016_j_comnet_2021_108297
crossref_primary_10_1109_JIOT_2023_3263487
crossref_primary_10_1109_TIFS_2024_3442530
crossref_primary_10_1155_2023_3629831
crossref_primary_10_3390_app14167426
crossref_primary_10_1016_j_comnet_2023_109731
crossref_primary_10_1109_TNSM_2021_3052888
crossref_primary_10_3390_app122211731
crossref_primary_10_7717_peerj_cs_860
crossref_primary_10_1016_j_comnet_2023_109614
crossref_primary_10_1016_j_cose_2021_102542
crossref_primary_10_1007_s10922_021_09639_z
crossref_primary_10_1088_1742_6596_1693_1_012097
crossref_primary_10_1109_MWC_014_2200271
crossref_primary_10_1109_TNET_2022_3203227
crossref_primary_10_1109_ACCESS_2023_3263206
crossref_primary_10_3390_electronics14132584
crossref_primary_10_1016_j_comnet_2025_111283
crossref_primary_10_3390_s22114216
crossref_primary_10_1007_s00500_022_07450_9
crossref_primary_10_1109_ACCESS_2023_3260977
crossref_primary_10_1016_j_heliyon_2024_e35962
crossref_primary_10_1109_ACCESS_2020_3010637
crossref_primary_10_3390_electronics13193933
crossref_primary_10_1016_j_comnet_2025_111723
crossref_primary_10_1155_sec_5729035
crossref_primary_10_32604_cmc_2024_049904
crossref_primary_10_1109_TNSM_2023_3287430
Cites_doi 10.1145/988672.988742
10.1101/478503
10.1109/ICCNC.2017.7876241
10.1002/nem.1901
10.1002/nem.1855
10.1109/ACCESS.2018.2807385
10.1109/SURV.2013.100613.00161
10.1145/1553374.1553453
10.1109/INFCOM.2009.5061972
10.7551/mitpress/7503.003.0024
10.1038/nbt.3300
10.1109/ICCCN.2012.6289207
10.1145/2829988.2787502
10.1109/ICNC.2010.5584648
10.1561/2200000006
10.1145/1071690.1064220
10.1016/j.comnet.2009.10.017
10.1145/1390156.1390294
10.1109/TIFS.2017.2768018
10.1109/ISI.2017.8004872
10.1016/j.dsp.2017.10.011
10.21236/ADA465464
10.1109/CTRQ.2010.24
10.1109/ICISS.2010.5657079
10.1145/1198255.1198257
10.1016/j.comnet.2010.12.002
10.1109/MASCOTS.2006.6
10.1109/SPW.2018.00009
10.1007/978-3-319-70087-8_47
10.1109/TNN.2006.883010
10.1109/MSP.2012.2205597
10.1007/s11859-014-1034-0
10.1113/jphysiol.1968.sp008455
10.1080/23742917.2017.1321891
10.1109/MNET.2012.6135854
10.1038/nature14539
10.1145/2684746.2689060
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Springer-Verlag GmbH Germany, part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00500-019-04030-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 2012
ExternalDocumentID 10_1007_s00500_019_04030_2
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c385t-dfbe550c7c1d386c76583e8f55ee08ee740b80889ba3c89761e54c35effccb6e3
IEDL.DBID K7-
ISICitedReferencesCount 639
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000518595800026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-7643
IngestDate Wed Nov 05 02:29:11 EST 2025
Sat Nov 29 03:35:55 EST 2025
Tue Nov 18 22:32:06 EST 2025
Fri Feb 21 02:33:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Deep learning
Stacked autoencoder
Deep Packet
Application identification
Convolutional neural networks
Network traffic classification
Traffic characterization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-dfbe550c7c1d386c76583e8f55ee08ee740b80889ba3c89761e54c35effccb6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6858-7985
0000-0003-3860-5999
PQID 2917907379
PQPubID 2043697
PageCount 14
ParticipantIDs proquest_journals_2917907379
crossref_primary_10_1007_s00500_019_04030_2
crossref_citationtrail_10_1007_s00500_019_04030_2
springer_journals_10_1007_s00500_019_04030_2
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References MontavonGSamekWMüllerKRMethods for interpreting and understanding deep neural networksDigit Signal Process201873115373787010.1016/j.dsp.2017.10.011
Sen S, Spatscheck O, Wang D (2004) Accurate, scalable in-network identification of p2p traffic using application signatures. In: Proceedings of the 13th international conference on world wide web, ACM, New York, NY, USA, pp 512–521
FinsterbuschMRichterCRochaEMullerJAHanssgenKA survey of payload-based traffic classification approachesIEEE Commun Surv Tutor20141621135115610.1109/SURV.2013.100613.00161
Lin DD, Talathi SS, Annapureddy VS (2016) Fixed point quantization of deep convolutional networks. In: Proceedings of the 33rd international conference on international conference on machine learning, vol 48, ICML’16, pp 2849–2858
Lee H, Grosse R, Ranganath R, Ng AY (2009) Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the 26th annual international conference on machine learning, ACM, New York, NY, USA, ICML ’09, pp 609–616
VelanPČermákMČeledaPDrašarMA survey of methods for encrypted traffic classification and analysisInt J Netw Manag201525535537410.1002/nem.1901
Vincent P, Larochelle H, Bengio Y, Manzagol PA (2008) Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on machine learning, ACM, pp 1096–1103
dos Santos CN, Gatti M (2014) Deep convolutional neural networks for sentiment analysis of short texts. In: Proceedings of the 25th international conference on computational linguistics (COLING), Dublin, Ireland
Longadge R, Dongre S (2013) Class imbalance problem in data mining review. arXiv preprint. arXiv:1305.1707
WangZThe applications of deep learning on traffic identification2015USABlackHat
Lotfollahi M, Shirali Hossein Zade R, Jafari Siavoshani M, Saberian M (2017) Deep packet: a novel approach for encrypted traffic classification using deep learning. CoRR abs/1709.02656. arXiv:1709.02656
Qi Y, Xu L, Yang B, Xue Y, Li J (2009) Packet classification algorithms: from theory to practice. In: INFOCOM 2009, IEEE, IEEE, pp 648–656
Sun R, Yang B, Peng L, Chen Z, Zhang L, Jing S (2010) Traffic classification using probabilistic neural networks. In: Natural computation (ICNC), 2010 sixth international conference on, IEEE, vol 4, pp 1914–1919
Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning, pp 448–456
HubaraICourbariauxMSoudryDEl-YanivRBengioYQuantized neural networks: training neural networks with low precision weights and activationsJ Mach Learn Res201718168696898382707506982943
KhalifeJHajjarADiaz-VerdejoJA multilevel taxonomy and requirements for an optimal traffic-classification modelInt J Netw Manag201424210112010.1002/nem.1855
LvJZhuCTangSYangCDeepflow: hiding anonymous communication traffic in p2p streaming networksWuhan Univ J Nat Sci201419541742510.1007/s11859-014-1034-0
Wang W, Zhu M, Wang J, Zeng X, Yang Z (2017) End-to-end encrypted traffic classification with one-dimensional convolution neural networks. In: Intelligence and security informatics (ISI), 2017 IEEE international conference on, IEEE, pp 43–48
Zhang C, Li P, Sun G, Guan Y, Xiao B, Cong J (2015) Optimizing fpga-based accelerator design for deep convolutional neural networks. In: Proceedings of the 2015 ACM/SIGDA international symposium on field-programmable gate arrays, ACM, pp 161–170
BaguiSFangXKalaimannanEBaguiSCSheehanJComparison of machine-learning algorithms for classification of vpn network traffic flow using time-related featuresJ Cyber Secur Technol20171210812610.1080/23742917.2017.1321891
Ting H, Yong W, Xiaoling T (2010) Network traffic classification based on kernel self-organizing maps. In: Intelligent computing and integrated systems (ICISS), 2010 international conference on, IEEE, pp 310–314
LeCunYBengioYHintonGDeep learningNature2015521755343644410.1038/nature14539
Socher R, Perelygin A, Wu JY, Chuang J, Manning CD, Ng AY, Potts CP (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: EMNLP
CoverTMThomasJAElements of information theory2006New JersyWiley-Interscience1140.94001
Perera P, Tian YC, Fidge C, Kelly W (2017) A comparison of supervised machine learning algorithms for classification of communications network traffic. In: Neural information processing. Springer, Cham, Lecture Notes in Computer Science, pp 445–454. https://doi.org/10.1007/978-3-319-70087-8_47
HubelDHWieselTNReceptive fields and functional architecture of monkey striate cortexJ Physiol1968195121524310.1113/jphysiol.1968.sp008455
ChowdhuryNMKBoutabaRA survey of network virtualizationComput Netw201054586287610.1016/j.comnet.2009.10.017
Lotfollahi M, Wolf FA, Theis FJ (2018) Generative modeling and latent space arithmetics predict single-cell perturbation response across cell types, studies and species. bioRxiv p 478503
Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. http://tensorflow.org/, software available from tensorflow.org
Yamansavascilar B, Guvensan MA, Yavuz AG, Karsligil ME (2017) Application identification via network traffic classification. In: Computing, networking and communications (ICNC), 2017 international conference on, IEEE, pp 843–848
Dingledine R, Mathewson N, Syverson P (2004) Tor: the second-generation onion router. Tech. rep., Naval Research Lab Washington DC
AuldTMooreAWGullSFBayesian neural networks for internet traffic classificationIEEE Trans Neural Netw200718122323910.1109/TNN.2006.883010
Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy layer-wise training of deep networks. In: Advances in neural information processing systems, pp 153–160
Wang X, Parish DJ (2010) Optimised multi-stage tcp traffic classifier based on packet size distributions. In: Communication theory, reliability, and quality of service (CTRQ), 2010 third international conference on, IEEE, pp 98–103
Yosinski J, Clune J, Nguyen AM, Fuchs TJ, Lipson H (2015) Understanding neural networks through deep visualization. arXiv:1506.06579
Moore A, Zuev D, Crogan M (2013) Discriminators for use in flow-based classification. Tech. rep
Carlini N, Wagner D (2018) Audio adversarial examples: targeted attacks on speech-to-text. arXiv:1801.01944
Vanhoucke V, Senior A, Mao MZ (2011) Improving the speed of neural networks on cpus. In: Deep learning and unsupervised feature learning workshop, NIPS 2011
KohoutJPevnýTNetwork traffic fingerprinting based on approximated kernel two-sample testIEEE Trans Inf Forensics Secur201810.1109/TIFS.2017.2768018
BengioYLearning deep architectures for aiFound Trends Mach Learn2009211127248072310.1561/2200000006
PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: machine learning in PythonJ Mach Learn Res2011122825283028543481280.68189
Du M, Liu N, Hu X (2018) Techniques for interpretable machine learning. arXiv preprint. arXiv:1808.00033
Prechelt L (1998) Early stopping-but when? Neural networks: tricks of the trade. Springer, pp 55–69
CrottiMDusiMGringoliFSalgarelliLTraffic classification through simple statistical fingerprintingACM SIGCOMM Comput Commun Rev200737151610.1145/1198255.1198257
Chollet F et al (2017) Keras. https://github.com/fchollet/keras
Yeganeh SH, Eftekhar M, Ganjali Y, Keralapura R, Nucci A (2012) Cute: traffic classification using terms. In: Computer communications and networks (ICCCN), 2012 21st international conference on, IEEE, pp 1–9
MooreAWPapagiannakiKToward the accurate identification of network applicationsPAM, Springer200554154
MooreAWZuevDInternet traffic classification using Bayesian analysis techniquesACM SIGMETRICS Perform Eval Rev ACM200533506010.1145/1071690.1064220
Huang SH, Papernot N, Goodfellow IJ, Duan Y, Abbeel P (2017) Adversarial attacks on neural network policies. arXiv:1702.02284
SherryJLanCPopaRARatnasamySBlindbox: deep packet inspection over encrypted trafficACM SIGCOMM Comput Commun Rev ACM20154521322610.1145/2829988.2787502
CaudillMNeural networks primer, part iAI Expert19872124652
HintonGDengLYuDDahlGEArMohamedJaitlyNSeniorAVanhouckeVNguyenPSainathTNDeep neural networks for acoustic modeling in speech recognition: the shared views of four research groupsIEEE Signal Process Mag2012296829710.1109/MSP.2012.2205597
AlshammariRZincir-HeywoodANCan encrypted traffic be identified without port numbers, ip addresses and payload inspection?Comput Netw20115561326135010.1016/j.comnet.2010.12.002
Kingma D, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint. arXiv:1412.6980
Yuan X, He P, Zhu Q, Bhat RR, Li X (2017) Adversarial examples: attacks and defenses for deep learning. arXiv:1712.07107
Madhukar A, Williamson C (2006) A longitudinal study of p2p traffic classification. In: Modeling, analysis, and simulation of computer and telecommunication systems, 2006. MASCOTS 2006. 14th IEEE international symposium on, IEEE, pp 179–188
Gil GD, Lashkari AH, Mamun M, Ghorbani AA (2016) Characterization of encrypted and vpn traffic using time-related features. In: Proceedings of the 2nd international conference on information systems security and privacy (ICISSP 2016), pp 407–414
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint. arXiv:1409.1556
SamekWWiegandTMüllerKRExplainable artificial intelligence: understanding, visualizing and interpreting deep learning modelsITU J ICT Discov Special Issue 1 Impact Artif Intell (A
4030_CR2
AW Moore (4030_CR39) 2005; 33
4030_CR1
4030_CR36
4030_CR34
4030_CR33
4030_CR32
Y Bengio (4030_CR7) 2009; 2
4030_CR31
4030_CR30
Z Wang (4030_CR55) 2015
S Bagui (4030_CR6) 2017; 1
Y LeCun (4030_CR29) 2015; 521
J Lv (4030_CR35) 2014; 19
T Auld (4030_CR5) 2007; 18
4030_CR27
4030_CR25
M Caudill (4030_CR10) 1987; 2
4030_CR22
4030_CR20
4030_CR62
4030_CR61
4030_CR60
I Hubara (4030_CR23) 2017; 18
M Finsterbusch (4030_CR19) 2014; 16
G Montavon (4030_CR37) 2018; 73
AW Moore (4030_CR38) 2005; 5
B Alipanahi (4030_CR3) 2015; 33
4030_CR18
4030_CR17
4030_CR16
4030_CR15
4030_CR59
4030_CR58
4030_CR57
4030_CR56
4030_CR11
4030_CR54
4030_CR52
P Velan (4030_CR53) 2015; 25
DH Hubel (4030_CR24) 1968; 195
4030_CR51
M Crotti (4030_CR14) 2007; 37
4030_CR50
J Khalife (4030_CR26) 2014; 24
J Sherry (4030_CR47) 2015; 45
TM Cover (4030_CR13) 2006
W Samek (4030_CR45) 2018; 1
G Hinton (4030_CR21) 2012; 29
4030_CR49
4030_CR48
NMK Chowdhury (4030_CR12) 2010; 54
4030_CR46
4030_CR44
4030_CR43
4030_CR42
4030_CR40
R Alshammari (4030_CR4) 2011; 55
F Pedregosa (4030_CR41) 2011; 12
J Kohout (4030_CR28) 2018
4030_CR9
4030_CR8
References_xml – reference: Lotfollahi M, Shirali Hossein Zade R, Jafari Siavoshani M, Saberian M (2017) Deep packet: a novel approach for encrypted traffic classification using deep learning. CoRR abs/1709.02656. arXiv:1709.02656
– reference: Madhukar A, Williamson C (2006) A longitudinal study of p2p traffic classification. In: Modeling, analysis, and simulation of computer and telecommunication systems, 2006. MASCOTS 2006. 14th IEEE international symposium on, IEEE, pp 179–188
– reference: Chollet F et al (2017) Keras. https://github.com/fchollet/keras
– reference: MontavonGSamekWMüllerKRMethods for interpreting and understanding deep neural networksDigit Signal Process201873115373787010.1016/j.dsp.2017.10.011
– reference: Sun R, Yang B, Peng L, Chen Z, Zhang L, Jing S (2010) Traffic classification using probabilistic neural networks. In: Natural computation (ICNC), 2010 sixth international conference on, IEEE, vol 4, pp 1914–1919
– reference: MooreAWPapagiannakiKToward the accurate identification of network applicationsPAM, Springer200554154
– reference: Vanhoucke V, Senior A, Mao MZ (2011) Improving the speed of neural networks on cpus. In: Deep learning and unsupervised feature learning workshop, NIPS 2011
– reference: KhalifeJHajjarADiaz-VerdejoJA multilevel taxonomy and requirements for an optimal traffic-classification modelInt J Netw Manag201424210112010.1002/nem.1855
– reference: CoverTMThomasJAElements of information theory2006New JersyWiley-Interscience1140.94001
– reference: CaudillMNeural networks primer, part iAI Expert19872124652
– reference: SamekWWiegandTMüllerKRExplainable artificial intelligence: understanding, visualizing and interpreting deep learning modelsITU J ICT Discov Special Issue 1 Impact Artif Intell (AI) Commun Netw Serv2018113948
– reference: KohoutJPevnýTNetwork traffic fingerprinting based on approximated kernel two-sample testIEEE Trans Inf Forensics Secur201810.1109/TIFS.2017.2768018
– reference: PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: machine learning in PythonJ Mach Learn Res2011122825283028543481280.68189
– reference: Ting H, Yong W, Xiaoling T (2010) Network traffic classification based on kernel self-organizing maps. In: Intelligent computing and integrated systems (ICISS), 2010 international conference on, IEEE, pp 310–314
– reference: Yuan X, He P, Zhu Q, Bhat RR, Li X (2017) Adversarial examples: attacks and defenses for deep learning. arXiv:1712.07107
– reference: Akhtar N, Mian A (2018) Threat of adversarial attacks on deep learning in computer vision: a survey. arXiv:1801.00553
– reference: Yamansavascilar B, Guvensan MA, Yavuz AG, Karsligil ME (2017) Application identification via network traffic classification. In: Computing, networking and communications (ICNC), 2017 international conference on, IEEE, pp 843–848
– reference: Prechelt L (1998) Early stopping-but when? Neural networks: tricks of the trade. Springer, pp 55–69
– reference: CrottiMDusiMGringoliFSalgarelliLTraffic classification through simple statistical fingerprintingACM SIGCOMM Comput Commun Rev200737151610.1145/1198255.1198257
– reference: Lee H, Grosse R, Ranganath R, Ng AY (2009) Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the 26th annual international conference on machine learning, ACM, New York, NY, USA, ICML ’09, pp 609–616
– reference: WangZThe applications of deep learning on traffic identification2015USABlackHat
– reference: Sen S, Spatscheck O, Wang D (2004) Accurate, scalable in-network identification of p2p traffic using application signatures. In: Proceedings of the 13th international conference on world wide web, ACM, New York, NY, USA, pp 512–521
– reference: Gil GD, Lashkari AH, Mamun M, Ghorbani AA (2016) Characterization of encrypted and vpn traffic using time-related features. In: Proceedings of the 2nd international conference on information systems security and privacy (ICISSP 2016), pp 407–414
– reference: LeCunYBengioYHintonGDeep learningNature2015521755343644410.1038/nature14539
– reference: Wang X, Parish DJ (2010) Optimised multi-stage tcp traffic classifier based on packet size distributions. In: Communication theory, reliability, and quality of service (CTRQ), 2010 third international conference on, IEEE, pp 98–103
– reference: VelanPČermákMČeledaPDrašarMA survey of methods for encrypted traffic classification and analysisInt J Netw Manag201525535537410.1002/nem.1901
– reference: Huang SH, Papernot N, Goodfellow IJ, Duan Y, Abbeel P (2017) Adversarial attacks on neural network policies. arXiv:1702.02284
– reference: Kingma D, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint. arXiv:1412.6980
– reference: ChowdhuryNMKBoutabaRA survey of network virtualizationComput Netw201054586287610.1016/j.comnet.2009.10.017
– reference: Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint. arXiv:1409.1556
– reference: AlshammariRZincir-HeywoodANCan encrypted traffic be identified without port numbers, ip addresses and payload inspection?Comput Netw20115561326135010.1016/j.comnet.2010.12.002
– reference: Dainotti A, Pescape A, Claffy KC (2012) Issues and future directions in traffic classification. IEEE Netw 26(1):35-40
– reference: Dingledine R, Mathewson N, Syverson P (2004) Tor: the second-generation onion router. Tech. rep., Naval Research Lab Washington DC
– reference: MooreAWZuevDInternet traffic classification using Bayesian analysis techniquesACM SIGMETRICS Perform Eval Rev ACM200533506010.1145/1071690.1064220
– reference: Yosinski J, Clune J, Nguyen AM, Fuchs TJ, Lipson H (2015) Understanding neural networks through deep visualization. arXiv:1506.06579
– reference: Yeganeh SH, Eftekhar M, Ganjali Y, Keralapura R, Nucci A (2012) Cute: traffic classification using terms. In: Computer communications and networks (ICCCN), 2012 21st international conference on, IEEE, pp 1–9
– reference: HubaraICourbariauxMSoudryDEl-YanivRBengioYQuantized neural networks: training neural networks with low precision weights and activationsJ Mach Learn Res201718168696898382707506982943
– reference: Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning, pp 448–456
– reference: Wang W, Zhu M, Wang J, Zeng X, Yang Z (2017) End-to-end encrypted traffic classification with one-dimensional convolution neural networks. In: Intelligence and security informatics (ISI), 2017 IEEE international conference on, IEEE, pp 43–48
– reference: HintonGDengLYuDDahlGEArMohamedJaitlyNSeniorAVanhouckeVNguyenPSainathTNDeep neural networks for acoustic modeling in speech recognition: the shared views of four research groupsIEEE Signal Process Mag2012296829710.1109/MSP.2012.2205597
– reference: Carlini N, Wagner D (2018) Audio adversarial examples: targeted attacks on speech-to-text. arXiv:1801.01944
– reference: BengioYLearning deep architectures for aiFound Trends Mach Learn2009211127248072310.1561/2200000006
– reference: Perera P, Tian YC, Fidge C, Kelly W (2017) A comparison of supervised machine learning algorithms for classification of communications network traffic. In: Neural information processing. Springer, Cham, Lecture Notes in Computer Science, pp 445–454. https://doi.org/10.1007/978-3-319-70087-8_47
– reference: Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. http://tensorflow.org/, software available from tensorflow.org
– reference: FinsterbuschMRichterCRochaEMullerJAHanssgenKA survey of payload-based traffic classification approachesIEEE Commun Surv Tutor20141621135115610.1109/SURV.2013.100613.00161
– reference: HubelDHWieselTNReceptive fields and functional architecture of monkey striate cortexJ Physiol1968195121524310.1113/jphysiol.1968.sp008455
– reference: Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy layer-wise training of deep networks. In: Advances in neural information processing systems, pp 153–160
– reference: Longadge R, Dongre S (2013) Class imbalance problem in data mining review. arXiv preprint. arXiv:1305.1707
– reference: Lin DD, Talathi SS, Annapureddy VS (2016) Fixed point quantization of deep convolutional networks. In: Proceedings of the 33rd international conference on international conference on machine learning, vol 48, ICML’16, pp 2849–2858
– reference: Zhang C, Li P, Sun G, Guan Y, Xiao B, Cong J (2015) Optimizing fpga-based accelerator design for deep convolutional neural networks. In: Proceedings of the 2015 ACM/SIGDA international symposium on field-programmable gate arrays, ACM, pp 161–170
– reference: LvJZhuCTangSYangCDeepflow: hiding anonymous communication traffic in p2p streaming networksWuhan Univ J Nat Sci201419541742510.1007/s11859-014-1034-0
– reference: Socher R, Perelygin A, Wu JY, Chuang J, Manning CD, Ng AY, Potts CP (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: EMNLP
– reference: Lotfollahi M, Wolf FA, Theis FJ (2018) Generative modeling and latent space arithmetics predict single-cell perturbation response across cell types, studies and species. bioRxiv p 478503
– reference: Qi Y, Xu L, Yang B, Xue Y, Li J (2009) Packet classification algorithms: from theory to practice. In: INFOCOM 2009, IEEE, IEEE, pp 648–656
– reference: Moore A, Zuev D, Crogan M (2013) Discriminators for use in flow-based classification. Tech. rep
– reference: BaguiSFangXKalaimannanEBaguiSCSheehanJComparison of machine-learning algorithms for classification of vpn network traffic flow using time-related featuresJ Cyber Secur Technol20171210812610.1080/23742917.2017.1321891
– reference: dos Santos CN, Gatti M (2014) Deep convolutional neural networks for sentiment analysis of short texts. In: Proceedings of the 25th international conference on computational linguistics (COLING), Dublin, Ireland
– reference: AlipanahiBDelongAWeirauchMTFreyBJPredicting the sequence specificities of dna-and rna-binding proteins by deep learningNat Biotechnol201533883183810.1038/nbt.3300
– reference: Vincent P, Larochelle H, Bengio Y, Manzagol PA (2008) Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on machine learning, ACM, pp 1096–1103
– reference: SherryJLanCPopaRARatnasamySBlindbox: deep packet inspection over encrypted trafficACM SIGCOMM Comput Commun Rev ACM20154521322610.1145/2829988.2787502
– reference: Du M, Liu N, Hu X (2018) Techniques for interpretable machine learning. arXiv preprint. arXiv:1808.00033
– reference: AuldTMooreAWGullSFBayesian neural networks for internet traffic classificationIEEE Trans Neural Netw200718122323910.1109/TNN.2006.883010
– ident: 4030_CR18
– ident: 4030_CR43
– ident: 4030_CR20
– ident: 4030_CR46
  doi: 10.1145/988672.988742
– volume: 12
  start-page: 2825
  year: 2011
  ident: 4030_CR41
  publication-title: J Mach Learn Res
– ident: 4030_CR34
  doi: 10.1101/478503
– ident: 4030_CR58
  doi: 10.1109/ICCNC.2017.7876241
– ident: 4030_CR27
– volume: 25
  start-page: 355
  issue: 5
  year: 2015
  ident: 4030_CR53
  publication-title: Int J Netw Manag
  doi: 10.1002/nem.1901
– volume: 24
  start-page: 101
  issue: 2
  year: 2014
  ident: 4030_CR26
  publication-title: Int J Netw Manag
  doi: 10.1002/nem.1855
– ident: 4030_CR2
  doi: 10.1109/ACCESS.2018.2807385
– volume: 16
  start-page: 1135
  issue: 2
  year: 2014
  ident: 4030_CR19
  publication-title: IEEE Commun Surv Tutor
  doi: 10.1109/SURV.2013.100613.00161
– volume: 1
  start-page: 39
  issue: 1
  year: 2018
  ident: 4030_CR45
  publication-title: ITU J ICT Discov Special Issue 1 Impact Artif Intell (AI) Commun Netw Serv
– ident: 4030_CR11
– ident: 4030_CR30
  doi: 10.1145/1553374.1553453
– ident: 4030_CR44
  doi: 10.1109/INFCOM.2009.5061972
– ident: 4030_CR40
– volume-title: The applications of deep learning on traffic identification
  year: 2015
  ident: 4030_CR55
– volume: 2
  start-page: 46
  issue: 12
  year: 1987
  ident: 4030_CR10
  publication-title: AI Expert
– ident: 4030_CR61
– volume: 18
  start-page: 6869
  issue: 1
  year: 2017
  ident: 4030_CR23
  publication-title: J Mach Learn Res
– ident: 4030_CR8
  doi: 10.7551/mitpress/7503.003.0024
– volume: 33
  start-page: 831
  issue: 8
  year: 2015
  ident: 4030_CR3
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3300
– ident: 4030_CR59
  doi: 10.1109/ICCCN.2012.6289207
– volume: 45
  start-page: 213
  year: 2015
  ident: 4030_CR47
  publication-title: ACM SIGCOMM Comput Commun Rev ACM
  doi: 10.1145/2829988.2787502
– ident: 4030_CR50
  doi: 10.1109/ICNC.2010.5584648
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 4030_CR7
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000006
– ident: 4030_CR33
– volume: 33
  start-page: 50
  year: 2005
  ident: 4030_CR39
  publication-title: ACM SIGMETRICS Perform Eval Rev ACM
  doi: 10.1145/1071690.1064220
– volume: 54
  start-page: 862
  issue: 5
  year: 2010
  ident: 4030_CR12
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2009.10.017
– ident: 4030_CR54
  doi: 10.1145/1390156.1390294
– year: 2018
  ident: 4030_CR28
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2017.2768018
– ident: 4030_CR57
  doi: 10.1109/ISI.2017.8004872
– ident: 4030_CR60
– ident: 4030_CR22
– volume: 73
  start-page: 1
  year: 2018
  ident: 4030_CR37
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2017.10.011
– ident: 4030_CR1
– ident: 4030_CR16
  doi: 10.21236/ADA465464
– ident: 4030_CR56
  doi: 10.1109/CTRQ.2010.24
– ident: 4030_CR51
  doi: 10.1109/ICISS.2010.5657079
– ident: 4030_CR32
– ident: 4030_CR25
– ident: 4030_CR48
– volume: 37
  start-page: 5
  issue: 1
  year: 2007
  ident: 4030_CR14
  publication-title: ACM SIGCOMM Comput Commun Rev
  doi: 10.1145/1198255.1198257
– volume: 5
  start-page: 41
  year: 2005
  ident: 4030_CR38
  publication-title: PAM, Springer
– volume: 55
  start-page: 1326
  issue: 6
  year: 2011
  ident: 4030_CR4
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2010.12.002
– volume-title: Elements of information theory
  year: 2006
  ident: 4030_CR13
– ident: 4030_CR17
– ident: 4030_CR36
  doi: 10.1109/MASCOTS.2006.6
– ident: 4030_CR9
  doi: 10.1109/SPW.2018.00009
– ident: 4030_CR42
  doi: 10.1007/978-3-319-70087-8_47
– volume: 18
  start-page: 223
  issue: 1
  year: 2007
  ident: 4030_CR5
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2006.883010
– ident: 4030_CR52
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  ident: 4030_CR21
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2012.2205597
– ident: 4030_CR49
– ident: 4030_CR31
– volume: 19
  start-page: 417
  issue: 5
  year: 2014
  ident: 4030_CR35
  publication-title: Wuhan Univ J Nat Sci
  doi: 10.1007/s11859-014-1034-0
– volume: 195
  start-page: 215
  issue: 1
  year: 1968
  ident: 4030_CR24
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1968.sp008455
– volume: 1
  start-page: 108
  issue: 2
  year: 2017
  ident: 4030_CR6
  publication-title: J Cyber Secur Technol
  doi: 10.1080/23742917.2017.1321891
– ident: 4030_CR15
  doi: 10.1109/MNET.2012.6135854
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 4030_CR29
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 4030_CR62
  doi: 10.1145/2684746.2689060
SSID ssj0021753
Score 2.687861
Snippet Network traffic classification has become more important with the rapid growth of Internet and online applications. Numerous studies have been done on this...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1999
SubjectTerms Access control
Accuracy
Artificial Intelligence
Artificial neural networks
Classification
Communications traffic
Computational Intelligence
Control
Data encryption
Datasets
Deep learning
Engineering
Feature extraction
Identification
Internet service providers
Machine learning
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Methods
Neural networks
Privacy
Protocol
Robotics
Statistical analysis
Streaming media
Virtual private networks
SummonAdditionalLinks – databaseName: Springer Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7Q4AAHBgPEYKAcuEGltknalBviIU4T4jHtVqWpOyGmburKJP49Tpd2gAAJzk2iyHbiz439mZCTRHOQQjAMcpR0eMTAUZoFTggZ8wJ0ComrqmYTYb8vh8PozhaFzeps9_pJsrqpm2I3Q1VikqjMz3w0TQcv3lV0d9Icx_uHQRNmWe5JBAKIHdHh2lKZ79f47I6WGPPLs2jlbW7a_9vnFtm06JJeLMxhm6xA3iHtunMDtQe5QzY-0BDukMEVwJRi8PwC5TlVNJ_MYUxrtnGKsJbitOJtiuiUloUyrBNUG9ht8owq1VKTPz-iqVnINqIY7ZKnm-vHy1vH9ltwNJOidNIsAQxYdKi9lMlAh4hOGMhMCABXAoTcTaRJi0oU0xJxjAeCayYgy7ROAmB7pJVPctgnVPtcuUJxphDgYMgVJSlwnSVBkImMcdklXi32WFsyctMTYxw3NMqVGGMUY1yJMfa75LSZM11Qcfw6uldrM7bHchb7kSEkC1kYdclZrb3l559XO_jb8EOy7pu4vMru7pFWWbzCEVnT8_J5VhxX5voOrH_itA
  priority: 102
  providerName: Springer Nature
Title Deep packet: a novel approach for encrypted traffic classification using deep learning
URI https://link.springer.com/article/10.1007/s00500-019-04030-2
https://www.proquest.com/docview/2917907379
Volume 24
WOSCitedRecordID wos000518595800026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241208
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241208
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241208
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: RSV
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58Hby4PnF1lRy8aXDbNG3qRXwiCMviC_FS0nQqouyuu1Xw3zuJ6S4KevGSS9NQ-k0y3ySTbwB2chOhklJQkKMVj1KBXBsR8wRLEcTkFPK2dsUmkk5H3d-nXb_hNvJplfWa6Bbqom_sHvl-mFotqUQk6eHglduqUfZ01ZfQmIbZIAwDa-eXCR8HXF6FkigBsUhyvf7SjLs6Z4VPbEqWPRogQ-fhd8c0YZs_Dkid3zlv_PeLF2HBM0529GUiSzCFvWVo1NUcmJ_cK3B3ijhgFEI_Y3XANOv13_GF1ZrjjMgto47DjwFxVFYNtdWeYMaSb5tt5ABmNov-kRV2IF-O4nEVbs_Pbk4uuK-6wI1QsuJFmSOFLSYxQSFUbBLiKAJVKSViWyEmUTtXNjkq18IoYjMBysgIiWVpTB6jWIOZXr-H68BMGOm21JHQRHMo8ErzAiNT5nFcylJEqglB_csz4yXJbWWMl2wspuxgygimzMGUhU3YHb8z-BLk-LN3q8Ym85NzlE2AacJeje7k8e-jbfw92ibMhzYadzndLZiphm-4BXPmvXoaDbdh9vis073adiZKbVc-UHt1ffcJBADr-Q
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7xqEQvDW2pGgiwh_ZULBLvrr1GQgjxUKKkEYcUoV7c9XqMKqHEJC6IP8VvZHZjJwKpuXHg7PVI9n7z2p35BuBbYgQqKTklOVp5IuLoacMDL8SMtwJyCklTu2ETYb-vrq6iiyV4rHphbFllZROdoU5Hxp6R7_uR5ZIKeRgd5beenRplb1erERpTWHTx4Z5Stslh55T297vvn58NTtpeOVXAM1zJwkuzBCksN6FppVwFJiQfzFFlUiI2FWIomomyxT-J5kaRt26hFIZLzDJjkgA5yV2GVSEoWSL9uZC_ZwleyXpJIQhFreTqyyYd16pniVZsCZi9iiDF8vznjnAe3b64kHV-7rz21v7QOnwoI2p2PFWBj7CEw09Qq6ZVsNJ4fYbLU8Sc5ZrMVnHANBuO7vCGVZzqjIJ3RgvHDznF4KwYa8utwYxNLmw1lQMws10C1yy1gspxG9cb8OtVvu4LrAxHQ_wKzPhCN6UWXFMYR4lllKQoTJYEQSYzLlQdWtUWx6akXLeTP27iGVm0g0VMsIgdLGK_Dj9m7-RTwpGFqxsVFuLS-EziORDqsFehaf74_9I2F0vbhbX24Gcv7nX63S1479uTB1e_3oCVYvwPt-GduSv-TsY7Ti0Y_HltlD0B9idHeA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED5ERfTBH1NxOjUPvmlxW5I29U2cQ1HGwB_4VtL0MsRRx6yC_72Xrt2mqCA-Nwkld-l9X3P3HcBBbAQqKTmRHK08EXL0tOG-F6DlDZ-CQlzXebOJoNNRDw9hd6qKP892L68kRzUNTqUpzY4HiT0eF7452RKXUOV-7JObevQRnhOuaZDj6zf3Y8pV6FASKCAcScG3KJv5fo3PoWmCN79ckeaRp73y_3deheUCdbLTkZuswQymFVgpOzqw4oBXYGlKnnAd7luIA0ak-gmzE6ZZ-vyGfVaqkDOCu4ymDd8HhFpZNtROjYIZB8dd_lFucuby6nsscQsVDSp6G3DXPr89u_CKPgye4UpmXmJjJCJjAtNIuPJNQKiFo7JSItYVYiDqsXLpUrHmRhG-aaAUhku01pjYR74Js-lzilvATFPoutSCawI-RMXCOEFhbOz7VlouVBUapQkiU4iUu14Z_Wgsr5xvY0TbGOXbGDWrcDieMxhJdPw6ulZaNiqO60vUDJ1QWcCDsApHpSUnj39ebftvw_dhodtqR9eXnasdWGw66p4ngNdgNhu-4i7Mm7fs8WW4l3vxB2wY7nw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+packet%3A+a+novel+approach+for+encrypted+traffic+classification+using+deep+learning&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Lotfollahi%2C+Mohammad&rft.au=Jafari+Siavoshani%2C+Mahdi&rft.au=Shirali+Hossein+Zade%2C+Ramin&rft.au=Saberian%2C+Mohammdsadegh&rft.date=2020-02-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=24&rft.issue=3&rft.spage=1999&rft.epage=2012&rft_id=info:doi/10.1007%2Fs00500-019-04030-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_019_04030_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon