Stochastic simulation based genetic algorithm for chance constraint programming problems with some discrete random variables

A stochastic simulation based genetic algorithm (GA) is presented, in this paper, for solving chance constraint programming problems in which the random variables follow some discrete distributions. The feasibility of the chance constraints is checked by stochastic simulation. In general, the feasib...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computer mathematics Ročník 81; číslo 12; s. 1455 - 1463
Hlavní autoři: Jana, R. K., Biswal, M. P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis 01.12.2004
Témata:
ISSN:0020-7160, 1029-0265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A stochastic simulation based genetic algorithm (GA) is presented, in this paper, for solving chance constraint programming problems in which the random variables follow some discrete distributions. The feasibility of the chance constraints is checked by stochastic simulation. In general, the feasible region associate with such problems is non-convex. Therefore, GA is used to obtain the optimal solution. In the proposed method, the stochastic model is directly used without finding the deterministic equivalent of it. A numerical example is presented to prove the efficiency of the proposed method. E-mail: rabin@maths.iitkgp.ernet.in
AbstractList A stochastic simulation based genetic algorithm (GA) is presented, in this paper, for solving chance constraint programming problems in which the random variables follow some discrete distributions. The feasibility of the chance constraints is checked by stochastic simulation. In general, the feasible region associate with such problems is non-convex. Therefore, GA is used to obtain the optimal solution. In the proposed method, the stochastic model is directly used without finding the deterministic equivalent of it. A numerical example is presented to prove the efficiency of the proposed method.
A stochastic simulation based genetic algorithm (GA) is presented, in this paper, for solving chance constraint programming problems in which the random variables follow some discrete distributions. The feasibility of the chance constraints is checked by stochastic simulation. In general, the feasible region associate with such problems is non-convex. Therefore, GA is used to obtain the optimal solution. In the proposed method, the stochastic model is directly used without finding the deterministic equivalent of it. A numerical example is presented to prove the efficiency of the proposed method. E-mail: rabin@maths.iitkgp.ernet.in
Author Biswal, M. P.
Jana, R. K.
Author_xml – sequence: 1
  givenname: R. K.
  surname: Jana
  fullname: Jana, R. K.
– sequence: 2
  givenname: M. P.
  surname: Biswal
  fullname: Biswal, M. P.
BookMark eNqFkEtL7TAURoMoeHz8AicZOavuJj1JOxEucn2A4EAdlzTdPUby0CTnegV_vKk6EtFRNmSt_fh2yKYPHgk5qOGohhaOARjIWkDDoJSSLdtmgyxqYF0FTCw3yWImqhnZJjspPRSs7aRYkNebHPS9StlomoxbW5VN8HRQCUe6Qo_zh7KrEE2-d3QKkRbca6Q6-JSjMj7TxxhWUTln_GquB4su0eci0BQc0tEkHTEjjcqPwdF_KhpVoLRHtiZlE-5_vrvk7uzv7elFdXV9fnn656rSvF3mahQSQQ41Y5MQ2IwcAcSSTyC54IPuxMABhk6qUfIGBpgGxhrZtpIpARwavksOP_qW5Z7WmHLvykporfIY1qlnHYhashnsPkAdQ0oRp16b_J7IfKnta-jnvPtv8i4u_-I-RuNUfPnF-pxofMnWqecQ7dhn9WJDnEpe2qTvvD7_z8U9-dXlPw1_A2uOq-Y
CitedBy_id crossref_primary_10_1007_s00170_014_6213_9
crossref_primary_10_1155_2022_3250499
crossref_primary_10_1080_0020716042000272584
crossref_primary_10_1007_s13198_021_01400_8
crossref_primary_10_1080_00207160801998934
Cites_doi 10.1016/S0377-2217(97)90319-2
10.1287/opre.11.1.18
10.1287/mnsc.9.3.405
10.1287/mnsc.6.1.73
10.1287/opre.13.6.930
10.1287/opre.24.6.1078
10.1002/9780470316511
10.1007/BF01584661
10.1080/0020716042000272584
10.1080/02522667.1996.10699291
10.2307/1910956
10.1016/0096-3003(87)90009-9
ContentType Journal Article
Copyright Copyright Taylor & Francis 2004
Copyright_xml – notice: Copyright Taylor & Francis 2004
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/0020716042000272584
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1029-0265
EndPage 1463
ExternalDocumentID 10_1080_0020716042000272584
10052936
Genre Other
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABUFD
ABXUL
ABXYU
ACAGQ
ACGEJ
ACGFS
ACGOD
ACIWK
ACNCT
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AI.
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMEWO
AMVHM
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CRFIH
CS3
DGEBU
DKSSO
DMQIW
DU5
EAP
EBS
EDO
EJD
EMK
EPL
EST
ESX
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
MK~
NA5
NY~
O9-
P2P
PQQKQ
QCRFL
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TUS
TWF
UPT
UT5
UU3
VH1
WH7
ZGOLN
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c385t-d67e07b122f66e4d3e00653f07363bc96b300b97ad7340b0fb22478872a603043
IEDL.DBID TFW
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000225220000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-7160
IngestDate Fri Sep 05 06:21:31 EDT 2025
Sat Nov 29 02:21:18 EST 2025
Tue Nov 18 22:16:39 EST 2025
Mon May 13 12:10:04 EDT 2019
Mon Oct 20 23:47:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-d67e07b122f66e4d3e00653f07363bc96b300b97ad7340b0fb22478872a603043
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 29061724
PQPubID 23500
PageCount 9
ParticipantIDs crossref_citationtrail_10_1080_0020716042000272584
crossref_primary_10_1080_0020716042000272584
proquest_miscellaneous_29061724
informaworld_taylorfrancis_310_1080_0020716042000272584
PublicationCentury 2000
PublicationDate 2004-12-01
PublicationDateYYYYMMDD 2004-12-01
PublicationDate_xml – month: 12
  year: 2004
  text: 2004-12-01
  day: 01
PublicationDecade 2000
PublicationTitle International journal of computer mathematics
PublicationYear 2004
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References Goicoechea A (b9) 1982
b10
b20
b11
Garvan Frank (b13) 2001
Wolfram Stephen (b14) 1999
Holland JH (b15) 1975
b17
Backstrom G (b12) 1995
Goldberg DE (b16) 1989
Ruiqing Z (b18) 1998; 7
b1
b2
b3
b4
Jana RK (b19) 2004; 81
b5
b6
b7
Kall P (b8) 1994
References_xml – volume-title: Practical Mathematics using MATLAB, Chartwell-Yorke
  year: 1995
  ident: b12
– ident: b10
  doi: 10.1016/S0377-2217(97)90319-2
– volume-title: The Maple Book, Chapman & Hall
  year: 2001
  ident: b13
– volume-title: Multi-objective Decision Analysis with Engineering and Business Applications, John Wiley and Sons
  year: 1982
  ident: b9
– volume-title: Adaptation in natural and artificial systems, University of Michigan Press
  year: 1975
  ident: b15
– volume-title: Stochastic programming, John Wiley & Sons
  year: 1994
  ident: b8
– volume-title: Genetic algorithms in search, optimization, and machine learning
  year: 1989
  ident: b16
– volume: 7
  start-page: 96
  year: 1998
  ident: b18
  publication-title: Journal of System Science and Systems Engineering
– ident: b2
  doi: 10.1287/opre.11.1.18
– ident: b6
  doi: 10.1287/mnsc.9.3.405
– ident: b1
  doi: 10.1287/mnsc.6.1.73
– volume-title: The Mathematica Book
  year: 1999
  ident: b14
– ident: b3
  doi: 10.1287/opre.13.6.930
– ident: b7
  doi: 10.1287/opre.24.6.1078
– ident: b20
  doi: 10.1002/9780470316511
– ident: b4
  doi: 10.1007/BF01584661
– volume: 81
  start-page: 1455
  year: 2004
  ident: b19
  publication-title: International Journal of Computer Mathematics
  doi: 10.1080/0020716042000272584
– ident: b17
  doi: 10.1080/02522667.1996.10699291
– ident: b5
  doi: 10.2307/1910956
– ident: b11
  doi: 10.1016/0096-3003(87)90009-9
SSID ssj0008976
Score 1.6792846
Snippet A stochastic simulation based genetic algorithm (GA) is presented, in this paper, for solving chance constraint programming problems in which the random...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1455
SubjectTerms Chance constraint
Discrete random variables
Genetic algorithm
Stochastic programming
Stochastic simulation
Title Stochastic simulation based genetic algorithm for chance constraint programming problems with some discrete random variables
URI https://www.tandfonline.com/doi/abs/10.1080/0020716042000272584
https://www.proquest.com/docview/29061724
Volume 81
WOSCitedRecordID wos000225220000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1029-0265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008976
  issn: 0020-7160
  databaseCode: TFW
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09b9swECUKI0OXOmlSxPlob8gYATQpUfIYBDE6FEGBpmg2gaTI2oBlBRYTZMiPz51MGQkSeGg3DSRFiXf3juTdO8bOMgRpaZVMRKV4kmYmS4x2-JT7tDBCF7zqEoV_5NfXxe3t5Gesc9rGsEraQ_s1UURnq0m5tWn7iDjK4EZgVChu3cWZQAxFG4zAT4p5M_2zscTFpCsuR-0T6tCzDr0_xitkesVb-sZOd-AzHf73tHfZp-h3wsVaUPbYB7f8zIZ9TQeIKr7Pnn6Fxs40sTdDO69jcS8gsKsAhY1yHkEv_jareZjVgLMHyh22Dix5mlRwIkAM-qoRFiFWrGmBTnyhbWoHlAm8QmcdECerpoYH3K9TBld7wH5Pr24uvyexQkNiZZGFpFK547kZC-GVcmklXcd169FuKGnsRBnJuZnkusplyg33Bj0Gil8UWtGdrPzCBstm6Q4ZjI31XGdZlgtLjD_a0-AO23qtVOpGTPSrU9pIX04ftSjHG5bTN_93xM43ne7W7B3bm4uXy16G7tDEryucvNehDI9hxPItneTW133rxapEpaabGr10zX1bEgc_epbp0T-Pfcw-9pSUfHzCBmF1707Zjn0I83b1tVOTZ5A2Db0
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BQYIL5VMsUDoHjkTy2omTPaKqqyK2KyQW0VtkOzZdqdmgjVtx4Mczk01WrVrtAW45eBwnnvEb2zNvAD5kBNLKaZXISoskzWyWWOPpKQ9pYaUpRNUlCs_y-bw4O5t8vZbFz2GVvIcOG6KIbq1m4-bD6CEkjlO4CRk16Vt3cyYJRO_Dg4yQltnzF9Mf27W4mHTl5VggYYmBd-juTm5g0w3m0lsrdQc_0_3_H_hTeNK7nvhpoyvP4J5fPYf9oawD9lb-Av58i407N0zgjO2y7ut7IeNdhaRvnPaI5uJns17G8xpp-Mjpw86jY2eTa05E7OO-akJG7IvWtMiHvtg2tUdOBl6Tv44ElVVT4xVt2TmJq30J36fHi6OTpC_SkDhVZDGpdO5FbsdSBq19Winf0d0GWjq0sm6irRLCTnJT5SoVVgRLTgOHMEqj-VpWvYK9VbPyrwHH1gVhsizLpWPSHxO4c09tg9E69SOQw_SUrmcw54-6KMdbotNb_3cEH7dCvzYEHruby-vzXsbu3CRsipzcJVDG33EE-Q4htfN1h4NelWTXfFljVr65bEum4SfnMn3zz30fwqOTxemsnH2ef3kLjweGSjF-B3txfekP4KG7ist2_b6zmb-gkBHn
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQYgL5SmWV-fAkUheO3GyRwSsQFSrShTRW2Q7Nl2p2VQbt-LAj2cm66yoWu0Bbjl4HCee8Te2Z74BeFsQSCunVSYbLbK8sEVmjaenMuSVlaYSzZAofFguFtXJyewo1TntU1gl76HDhihiWKvZuM-bMEbEcQY3AaMmdRsuziRh6G24Q46zZhU_nv_YLsXVbKguxwIZS4y0Qzd3cgWarhCXXluoB_SZ7__3uB_Cg-R44vuNpjyCW371GPbHog6YbPwJ_P4WO3dqmL4Z-2Wbqnsho12DpG2c9Ijm7Ge3XsbTFmn0yMnDzqNjV5MrTkRMUV8t4SKmkjU98pEv9l3rkVOB1-StIwFl07V4SRt2TuHqn8L3-afjD5-zVKIhc6oqYtbo0ovSTqUMWvu8UX4guw20cGhl3UxbJYSdlaYpVS6sCJZcBg5glEbzpax6BnurbuWfA06tC8IURVFKx5Q_JnDnntoGo3XuJyDH2ald4i_njzqrp1ua02v_dwLvtkLnG_qO3c3l39Nex-HUJGxKnNwkUMdfcQLlDiG183UHo1rVZNV8VWNWvrvoaybhJ9cyf_HPfR_AvaOP8_rwy-LrS7g_0lOK6SvYi-sL_xruusu47NdvBov5A1JfEJk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+simulation+based+genetic+algorithm+for+chance+constraint+programming+problems+with+some+discrete+random+variables&rft.jtitle=International+journal+of+computer+mathematics&rft.au=Jana%2C+R+K&rft.au=Biswal%2C+M+P&rft.date=2004-12-01&rft.issn=0020-7160&rft.volume=81&rft.issue=12&rft.spage=1455&rft.epage=1463&rft_id=info:doi/10.1080%2F0020716042000272584&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7160&client=summon