A novel iterative method for computing generalized inverse

In this letter, we propose a novel iterative method for computing generalized inverse, based on a novel KKT formulation. The proposed iterative algorithm requires making four matrix and vector multiplications at each iteration and thus has low computational complexity. The proposed method is proved...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computation Ročník 26; číslo 2; s. 449
Hlavní autoři: Xia, Youshen, Chen, Tianping, Shan, Jinjun
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.02.2014
Témata:
ISSN:1530-888X, 1530-888X
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this letter, we propose a novel iterative method for computing generalized inverse, based on a novel KKT formulation. The proposed iterative algorithm requires making four matrix and vector multiplications at each iteration and thus has low computational complexity. The proposed method is proved to be globally convergent without any condition. Furthermore, for fast computing generalized inverse, we present an acceleration scheme based on the proposed iterative method. The global convergence of the proposed acceleration algorithm is also proved. Finally, the effectiveness of the proposed iterative algorithm is evaluated numerically.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1530-888X
1530-888X
DOI:10.1162/NECO_a_00549