Sustained ocean cooling insufficient to reverse sea level rise from Antarctica

Global mean sea level has risen at an accelerating rate in the last decade and will continue to rise for centuries. The Amundsen Sea Embayment in West Antarctica is a critical region for present and future ice loss, however most studies consider only a worst-case future for the region. Here we use i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Communications earth & environment Ročník 5; číslo 1; s. 150 - 9
Hlavní autori: Alevropoulos-Borrill, Alanna, Golledge, Nicholas R., Cornford, Stephen L., Lowry, Daniel P., Krapp, Mario
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group 01.12.2024
Nature Portfolio
Predmet:
ISSN:2662-4435, 2662-4435
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Global mean sea level has risen at an accelerating rate in the last decade and will continue to rise for centuries. The Amundsen Sea Embayment in West Antarctica is a critical region for present and future ice loss, however most studies consider only a worst-case future for the region. Here we use ice sheet model sensitivity experiments to investigate the centennial scale implications of short-term periods of enhanced ocean driven sub-ice shelf melting on ice loss and assess what future reduction in melting is necessary to mitigate ice stream retreat and offset global sea level rise. Our findings reveal that restoring elevated melt rates to present-day levels within 100 years causes rates of ice discharge to immediately decline, thereby limiting the overall sea level contribution from the region. However, while ice stream re-advance and slowed ice discharge is possible with reduced basal melting, a centennial scale increase in accumulation must occur to offset the extensive ice loss.
AbstractList Abstract Global mean sea level has risen at an accelerating rate in the last decade and will continue to rise for centuries. The Amundsen Sea Embayment in West Antarctica is a critical region for present and future ice loss, however most studies consider only a worst-case future for the region. Here we use ice sheet model sensitivity experiments to investigate the centennial scale implications of short-term periods of enhanced ocean driven sub-ice shelf melting on ice loss and assess what future reduction in melting is necessary to mitigate ice stream retreat and offset global sea level rise. Our findings reveal that restoring elevated melt rates to present-day levels within 100 years causes rates of ice discharge to immediately decline, thereby limiting the overall sea level contribution from the region. However, while ice stream re-advance and slowed ice discharge is possible with reduced basal melting, a centennial scale increase in accumulation must occur to offset the extensive ice loss.
Global mean sea level has risen at an accelerating rate in the last decade and will continue to rise for centuries. The Amundsen Sea Embayment in West Antarctica is a critical region for present and future ice loss, however most studies consider only a worst-case future for the region. Here we use ice sheet model sensitivity experiments to investigate the centennial scale implications of short-term periods of enhanced ocean driven sub-ice shelf melting on ice loss and assess what future reduction in melting is necessary to mitigate ice stream retreat and offset global sea level rise. Our findings reveal that restoring elevated melt rates to present-day levels within 100 years causes rates of ice discharge to immediately decline, thereby limiting the overall sea level contribution from the region. However, while ice stream re-advance and slowed ice discharge is possible with reduced basal melting, a centennial scale increase in accumulation must occur to offset the extensive ice loss.If elevated ice-melt rates in the Amundsen Sea Embayment, West Antarctica, can be restored to present levels within 100 years, rates of ice discharge and the sea level contribution from the region can be limited, suggest sensitivity experiments with an ice sheet model.
Global mean sea level has risen at an accelerating rate in the last decade and will continue to rise for centuries. The Amundsen Sea Embayment in West Antarctica is a critical region for present and future ice loss, however most studies consider only a worst-case future for the region. Here we use ice sheet model sensitivity experiments to investigate the centennial scale implications of short-term periods of enhanced ocean driven sub-ice shelf melting on ice loss and assess what future reduction in melting is necessary to mitigate ice stream retreat and offset global sea level rise. Our findings reveal that restoring elevated melt rates to present-day levels within 100 years causes rates of ice discharge to immediately decline, thereby limiting the overall sea level contribution from the region. However, while ice stream re-advance and slowed ice discharge is possible with reduced basal melting, a centennial scale increase in accumulation must occur to offset the extensive ice loss.
ArticleNumber 150
Author Lowry, Daniel P.
Alevropoulos-Borrill, Alanna
Cornford, Stephen L.
Golledge, Nicholas R.
Krapp, Mario
Author_xml – sequence: 1
  givenname: Alanna
  orcidid: 0000-0002-3171-7640
  surname: Alevropoulos-Borrill
  fullname: Alevropoulos-Borrill, Alanna
– sequence: 2
  givenname: Nicholas R.
  orcidid: 0000-0001-7676-8970
  surname: Golledge
  fullname: Golledge, Nicholas R.
– sequence: 3
  givenname: Stephen L.
  surname: Cornford
  fullname: Cornford, Stephen L.
– sequence: 4
  givenname: Daniel P.
  orcidid: 0000-0002-9668-0850
  surname: Lowry
  fullname: Lowry, Daniel P.
– sequence: 5
  givenname: Mario
  surname: Krapp
  fullname: Krapp, Mario
BookMark eNp9UctKJTEQDaKgo_6Aq4DrHvPqdPdSxBfIzEJdh-qkIrm0iSa5gn9v9IqICxdFPTjnVFHnD9mOKSIhR5z95UyOJ0VJoYaOCdUxLqahG7fIntBadErJfvtbvUsOS1kxxkTPBRfDHvl3uy4VQkRHk0WI1Ka0hPhAQyxr74MNGCutiWZ8wVyQFgS6tHqhObTW5_RIT2OFbGuwcEB2PCwFDz_zPrm_OL87u-pu_l9en53edFaOfe2cRjl5nPU8KyY1t6qFx3EGxxxYDpN1k3SzVN5x2bDMq8kz77l03uMg98n1RtclWJmnHB4hv5oEwXwMUn4wkNtBC5qBc6Gt5k47UHyws8IRZM-1arrY903reKP1lNPzGks1q7TOsZ1vJJNsUu1bqqHEBmVzKiWj_9rKmXm3wWxsMM0G82GDGRtp_EGyoUINKdYMYfmN-gZ4Z47p
CitedBy_id crossref_primary_10_1126_science_adt9619
crossref_primary_10_1038_s43247_025_02299_w
crossref_primary_10_3389_fsci_2025_1527393
Cites_doi 10.5194/tc-17-3739-2023
10.5194/tc-13-2317-2019
10.1038/nature17145
10.1175/JCLI-D-17-0854.1
10.1038/s41586-021-03427-0
10.1126/science.1244341
10.5194/tc-7-647-2013
10.1038/s41586-021-03302-y
10.1038/s41561-019-0510-8
10.1029/2006JF000664
10.1038/nclimate2912
10.1029/2018GL077092
10.1038/d41586-018-03036-4
10.5194/tc-14-3033-2020
10.1002/2016RG000532
10.1073/pnas.1812883116
10.1002/2013JC008871
10.1038/s41561-018-0207-4
10.1029/2019GL084941
10.5194/tc-17-3761-2023
10.1029/2020JC016113
10.1029/2018GL081229
10.5194/tc-14-1245-2020
10.1126/science.aaz5845
10.1017/jog.2016.40
10.1126/sciadv.aau3433
10.3189/S0022143000024709
10.1002/2017JC013059
10.5194/tc-16-761-2022
10.1093/qjmam/hbp025
10.1038/s41561-019-0420-9
10.1016/j.jcp.2012.08.037
10.3189/2012AoG60A110
10.5670/oceanog.2016.103
10.1175/JPO-D-12-0157.1
10.1111/1758-5899.12867
10.1002/2015GL067143
10.1029/2004JD005667
10.1016/j.cageo.2016.08.003
10.5194/tc-12-1969-2018
10.1073/pnas.1904822116
10.1029/2021GL094566
10.1038/s41561-017-0033-0
10.1126/science.1235798
10.1002/2014GL061600
10.1016/j.epsl.2010.04.025
10.1017/jfm.2012.43
10.5194/tc-9-1579-2015
10.3390/rs9040364
10.1029/2023GL102880
ContentType Journal Article
Copyright The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
DOA
DOI 10.1038/s43247-024-01297-8
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Environmental Science Collection
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Environmental Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2662-4435
EndPage 9
ExternalDocumentID oai_doaj_org_article_71126c61d6da417cb4e8a35164e39e55
10_1038_s43247_024_01297_8
GeographicLocations Amundsen Sea
Antarctica
GeographicLocations_xml – name: Amundsen Sea
– name: Antarctica
GroupedDBID 0R~
AAFWJ
AAJSJ
AASML
AAYXX
AEUYN
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BENPR
BHPHI
C6C
CCPQU
CITATION
EBLON
EBS
GROUPED_DOAJ
HCIFZ
M~E
NAO
OK1
PATMY
PHGZM
PHGZT
PIMPY
PYCSY
SNYQT
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c385t-d6e39feb6bb40361c461cfe8bad0dac1a9cd93db34fd13e390f49f0ff13dffe73
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001197259400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2662-4435
IngestDate Tue Oct 14 19:04:47 EDT 2025
Sun Nov 09 07:06:07 EST 2025
Tue Nov 18 21:53:58 EST 2025
Sat Nov 29 05:41:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-d6e39feb6bb40361c461cfe8bad0dac1a9cd93db34fd13e390f49f0ff13dffe73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9668-0850
0000-0001-7676-8970
0000-0002-3171-7640
OpenAccessLink https://doaj.org/article/71126c61d6da417cb4e8a35164e39e55
PQID 3030940254
PQPubID 5061813
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_71126c61d6da417cb4e8a35164e39e55
proquest_journals_3030940254
crossref_primary_10_1038_s43247_024_01297_8
crossref_citationtrail_10_1038_s43247_024_01297_8
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Communications earth & environment
PublicationYear 2024
Publisher Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group
– name: Nature Portfolio
References 1297_CR52
GH Gudmundsson (1297_CR9) 2013; 7
A Jenkins (1297_CR21) 2016; 29
JS Hosking (1297_CR26) 2016; 43
TS Dotto (1297_CR25) 2020; 125
IJ Nias (1297_CR49) 2016; 62
E Rignot (1297_CR3) 2019; 116
E Rignot (1297_CR50) 2013; 341
Y Nakayama (1297_CR17) 2014; 41
EA Hill (1297_CR15) 2023; 17
1297_CR16
IJ Nias (1297_CR31) 2019; 46
P Dutrieux (1297_CR8) 2014; 343
A Alevropoulos-Borrill (1297_CR29) 2020; 14
C Schoof (1297_CR13) 2012; 698
S Cornford (1297_CR44) 2015; 9
P Milillo (1297_CR38) 2019; 5
K Assmann (1297_CR24) 2013; 118
O Gürses (1297_CR35) 2019; 13
B Smith (1297_CR11) 2020; 368
J Turner (1297_CR27) 2017; 55
R DeConto (1297_CR5) 2016; 531
R Reese (1297_CR14) 2023; 17
F Paolo (1297_CR23) 2018; 11
SL Cornford (1297_CR42) 2013; 232
KA Naughten (1297_CR12) 2018; 31
J Mouginot (1297_CR47) 2017; 9
AA Robel (1297_CR30) 2019; 116
CA Greene (1297_CR53) 2017; 104
A Wåhlin (1297_CR19) 2013; 43
M Morlighem (1297_CR40) 2020; 13
JJ Fürst (1297_CR10) 2016; 6
JC Moore (1297_CR7) 2021; 12
PR Holland (1297_CR18) 2019; 12
JC Moore (1297_CR34) 2018; 555
M Donat-Magnin (1297_CR28) 2017; 122
1297_CR41
P Deb (1297_CR20) 2018; 45
EJ Steig (1297_CR22) 2012; 53
DF Martin (1297_CR32) 2019; 46
1297_CR1
G Gudmundsson (1297_CR39) 2023; 50
1297_CR4
A Levermann (1297_CR36) 2019; 2019
J Weertman (1297_CR48) 1957; 3
F Pattyn (1297_CR46) 2010; 295
H Seroussi (1297_CR2) 2020; 14
C Schoof (1297_CR43) 2010; 63
R Reese (1297_CR51) 2018; 12
A Jenkins (1297_CR33) 2018; 11
TL Edwards (1297_CR37) 2021; 593
1297_CR45
RM DeConto (1297_CR6) 2021; 593
References_xml – volume: 17
  start-page: 3739
  year: 2023
  ident: 1297_CR15
  publication-title: Cryosphere
  doi: 10.5194/tc-17-3739-2023
– volume: 2019
  start-page: 1
  year: 2019
  ident: 1297_CR36
  publication-title: Earth Syst. Dyn. Discuss.
– volume: 13
  start-page: 2317
  year: 2019
  ident: 1297_CR35
  publication-title: Cryosphere
  doi: 10.5194/tc-13-2317-2019
– volume: 531
  start-page: 591
  year: 2016
  ident: 1297_CR5
  publication-title: Nature
  doi: 10.1038/nature17145
– volume: 31
  start-page: 5243
  year: 2018
  ident: 1297_CR12
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-17-0854.1
– volume: 593
  start-page: 83
  year: 2021
  ident: 1297_CR6
  publication-title: Nature
  doi: 10.1038/s41586-021-03427-0
– volume: 343
  start-page: 174
  year: 2014
  ident: 1297_CR8
  publication-title: Science
  doi: 10.1126/science.1244341
– volume: 7
  start-page: 647
  year: 2013
  ident: 1297_CR9
  publication-title: Cryosphere
  doi: 10.5194/tc-7-647-2013
– volume: 593
  start-page: 74
  year: 2021
  ident: 1297_CR37
  publication-title: Nature
  doi: 10.1038/s41586-021-03302-y
– volume: 13
  start-page: 132
  year: 2020
  ident: 1297_CR40
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-019-0510-8
– ident: 1297_CR4
  doi: 10.1029/2006JF000664
– volume: 6
  start-page: 479
  year: 2016
  ident: 1297_CR10
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2912
– volume: 45
  start-page: 4124
  year: 2018
  ident: 1297_CR20
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL077092
– ident: 1297_CR52
– volume: 555
  start-page: 303
  year: 2018
  ident: 1297_CR34
  publication-title: Nature
  doi: 10.1038/d41586-018-03036-4
– volume: 14
  start-page: 3033
  year: 2020
  ident: 1297_CR2
  publication-title: Cryosphere
  doi: 10.5194/tc-14-3033-2020
– volume: 55
  start-page: 235
  year: 2017
  ident: 1297_CR27
  publication-title: Rev. Geophys.
  doi: 10.1002/2016RG000532
– volume: 116
  start-page: 1095
  year: 2019
  ident: 1297_CR3
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1812883116
– volume: 118
  start-page: 6603
  year: 2013
  ident: 1297_CR24
  publication-title: J. Geophys. Res.
  doi: 10.1002/2013JC008871
– volume: 11
  start-page: 733
  year: 2018
  ident: 1297_CR33
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-018-0207-4
– volume: 46
  start-page: 11253
  year: 2019
  ident: 1297_CR31
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2019GL084941
– volume: 17
  start-page: 3761
  year: 2023
  ident: 1297_CR14
  publication-title: Cryosphere
  doi: 10.5194/tc-17-3761-2023
– volume: 125
  start-page: e2020JC016113
  year: 2020
  ident: 1297_CR25
  publication-title: J. Geophys. Res.
  doi: 10.1029/2020JC016113
– volume: 46
  start-page: 1467
  year: 2019
  ident: 1297_CR32
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL081229
– volume: 14
  start-page: 1245
  year: 2020
  ident: 1297_CR29
  publication-title: Cryosphere
  doi: 10.5194/tc-14-1245-2020
– volume: 368
  start-page: 1239
  year: 2020
  ident: 1297_CR11
  publication-title: Science
  doi: 10.1126/science.aaz5845
– volume: 62
  start-page: 552
  year: 2016
  ident: 1297_CR49
  publication-title: J. Glaciol.
  doi: 10.1017/jog.2016.40
– volume: 5
  start-page: eaau3433
  year: 2019
  ident: 1297_CR38
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aau3433
– volume: 3
  start-page: 33
  year: 1957
  ident: 1297_CR48
  publication-title: J. Glaciol.
  doi: 10.3189/S0022143000024709
– volume: 122
  start-page: 10206
  year: 2017
  ident: 1297_CR28
  publication-title: J. Geophys. Res.
  doi: 10.1002/2017JC013059
– ident: 1297_CR41
  doi: 10.5194/tc-16-761-2022
– volume: 63
  start-page: 73
  year: 2010
  ident: 1297_CR43
  publication-title: Q. J. Mech. Appl. Math.
  doi: 10.1093/qjmam/hbp025
– volume: 12
  start-page: 718
  year: 2019
  ident: 1297_CR18
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-019-0420-9
– volume: 232
  start-page: 529
  year: 2013
  ident: 1297_CR42
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.08.037
– volume: 53
  start-page: 19
  year: 2012
  ident: 1297_CR22
  publication-title: Ann. Glaciol.
  doi: 10.3189/2012AoG60A110
– volume: 29
  start-page: 106
  year: 2016
  ident: 1297_CR21
  publication-title: Oceanography
  doi: 10.5670/oceanog.2016.103
– volume: 43
  start-page: 2054
  year: 2013
  ident: 1297_CR19
  publication-title: J. Phys. Oceanogr.
  doi: 10.1175/JPO-D-12-0157.1
– volume: 12
  start-page: 108
  year: 2021
  ident: 1297_CR7
  publication-title: Glob. Policy
  doi: 10.1111/1758-5899.12867
– volume: 43
  start-page: 367
  year: 2016
  ident: 1297_CR26
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2015GL067143
– ident: 1297_CR1
– ident: 1297_CR45
  doi: 10.1029/2004JD005667
– volume: 104
  start-page: 151
  year: 2017
  ident: 1297_CR53
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2016.08.003
– volume: 12
  start-page: 1969
  year: 2018
  ident: 1297_CR51
  publication-title: Cryosphere
  doi: 10.5194/tc-12-1969-2018
– volume: 116
  start-page: 14887
  year: 2019
  ident: 1297_CR30
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1904822116
– ident: 1297_CR16
  doi: 10.1029/2021GL094566
– volume: 11
  start-page: 121
  year: 2018
  ident: 1297_CR23
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-017-0033-0
– volume: 341
  start-page: 266
  year: 2013
  ident: 1297_CR50
  publication-title: Science
  doi: 10.1126/science.1235798
– volume: 41
  start-page: 7942
  year: 2014
  ident: 1297_CR17
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2014GL061600
– volume: 295
  start-page: 451
  year: 2010
  ident: 1297_CR46
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2010.04.025
– volume: 698
  start-page: 62
  year: 2012
  ident: 1297_CR13
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2012.43
– volume: 9
  start-page: 1579
  year: 2015
  ident: 1297_CR44
  publication-title: Cryosphere
  doi: 10.5194/tc-9-1579-2015
– volume: 9
  start-page: 364
  year: 2017
  ident: 1297_CR47
  publication-title: Remote Sens.
  doi: 10.3390/rs9040364
– volume: 50
  start-page: e2023GL102880
  year: 2023
  ident: 1297_CR39
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2023GL102880
SSID ssj0002512127
Score 2.2899525
Snippet Global mean sea level has risen at an accelerating rate in the last decade and will continue to rise for centuries. The Amundsen Sea Embayment in West...
Abstract Global mean sea level has risen at an accelerating rate in the last decade and will continue to rise for centuries. The Amundsen Sea Embayment in West...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 150
SubjectTerms Ablation
Bays
Discharge
Glaciation
Global sea level
Ice
Ice sheet models
Ice sheets
Ice shelves
Land ice
Mean sea level
Melting
Oceans
Rivers
Sea level
Sea level changes
Sea level rise
Sensitivity
Sheet modelling
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BFiQuvBFLC_KBG7I2Xjtr51S1iAIHVisBUjlZjh8VUpWUTUDi33fG8S5CSD1xyCVxXh7P0zPfALw22qBi1oKHGs03hSYCd24puIuVJ49LO-Fyswm9Xpvz82ZTyqOHkla5k4lZUE9oz5S3jUJ4EXpPEfOFpJ0BRZXcx1c_OPWQor3W0lDjNhwQ8JaZwcHm46fNt33MhXS5WOpSO1NJsxgIkE5zVFScIjIosP_STxnG_x8pnVXP2YP_-9EP4X4xQdnJtGYewa3YPYa773OL399PYP15qqmKgaFucx3zPTX2uWCUtp4BJ_BtbOwZgT9th8iQWdgl5R4xFBiRUcEKO-lG5CCKkz-Fr2fvvrz9wEvXBe6lqUceVlE2KbartlWo3oRXeKRoWheq4LxwjQ-NDK1UKVAItamSalKVkpAhpajlM5h1fRefA0OTWLfo0SUdahUCGvM43bLFZ6Nf4n2ag9jNtfUFkpw6Y1zavDUujZ3oY5E-NtPHmjm82d9zNQFy3Dj6lEi4H0lg2vlEv72whTetpjIqvxJhFZwS2rcqGidrdCTx72Jdz-FoR11bOHywf4j54ubLh3BvSesrp8AcwWzc_owv4Y7_NX4ftq_KEr0G2gn1Zw
  priority: 102
  providerName: ProQuest
Title Sustained ocean cooling insufficient to reverse sea level rise from Antarctica
URI https://www.proquest.com/docview/3030940254
https://doaj.org/article/71126c61d6da417cb4e8a35164e39e55
Volume 5
WOSCitedRecordID wos001197259400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2662-4435
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512127
  issn: 2662-4435
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2662-4435
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512127
  issn: 2662-4435
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 2662-4435
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512127
  issn: 2662-4435
  databaseCode: PATMY
  dateStart: 20201201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2662-4435
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512127
  issn: 2662-4435
  databaseCode: BENPR
  dateStart: 20201201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2662-4435
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512127
  issn: 2662-4435
  databaseCode: PIMPY
  dateStart: 20201201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iA7yIT6xWycGbLN002SZ7bKVVD5biA_QUsnmIIFtpV8F_70x2lYqgFw972CX7mknyzSQz3xByoqQCYJYscRmYbwJMhMSYLkuMTy16XNIwE4tNyPFY3d_nk4VSXxgTVtMD14LrSMxxsT3mes4IJm0hvDI8Ayvf89xnkb0UrJ4FZwrnYERt1pVNlkzKVWeO1HMyAUhKcO0FpuZvSBQJ-3_MxxFkRptko7EOab_-qi2y5MttsnYeq---75DxTZ3u5B0F2DEltVOsufNIMaI8ckEAhNBqSpGXaTb3FPoxfcawIApj2VPMJaH9soLOjUvYu-RuNLw9u0iaggiJ5SqrEteDfw6-6BWFAORhVsARvCqMS52xzOTW5dwVXASHq5t5GkQe0hAYdyF4yffIcjkt_T6hYK3KApytIF0mnAM7G-TDC3g2uAzWhhZhn8LRtmELx6IVzzruWnOla4FqEKiOAtWqRU6_7nmpuTJ-bT1AmX-1RJ7reAG0rxvt67-03yLtT43pZvDNNcdtI4Fp_gf_8Y5Dst7FbhNjWNpkuZq9-iOyat-qp_nsmKwMhuPJ9XHsf3A2ubyaPHwAVQ_dHw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguvBFLC_gAXFDUOE5i59DD8iit2q4qsUjlZBw_KqQqKZsA6p_qb-yMN7sIIfXWA4dcEseS4y_zzYznAfBKSYXELHniClTfclQREmMynhifWrK4pOEmNpuQ06k6Pq6O1uBimQtDYZVLmRgFtWst-ci3BJ0F5JS7PURQ7vvz32ifddt7H3AzX2fZzsfZ-91kaCGQWKGKPnGlF1XwdVnXOcpqbnO8gle1cakzlpvKukq4WuTBkT-wSkNehTQELlwIXgqc983Zj4S6VNFp7tCy4wasqxKhO4L1o8ns8OvKq0PaAs_kkJ2TCrXVUck7mSAVJuTzQUr4iwFjo4B_eCCS2869_-2z3Ie7gxrNJgvcP4A13zyEW59im-LzRzD9vMgL844hP5uG2ZaaE50wCr2PRTOQa1nfMipgNe88w1WxU4qfYij0PKOkGzZpelwq-fofw5drWd8TGDVt458CQ7Ve1miVBumK3Dk0SHBDRY1zo21lbRgDX-6mtkNZderucarj8b5QeoEAjQjQEQFajeHt6p2zRVGRK0e_I5CsRlJB8HijnZ_oQb5oSalgtuSudCbn0ta5V0YUaAzj6nxRjGFziR89SKlO_wHPs6sfv4Tbu7PDA32wN93fgDsZoTmG9GzCqJ__9M_hpv3Vf-_mL4YfgsG368bfJRvcS7U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sustained+ocean+cooling+insufficient+to+reverse+sea+level+rise+from+Antarctica&rft.jtitle=Communications+earth+%26+environment&rft.au=Alanna+Alevropoulos-Borrill&rft.au=Nicholas+R.+Golledge&rft.au=Stephen+L.+Cornford&rft.au=Daniel+P.+Lowry&rft.date=2024-12-01&rft.pub=Nature+Portfolio&rft.eissn=2662-4435&rft.volume=5&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1038%2Fs43247-024-01297-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_71126c61d6da417cb4e8a35164e39e55
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4435&client=summon