Stochastic simulation based genetic algorithm for chance constraint programming problems with some discrete random variables

A stochastic simulation based genetic algorithm (GA) is presented, in this paper, for solving chance constraint programming problems in which the random variables follow some discrete distributions. The feasibility of the chance constraints is checked by stochastic simulation. In general, the feasib...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computer mathematics Ročník 81; číslo 12; s. 1455 - 1463
Hlavní autoři: Jana, R. K., Biswal, M. P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis 01.12.2004
Témata:
ISSN:0020-7160, 1029-0265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A stochastic simulation based genetic algorithm (GA) is presented, in this paper, for solving chance constraint programming problems in which the random variables follow some discrete distributions. The feasibility of the chance constraints is checked by stochastic simulation. In general, the feasible region associate with such problems is non-convex. Therefore, GA is used to obtain the optimal solution. In the proposed method, the stochastic model is directly used without finding the deterministic equivalent of it. A numerical example is presented to prove the efficiency of the proposed method. E-mail: rabin@maths.iitkgp.ernet.in
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0020-7160
1029-0265
DOI:10.1080/0020716042000272584