Stochastic simulation based genetic algorithm for chance constraint programming problems with some discrete random variables
A stochastic simulation based genetic algorithm (GA) is presented, in this paper, for solving chance constraint programming problems in which the random variables follow some discrete distributions. The feasibility of the chance constraints is checked by stochastic simulation. In general, the feasib...
Gespeichert in:
| Veröffentlicht in: | International journal of computer mathematics Jg. 81; H. 12; S. 1455 - 1463 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Taylor & Francis
01.12.2004
|
| Schlagworte: | |
| ISSN: | 0020-7160, 1029-0265 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | A stochastic simulation based genetic algorithm (GA) is presented, in this paper, for solving chance constraint programming problems in which the random variables follow some discrete distributions. The feasibility of the chance constraints is checked by stochastic simulation. In general, the feasible region associate with such problems is non-convex. Therefore, GA is used to obtain the optimal solution. In the proposed method, the stochastic model is directly used without finding the deterministic equivalent of it. A numerical example is presented to prove the efficiency of the proposed method.
E-mail: rabin@maths.iitkgp.ernet.in |
|---|---|
| Bibliographie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0020-7160 1029-0265 |
| DOI: | 10.1080/0020716042000272584 |