Data-driven design exploration method using conditional variational autoencoder for airfoil design

An objective of mechanical design is to obtain a shape that satisfies specific requirements. In the present work, we achieve this goal using a conditional variational autoencoder (CVAE). The method enables us to analyze the relationship between aerodynamic performance and the shape of aerodynamic pa...

Full description

Saved in:
Bibliographic Details
Published in:Structural and multidisciplinary optimization Vol. 64; no. 2; pp. 613 - 624
Main Authors: Yonekura, Kazuo, Suzuki, Katsuyuki
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2021
Springer Nature B.V
Subjects:
ISSN:1615-147X, 1615-1488
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract An objective of mechanical design is to obtain a shape that satisfies specific requirements. In the present work, we achieve this goal using a conditional variational autoencoder (CVAE). The method enables us to analyze the relationship between aerodynamic performance and the shape of aerodynamic parts, and to explore new designs for the parts. In the CVAE model, a shape is fed as an input and the corresponding aerodynamic performance index is fed as a continuous label. Then, shapes are generated by specifying the continuous label and latent vector. When CVAE is applied to mechanical design, it is desired to draw shapes that reproduce the specified aerodynamic performance. In ordinal CVAE, the model is trained to minimize reconstruction loss and latent loss, and it is usually optimized considering the sum of these losses. However, the present study shows that the optimal network is not always optimal in terms of reproducing the aerodynamic performance. The proposed method is verified using two numerical examples: a two-dimensional (2D) airfoil and a turbine blade. In the airfoil example, we demonstrate the effects of latent dimension, and in the turbine design example, we demonstrate that the proposed method can be applied to a real turbine design problem and reduce the design time.
AbstractList An objective of mechanical design is to obtain a shape that satisfies specific requirements. In the present work, we achieve this goal using a conditional variational autoencoder (CVAE). The method enables us to analyze the relationship between aerodynamic performance and the shape of aerodynamic parts, and to explore new designs for the parts. In the CVAE model, a shape is fed as an input and the corresponding aerodynamic performance index is fed as a continuous label. Then, shapes are generated by specifying the continuous label and latent vector. When CVAE is applied to mechanical design, it is desired to draw shapes that reproduce the specified aerodynamic performance. In ordinal CVAE, the model is trained to minimize reconstruction loss and latent loss, and it is usually optimized considering the sum of these losses. However, the present study shows that the optimal network is not always optimal in terms of reproducing the aerodynamic performance. The proposed method is verified using two numerical examples: a two-dimensional (2D) airfoil and a turbine blade. In the airfoil example, we demonstrate the effects of latent dimension, and in the turbine design example, we demonstrate that the proposed method can be applied to a real turbine design problem and reduce the design time.
Author Yonekura, Kazuo
Suzuki, Katsuyuki
Author_xml – sequence: 1
  givenname: Kazuo
  orcidid: 0000-0002-1955-069X
  surname: Yonekura
  fullname: Yonekura, Kazuo
  email: yonekura@struct.t.u-tokyo.ac.jp
  organization: The University of Tokyo, IHI Corporation
– sequence: 2
  givenname: Katsuyuki
  surname: Suzuki
  fullname: Suzuki, Katsuyuki
  organization: The University of Tokyo
BookMark eNp9kEtLAzEQx4NUsK1-AU8Bz6uT3c1u9ij1CQUvCt5CNo-ask1qki367d0-UPDQwzwY_r9h5j9BI-edRuiSwDUBqG8iAKEsg5wMweiQT9CYVIRmpGRs9NvX72doEuMSABiUzRi1dyKJTAW70Q4rHe3CYf217nwQyXqHVzp9eIX7aN0CS--U3Y5FhzciWHHoRZ-8dtIrHbDxAQsbjLfdYd85OjWii_riUKfo7eH-dfaUzV8en2e380wWjKZM5QSkLIVo2oZRDbJtmwZKQRWAqSpSF4YwpWVDWAG5UqSipgZDQJSqrlReTNHVfu86-M9ex8SXvg_DfZHnlDaE0rpig4rtVTL4GIM2XNq0eyQFYTtOgG8d5XtH-eAo3znKYUDzf-g62JUI38ehYg_FQewWOvxddYT6Ab_ljFE
CitedBy_id crossref_primary_10_3390_computation12110227
crossref_primary_10_1016_j_engappai_2022_105697
crossref_primary_10_3390_ai6060129
crossref_primary_10_3390_ai5040102
crossref_primary_10_1016_j_engappai_2021_104560
crossref_primary_10_1016_j_neunet_2024_106251
crossref_primary_10_1007_s00158_022_03253_6
crossref_primary_10_1007_s12273_023_1083_4
crossref_primary_10_1016_j_taml_2025_100591
crossref_primary_10_3390_aerospace12050389
crossref_primary_10_1080_19942060_2024_2384465
crossref_primary_10_1007_s00158_022_03290_1
crossref_primary_10_3390_app14093564
crossref_primary_10_1016_j_eswa_2023_119513
crossref_primary_10_1016_j_paerosci_2024_101007
crossref_primary_10_1016_j_renene_2024_120115
crossref_primary_10_1016_j_ins_2023_119066
crossref_primary_10_1007_s44163_023_00089_x
crossref_primary_10_1016_j_cad_2022_103327
crossref_primary_10_1016_j_cma_2024_116746
crossref_primary_10_1093_jcde_qwaf002
crossref_primary_10_1093_jcde_qwac140
crossref_primary_10_1016_j_engappai_2023_106413
crossref_primary_10_1016_j_cma_2025_117972
crossref_primary_10_1007_s00366_023_01789_9
crossref_primary_10_1115_1_4069199
crossref_primary_10_1007_s00158_022_03369_9
crossref_primary_10_1007_s00158_025_04111_x
crossref_primary_10_2514_1_J061673
crossref_primary_10_1016_j_bprint_2024_e00331
crossref_primary_10_1016_j_compbiomed_2022_106289
crossref_primary_10_1016_j_rineng_2025_106181
crossref_primary_10_1016_j_cma_2025_117848
crossref_primary_10_1109_TAES_2023_3276735
crossref_primary_10_1016_j_paerosci_2022_100849
Cites_doi 10.1115/1.4001005
10.1007/s00158-009-0459-0
10.2514/1.2159
10.1115/1.1467599
10.1007/s00158-016-1472-8
10.1080/174159795088027593
10.1007/978-3-642-23783-6_41
10.1007/s00158-014-1123-x
10.1007/978-3-642-58106-9
10.1145/3178876.3185996
10.1126/science.1127647
10.1115/85-GT-6
10.1016/j.cma.2019.112732
10.1145/3292500.3330701
10.1007/s00158-018-2101-5
10.1016/j.cma.2020.113357
10.1080/17445302.2019.1606877
10.2514/3.11276
10.1007/s00158-019-02276-w
10.1016/j.cma.2019.112737
10.1590/S1678-58782007000400003
10.1007/s00158-019-02424-2
10.1007/978-3-642-84010-4_1
10.1080/174159794088027573
10.1115/GT2014-27239
10.1007/s00158-019-02222-w
10.1115/1.1881697
10.1115/1.4028273
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00158-021-02851-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Collection (ProQuest)
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1615-1488
EndPage 624
ExternalDocumentID 10_1007_s00158_021_02851_0
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
2.D
203
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
_50
~02
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c385t-d210cc4aa9b985e0cbb9904a5d00f66173f18dec918302dd165f70f10a4d76d23
IEDL.DBID RSV
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000671914300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1615-147X
IngestDate Wed Nov 05 00:40:26 EST 2025
Sat Nov 29 02:50:17 EST 2025
Tue Nov 18 22:38:29 EST 2025
Fri Feb 21 02:47:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Variational autoencoder
Design exploration
Airfoil design
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-d210cc4aa9b985e0cbb9904a5d00f66173f18dec918302dd165f70f10a4d76d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1955-069X
PQID 2559155768
PQPubID 2043658
PageCount 12
ParticipantIDs proquest_journals_2559155768
crossref_citationtrail_10_1007_s00158_021_02851_0
crossref_primary_10_1007_s00158_021_02851_0
springer_journals_10_1007_s00158_021_02851_0
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Structural and multidisciplinary optimization
PublicationTitleAbbrev Struct Multidisc Optim
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References BonaiutiDZangenehMAartojarviRErikssonJParametric design of a waterjet pump by means of inverse design, CFD calculations and experimental analysesJ Fluids Eng2010132303110410.1115/1.4001005
Raifai S, Vincent P, Muller X, Glorot X, Bengio Y (2011) Contractive auto-encoders: explicit invariance during feature extraction. In: Proceedings of the 28th international conference on machine learning (ICML)
LeeIChoiKKGorsickDSystem reliability-based design optimization using the MPP-based dimension reduction methodStruct Multidiscipl Optim201041682383910.1007/s00158-009-0459-0
Nita K, Okita Y, Nakamata C, Kubo S, Yonekura K, Watanabe O (2014) Film cooling hole shape optimization using proper orthogonal decomposition. In: ASME Turbo expo 2014: turbine technical conference and exposition, pp GT2014–27239
BrownNCMuellerCTDesign variable analysis and generation for performance-based parametric modeling in architectureInt J Archit Comput20191713652
Tolstikhin I, Bousquet O, Gelly S (2018) Wasserstein auto-encoders. In: The International Conference on Learning Representations (ICLR)
Zhengming W (1985) Inverse design calculations for transonic cascades. In Turbo Expo: Power for Land, Sea, and Air, pp 85-GT-6
PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: machine learning in PythonJ Mach Learn Res2011122825283028543481280.68189
YonekuraKHattoriHFramework for design optimization using deep reinforcement learningStruct Multidiscip Optim20196041709171310.1007/s00158-019-02276-w
ImaizumiMFukumizuKDeep neural networks learn non-smooth functions effectivelyJ Mach Learn Res201989869878
YuYHurTJungJJangIGDeep learning for determining a near-optimal topological design without any iterationStruct Multidiscip Optim201959378779910.1007/s00158-018-2101-5
van den Oord A, Vinyals O, Kavukcuoglu K (2017) Neural discrete representation learning. In: Advances in neural information processing systems, vol. 30, pp 6306–6315
Akiba T, Sano S, Yanase T, Ohta T, Koyama M (2019) Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining, pp 2623–2631
GaggeroSVernengoGVillaDBonfiglioLA reduced order approach for optimal design of efficient marine propellersShips Offshore Struc202015231932810.1080/17445302.2019.1606877
NarducciRGrossmanBHaftkaRTSensitivity algorithms for an inverse design problem involving a shock waveInverse Probl Eng199521498310.1080/174159795088027593
CaoSPengGYuZHydrodynamic design of rotodynamic pump impeller for multiphase pumping by combined approach of inverse design and CFD analysisJ Fluids Eng2005172233033810.1115/1.1881697
PetrucciDRFilhoNMA fast algorithm for inverse airfoil design using a transpiration model and an improved vortex panel methodJ Braz Soc Mech Sci Eng200729435436510.1590/S1678-58782007000400003
YonekuraKKannoYErratum to: A flow topology optimization method for steady state flow using transient information of flow field solved by lattice Boltzmann methodStruct Multidiscip Optim2016541193195350815610.1007/s00158-016-1472-8
KennonSRDulikravichGSInverse design of coolant flow passage shapes with partially fixed internal geometriesInt J Turbo Jet-Engines198531320
Kingma DP, Welling M (2013) Auto-encoding variational bayes. In: The International Conference on Learning Representation (ICLR)
YonekuraKWatanabeOA shape parameterization method using principal component analysis in application to shape optimizationJ Mech Des20141361212140110.1115/1.4028273
Bui-ThanhTDamodaranMWillcoxKAerodynamic data reconstruction and inverse design using proper orthogonal decompositionAIAA J20044281505151610.2514/1.2159
SokolowskiJZolesioJPIntroduction to shape optimization1992BerlinSpringer10.1007/978-3-642-58106-9
TanRKZhangNLYeWA deep learning-based method for the design of microstructural materialsStruct Multidiscip Optim202061414171438408107810.1007/s00158-019-02424-2
LiXNingSLiuZYanZLuoCZhuangZDesigning phononic crystal with anticipated band gap through a deep learning based data-driven methodComput Methods Appl Mech Eng2020361112737405500810.1016/j.cma.2019.112737
Drela M (1989) Xfoil: An analysis and design system for low Reynolds number airfoils. In: Mueller TJ (ed) Low Reynolds number aerodynamics, lecture notes in engineering, vol 54. Springer, Berlin, pp 1–12
SunLGaoHPanSWangJXSurrogate modeling for fluid flows based on physics-constrained deep learning without simulation dataComput Methods Appl Mech Eng2020361112732405500410.1016/j.cma.2019.112732
Pu Y, Gan Z, Henao R, Yuan X, Li C, Stevens A, Carin L (2016) Variational autoencoder for deep learning of images, labels and captions. In: Advances in neural information processing systems 29, pp 2352–2360
Davidson TR, Falorsi L, de Cao N, Kipf T, Tomczak JM (2018) Hyperspherical variational auto-encoders. In: 34th conference on uncertainty in artificial Intelligence (UAI-18)
Nita K, Okita Y, Nakamata C, Kubo S, Yonekura K, Watanabe O (2017) Turbine blade. US Patent 9,759,069
Sohn K, Lee H, Yan X (2015) Learning structured output representation using deep conditional generative models. In: Advances in neural information processing systems 28, pp 3483–3491
Liu MY, Breuel T, Kautz J (2017) Unsupervised image-to-image translation networks. In: Advances in neural information processing systems 30. pp 700–708
WangCYan XuLSheng FanJA general deep learning framework for history-dependent response prediction based on ua-seq2seq modelComput Methods Appl Mech Eng2020372113357413832410.1016/j.cma.2020.113357
Xu H, Chen W, Zhao N, Li Z, Bu J, Li Z, Liu Y, Zhao Y, Pei D, Feng Y, Chen J, Wang Z, Qiao H (2018) Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in web applications. In: Proceedings of the 2018 world wide web conference, pp 187–196
SeligMSMaughmerMDGeneralized multipont inverse airfoil designAIAA J199230112618262510.2514/3.11276
TortorelliDAMichalerisPDesign sensitivity analysis: overview and reviewInverse Probl Eng1994117110510.1080/174159794088027573
ZhangYYeWDeep learning-based inverse method for layout designStruct Multidiscip Optim2019602527536397752510.1007/s00158-019-02222-w
BendsøeMPSigmundOTopology optimization: theory, methods and applications20032nd ednBerlinSpringer1059.74001
GotoAZangenehMHydrodynamic design of pump diffuser using inverse design method and CFDJ Fluids Eng2002124231932810.1115/1.1467599
HintonGESalakhutdinovRRReducing the dimensionality of data with neural networksScience20063135786504507224250910.1126/science.1127647
Abbot IH, von Doenhoff AE, Stivers L Jr (1945) Summary of airfoil data. NACA-TR-824
YonekuraKKannoYA flow topology optimization method for steady state flow using transient information of flow field solved by lattice Boltzmann methodStruct Multidiscip Optim2015511159172331876810.1007/s00158-014-1123-x
DorneyDJLakeJPKingPAshpisDExperimental and numerical investigation of losses in low-pressure turbine blade rowsInt J Turbo Jet Eng2000174241253
Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. Software available from tensorflow.org
M Imaizumi (2851_CR14) 2019; 89
S Gaggero (2851_CR11) 2020; 15
L Sun (2851_CR31) 2020; 361
DA Tortorelli (2851_CR35) 1994; 1
K Yonekura (2851_CR40) 2016; 54
D Bonaiuti (2851_CR5) 2010; 132
Y Yu (2851_CR42) 2019; 59
DJ Dorney (2851_CR9) 2000; 17
2851_CR10
2851_CR34
X Li (2851_CR18) 2020; 361
2851_CR16
2851_CR37
2851_CR19
GE Hinton (2851_CR13) 2006; 313
Y Zhang (2851_CR43) 2019; 60
DR Petrucci (2851_CR25) 2007; 29
A Goto (2851_CR12) 2002; 124
2851_CR3
MP Bendsøe (2851_CR4) 2003
2851_CR2
2851_CR1
K Yonekura (2851_CR38) 2019; 60
I Lee (2851_CR17) 2010; 41
2851_CR21
2851_CR8
2851_CR23
2851_CR22
2851_CR44
MS Selig (2851_CR28) 1992; 30
SR Kennon (2851_CR15) 1985; 3
2851_CR27
2851_CR26
RK Tan (2851_CR33) 2020; 61
2851_CR29
K Yonekura (2851_CR41) 2014; 136
R Narducci (2851_CR20) 1995; 2
F Pedregosa (2851_CR24) 2011; 12
NC Brown (2851_CR6) 2019; 17
J Sokolowski (2851_CR30) 1992
C Wang (2851_CR36) 2020; 372
T Bui-Thanh (2851_CR32) 2004; 42
K Yonekura (2851_CR39) 2015; 51
S Cao (2851_CR7) 2005; 172
References_xml – reference: YuYHurTJungJJangIGDeep learning for determining a near-optimal topological design without any iterationStruct Multidiscip Optim201959378779910.1007/s00158-018-2101-5
– reference: Kingma DP, Welling M (2013) Auto-encoding variational bayes. In: The International Conference on Learning Representation (ICLR)
– reference: BendsøeMPSigmundOTopology optimization: theory, methods and applications20032nd ednBerlinSpringer1059.74001
– reference: CaoSPengGYuZHydrodynamic design of rotodynamic pump impeller for multiphase pumping by combined approach of inverse design and CFD analysisJ Fluids Eng2005172233033810.1115/1.1881697
– reference: Liu MY, Breuel T, Kautz J (2017) Unsupervised image-to-image translation networks. In: Advances in neural information processing systems 30. pp 700–708
– reference: DorneyDJLakeJPKingPAshpisDExperimental and numerical investigation of losses in low-pressure turbine blade rowsInt J Turbo Jet Eng2000174241253
– reference: Zhengming W (1985) Inverse design calculations for transonic cascades. In Turbo Expo: Power for Land, Sea, and Air, pp 85-GT-6
– reference: Akiba T, Sano S, Yanase T, Ohta T, Koyama M (2019) Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining, pp 2623–2631
– reference: Drela M (1989) Xfoil: An analysis and design system for low Reynolds number airfoils. In: Mueller TJ (ed) Low Reynolds number aerodynamics, lecture notes in engineering, vol 54. Springer, Berlin, pp 1–12
– reference: GotoAZangenehMHydrodynamic design of pump diffuser using inverse design method and CFDJ Fluids Eng2002124231932810.1115/1.1467599
– reference: PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: machine learning in PythonJ Mach Learn Res2011122825283028543481280.68189
– reference: SeligMSMaughmerMDGeneralized multipont inverse airfoil designAIAA J199230112618262510.2514/3.11276
– reference: KennonSRDulikravichGSInverse design of coolant flow passage shapes with partially fixed internal geometriesInt J Turbo Jet-Engines198531320
– reference: LiXNingSLiuZYanZLuoCZhuangZDesigning phononic crystal with anticipated band gap through a deep learning based data-driven methodComput Methods Appl Mech Eng2020361112737405500810.1016/j.cma.2019.112737
– reference: YonekuraKKannoYA flow topology optimization method for steady state flow using transient information of flow field solved by lattice Boltzmann methodStruct Multidiscip Optim2015511159172331876810.1007/s00158-014-1123-x
– reference: Davidson TR, Falorsi L, de Cao N, Kipf T, Tomczak JM (2018) Hyperspherical variational auto-encoders. In: 34th conference on uncertainty in artificial Intelligence (UAI-18)
– reference: Nita K, Okita Y, Nakamata C, Kubo S, Yonekura K, Watanabe O (2014) Film cooling hole shape optimization using proper orthogonal decomposition. In: ASME Turbo expo 2014: turbine technical conference and exposition, pp GT2014–27239
– reference: BrownNCMuellerCTDesign variable analysis and generation for performance-based parametric modeling in architectureInt J Archit Comput20191713652
– reference: BonaiutiDZangenehMAartojarviRErikssonJParametric design of a waterjet pump by means of inverse design, CFD calculations and experimental analysesJ Fluids Eng2010132303110410.1115/1.4001005
– reference: Raifai S, Vincent P, Muller X, Glorot X, Bengio Y (2011) Contractive auto-encoders: explicit invariance during feature extraction. In: Proceedings of the 28th international conference on machine learning (ICML)
– reference: YonekuraKKannoYErratum to: A flow topology optimization method for steady state flow using transient information of flow field solved by lattice Boltzmann methodStruct Multidiscip Optim2016541193195350815610.1007/s00158-016-1472-8
– reference: SunLGaoHPanSWangJXSurrogate modeling for fluid flows based on physics-constrained deep learning without simulation dataComput Methods Appl Mech Eng2020361112732405500410.1016/j.cma.2019.112732
– reference: HintonGESalakhutdinovRRReducing the dimensionality of data with neural networksScience20063135786504507224250910.1126/science.1127647
– reference: Nita K, Okita Y, Nakamata C, Kubo S, Yonekura K, Watanabe O (2017) Turbine blade. US Patent 9,759,069
– reference: LeeIChoiKKGorsickDSystem reliability-based design optimization using the MPP-based dimension reduction methodStruct Multidiscipl Optim201041682383910.1007/s00158-009-0459-0
– reference: YonekuraKHattoriHFramework for design optimization using deep reinforcement learningStruct Multidiscip Optim20196041709171310.1007/s00158-019-02276-w
– reference: PetrucciDRFilhoNMA fast algorithm for inverse airfoil design using a transpiration model and an improved vortex panel methodJ Braz Soc Mech Sci Eng200729435436510.1590/S1678-58782007000400003
– reference: TortorelliDAMichalerisPDesign sensitivity analysis: overview and reviewInverse Probl Eng1994117110510.1080/174159794088027573
– reference: NarducciRGrossmanBHaftkaRTSensitivity algorithms for an inverse design problem involving a shock waveInverse Probl Eng199521498310.1080/174159795088027593
– reference: WangCYan XuLSheng FanJA general deep learning framework for history-dependent response prediction based on ua-seq2seq modelComput Methods Appl Mech Eng2020372113357413832410.1016/j.cma.2020.113357
– reference: Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. Software available from tensorflow.org
– reference: ImaizumiMFukumizuKDeep neural networks learn non-smooth functions effectivelyJ Mach Learn Res201989869878
– reference: Sohn K, Lee H, Yan X (2015) Learning structured output representation using deep conditional generative models. In: Advances in neural information processing systems 28, pp 3483–3491
– reference: TanRKZhangNLYeWA deep learning-based method for the design of microstructural materialsStruct Multidiscip Optim202061414171438408107810.1007/s00158-019-02424-2
– reference: Abbot IH, von Doenhoff AE, Stivers L Jr (1945) Summary of airfoil data. NACA-TR-824
– reference: SokolowskiJZolesioJPIntroduction to shape optimization1992BerlinSpringer10.1007/978-3-642-58106-9
– reference: Xu H, Chen W, Zhao N, Li Z, Bu J, Li Z, Liu Y, Zhao Y, Pei D, Feng Y, Chen J, Wang Z, Qiao H (2018) Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in web applications. In: Proceedings of the 2018 world wide web conference, pp 187–196
– reference: YonekuraKWatanabeOA shape parameterization method using principal component analysis in application to shape optimizationJ Mech Des20141361212140110.1115/1.4028273
– reference: Bui-ThanhTDamodaranMWillcoxKAerodynamic data reconstruction and inverse design using proper orthogonal decompositionAIAA J20044281505151610.2514/1.2159
– reference: Pu Y, Gan Z, Henao R, Yuan X, Li C, Stevens A, Carin L (2016) Variational autoencoder for deep learning of images, labels and captions. In: Advances in neural information processing systems 29, pp 2352–2360
– reference: Tolstikhin I, Bousquet O, Gelly S (2018) Wasserstein auto-encoders. In: The International Conference on Learning Representations (ICLR)
– reference: ZhangYYeWDeep learning-based inverse method for layout designStruct Multidiscip Optim2019602527536397752510.1007/s00158-019-02222-w
– reference: GaggeroSVernengoGVillaDBonfiglioLA reduced order approach for optimal design of efficient marine propellersShips Offshore Struc202015231932810.1080/17445302.2019.1606877
– reference: van den Oord A, Vinyals O, Kavukcuoglu K (2017) Neural discrete representation learning. In: Advances in neural information processing systems, vol. 30, pp 6306–6315
– volume: 132
  start-page: 031104
  issue: 3
  year: 2010
  ident: 2851_CR5
  publication-title: J Fluids Eng
  doi: 10.1115/1.4001005
– volume: 41
  start-page: 823
  issue: 6
  year: 2010
  ident: 2851_CR17
  publication-title: Struct Multidiscipl Optim
  doi: 10.1007/s00158-009-0459-0
– volume: 42
  start-page: 1505
  issue: 8
  year: 2004
  ident: 2851_CR32
  publication-title: AIAA J
  doi: 10.2514/1.2159
– ident: 2851_CR29
– volume: 124
  start-page: 319
  issue: 2
  year: 2002
  ident: 2851_CR12
  publication-title: J Fluids Eng
  doi: 10.1115/1.1467599
– ident: 2851_CR23
– ident: 2851_CR2
– ident: 2851_CR8
– volume: 89
  start-page: 869
  year: 2019
  ident: 2851_CR14
  publication-title: J Mach Learn Res
– volume: 54
  start-page: 193
  issue: 1
  year: 2016
  ident: 2851_CR40
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-016-1472-8
– volume: 2
  start-page: 49
  issue: 1
  year: 1995
  ident: 2851_CR20
  publication-title: Inverse Probl Eng
  doi: 10.1080/174159795088027593
– volume: 17
  start-page: 241
  issue: 4
  year: 2000
  ident: 2851_CR9
  publication-title: Int J Turbo Jet Eng
– ident: 2851_CR16
– ident: 2851_CR27
  doi: 10.1007/978-3-642-23783-6_41
– volume: 51
  start-page: 159
  issue: 1
  year: 2015
  ident: 2851_CR39
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-014-1123-x
– volume-title: Introduction to shape optimization
  year: 1992
  ident: 2851_CR30
  doi: 10.1007/978-3-642-58106-9
– ident: 2851_CR37
  doi: 10.1145/3178876.3185996
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 2851_CR13
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: 2851_CR44
  doi: 10.1115/85-GT-6
– volume: 361
  start-page: 112732
  year: 2020
  ident: 2851_CR31
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2019.112732
– ident: 2851_CR3
  doi: 10.1145/3292500.3330701
– volume: 59
  start-page: 787
  issue: 3
  year: 2019
  ident: 2851_CR42
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-018-2101-5
– volume: 372
  start-page: 113357
  year: 2020
  ident: 2851_CR36
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113357
– volume: 15
  start-page: 319
  issue: 2
  year: 2020
  ident: 2851_CR11
  publication-title: Ships Offshore Struc
  doi: 10.1080/17445302.2019.1606877
– ident: 2851_CR1
– ident: 2851_CR26
– volume: 30
  start-page: 2618
  issue: 11
  year: 1992
  ident: 2851_CR28
  publication-title: AIAA J
  doi: 10.2514/3.11276
– volume: 60
  start-page: 1709
  issue: 4
  year: 2019
  ident: 2851_CR38
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-019-02276-w
– volume: 361
  start-page: 112737
  year: 2020
  ident: 2851_CR18
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2019.112737
– volume: 29
  start-page: 354
  issue: 4
  year: 2007
  ident: 2851_CR25
  publication-title: J Braz Soc Mech Sci Eng
  doi: 10.1590/S1678-58782007000400003
– volume: 61
  start-page: 1417
  issue: 4
  year: 2020
  ident: 2851_CR33
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-019-02424-2
– ident: 2851_CR22
– ident: 2851_CR10
  doi: 10.1007/978-3-642-84010-4_1
– volume: 17
  start-page: 36
  issue: 1
  year: 2019
  ident: 2851_CR6
  publication-title: Int J Archit Comput
– volume: 1
  start-page: 71
  issue: 1
  year: 1994
  ident: 2851_CR35
  publication-title: Inverse Probl Eng
  doi: 10.1080/174159794088027573
– ident: 2851_CR19
– ident: 2851_CR34
– ident: 2851_CR21
  doi: 10.1115/GT2014-27239
– volume: 12
  start-page: 2825
  year: 2011
  ident: 2851_CR24
  publication-title: J Mach Learn Res
– volume: 60
  start-page: 527
  issue: 2
  year: 2019
  ident: 2851_CR43
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-019-02222-w
– volume: 172
  start-page: 330
  issue: 2
  year: 2005
  ident: 2851_CR7
  publication-title: J Fluids Eng
  doi: 10.1115/1.1881697
– volume: 3
  start-page: 13
  year: 1985
  ident: 2851_CR15
  publication-title: Int J Turbo Jet-Engines
– volume: 136
  start-page: 121401
  issue: 12
  year: 2014
  ident: 2851_CR41
  publication-title: J Mech Des
  doi: 10.1115/1.4028273
– volume-title: Topology optimization: theory, methods and applications
  year: 2003
  ident: 2851_CR4
SSID ssj0008049
Score 2.5847433
Snippet An objective of mechanical design is to obtain a shape that satisfies specific requirements. In the present work, we achieve this goal using a conditional...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 613
SubjectTerms Aerodynamics
Airfoils
Approximation
Computational Mathematics and Numerical Analysis
Deep learning
Design
Designers
Engineering
Engineering Design
Machine learning
Methods
Neural networks
Optimization
Performance indices
Research Paper
Theoretical and Applied Mechanics
Turbine blades
Turbines
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMMDAG_GWBzawcJq4sSfEoxVThRBI3SInZ6NKVVvSlN_P2XFbQKILS5bYpyh3vu_z-XxHyGUCoERuORPcpCxR1jKpWgJtmWuIcYmkMvfNJtJuV_Z66jkE3CYhrXLmE72jhlHhYuQ3jvoi9iE7vh1_MNc1yp2uhhYaq2TNVSpLGmTtvt19fpn7YlkTYEdrWJSkvXBtxl-ec3RBMpeigBgr8PkTmhZ889cRqUeezvZ_v3mHbAXOSe9qI9klK2a4Rza_VSLcJ_mjrjSD0vk-Cj6rgxqfnuc1R-tG09Rlyb9T3EJDv44h0k_ca4d4ItXTauTqYoIpKXJhqvulHfUHQd4Beeu0Xx-eWGi_wIpYiooB7gaLItFa5UoKw4s8R-hKtADOLcJ6GttIgilU5GqIAUQtYVNuI64TSFvQjA9JYzgamiNCVZyo1FoDTY1o2JJS5IDgzJsWB0aaH5No9uezItQmdy0yBtm8qrLXVobayry2MpxzNZ8zritzLB19NlNRFlbpJFvo55hcz5S8eP23tJPl0k7JRtPblcsTPCONqpyac7JefFb9SXkRbPQL-qjtXg
  priority: 102
  providerName: ProQuest
Title Data-driven design exploration method using conditional variational autoencoder for airfoil design
URI https://link.springer.com/article/10.1007/s00158-021-02851-0
https://www.proquest.com/docview/2559155768
Volume 64
WOSCitedRecordID wos000671914300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: M7S
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: RSV
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagZYCBN6JQKg9sYMl5uLFHXhVTVbWAukVObKNIVYvStL-fs5O0gAAJliyxLevO9ndnf3eH0GWolGCJoYRRHZFQGEO46DJYy1SqALZIxBNXbCLq9_l4LAZVUNi8ZrvXT5LupF4Fu1l458RSCgATGXw3URPgjtvtOBy9rM5fXhq91pQhXhiNq1CZ78f4DEdrG_PLs6hDm97e_-a5j3Yr6xLflMvhAG3o6SHa-ZBz8Agl97KQROX2lMPK8TewdkQ8pyNclpTGlg__isFZVll5W4iX4FVXN4dYLoqZzYCpdI7B6sUyy80sm1TjHaPn3sPT3SOpCi2QNOCsIAr8vjQNpRSJ4EzTNEkApELJFKUGADwKjMeVToVns4Up5XWZiajxqAxV1FV-cIIa09lUnyIsglBExmjlS8C9LucsUQDD1DfQ0JO0hbxa3nFaZSG3xTAm8Sp_spNfDPKLnfxi6HO16vNW5uD4tXW7VmNc7cd5bB0nsJxgQi10Xatt_fvn0c7-1vwcbftO85Yh2EaNIl_oC7SVLotsnndQ8_ahPxh2LMF01HGr9h0u9ORa
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL1CFKntotAHgpa2XtBVa9XJxBN7gRAqRSDoCKlUml3q-IFGQhOaCVT9qX5j73WSmVIJdiy6ySa2pcTH5x7b9wGwnTmnZRkEl8LnPNMhcKWHErEsjBvgEslVGYtN5KORGo_16RL87mNhyK2y58RI1K6ydEb-kaQv2j5Ux7uXPzhVjaLb1b6ERguLY__rJ27ZZjtH-zi_79L04PPZp0PeVRXgdqBkwx1ucqzNjNGlVtILW5bIyJmRToiA1iofhEQ5b3VCqbGcS4Yy5CIkwmQuHzpKdICU_yAj9o-ugl_nzK9auU0iiidZPu6CdGKoHokTxckhAi26xOdNQ7hQt_9cyEY7d7D6v_2hNXjSKWq21y6Bp7Dkp8_g8V95Fp9DuW8aw11NzM5c9FlhPjofRlyytow2oxiAc2YrusWPJ6Ts2tST7rSUmaumoqyfztcMlT4zkzpUk4tuvBfw7V4-ch2Wp9XUbwDTg0znIXiXGrT1Q6Vk6VB6iDRgw8SITUj6mS5sl3mdCoBcFPOc0REdBaKjiOgosM_7eZ_LNu_Ina23ekgUHQfNigUeNuFDD6rF69tHe3n3aG_h4eHZl5Pi5Gh0_AoepRHT5BG5BctNfeVfw4q9biaz-k1cHQy-3zfY_gBW-UiT
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI54CcGBN-IxIAduEC1dmzU5ImACgSYkHtqtSusETZq2qev2-3HSbjwESIhLL03SynHy2Yn9mZDTCECJ1HImuIlZpKxlUjUF6jLXEOISiWXqi03E7bbsdNTDhyx-H-0-vZIscxocS1O_qA_B1meJbw7qJXPhBYiPAp_zZDFyRYOcv_74MtuLZWkAO7OGBVHcqdJmvh_jMzS925tfrkg98rTW___PG2StsjrpRakmm2TO9LfI6gcuwm2SXulCM8jd7kfBx3VQ4wP0_NzRstQ0dXHyrxS_DN3yFJFO0NuuThSpHhcDx4wJJqdoDVPdze2g26vG2yHPreunyxtWFWBgWShFwQD9wSyLtFapksLwLE0RvCItgHOLwB6HNpBgMhU4FjGAoClszG3AdQRxExrhLlnoD_pmj1AVRiq21kBDIx42pRQpIDzzhsWGgeb7JJjKPskqdnJXJKOXzHiVvfwSlF_i5Zdgn7NZn2HJzfFr69p0SpNqnY4S51ChRYU_tE_Op1P4_vrn0Q7-1vyELD9ctZL72_bdIVlpeCVwQYQ1slDkY3NElrJJ0R3lx1593wA5e-2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+design+exploration+method+using+conditional+variational+autoencoder+for+airfoil+design&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Yonekura%2C+Kazuo&rft.au=Suzuki%2C+Katsuyuki&rft.date=2021-08-01&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=64&rft.issue=2&rft.spage=613&rft.epage=624&rft_id=info:doi/10.1007%2Fs00158-021-02851-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00158_021_02851_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon