Feature-based enhanced boosting algorithm for depression detection

Depression is a rapidly increasing mental disorder that can interfere with a person’s ability and negatively affect functions in various aspects of life. Fortunately, machine learning and deep learning techniques have demonstrated excellent results in the early detection of depression using social m...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:PeerJ. Computer science Ročník 11; s. e2981
Hlavní autori: Rohei, Muhammad Sadiq, Varathan, Kasturi Dewi, Palaiahnakote, Shivakumara, Anuar, Nor Badrul
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States PeerJ. Ltd 29.07.2025
PeerJ Inc
Predmet:
ISSN:2376-5992, 2376-5992
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Depression is a rapidly increasing mental disorder that can interfere with a person’s ability and negatively affect functions in various aspects of life. Fortunately, machine learning and deep learning techniques have demonstrated excellent results in the early detection of depression using social media data. Most recently, researchers have utilized boosting algorithms including pre-defined boosting algorithms or built their own boosting algorithm for the detection of depression. However, both types of boosting algorithms struggle with the analysis of complex feature sets, the enhancement of weak learners, and the handling of larger datasets. Thus, this study has developed a novel feature-based enhanced boosting algorithm (F-EBA). The proposed model covers two pipelines, the feature engineering pipeline which improves the quality of features by picking up the most relevant features while the classification pipeline uses an ensemble approach designed to boost/elevate the model’s performances. The experimental results highlighted that various parameter including WordVec and BERT embeddings, attention mechanisms, and feature elimination techniques, significantly contributed to the selection of the most relevant features. This approach resulted in generating an optimized feature set that augmented both the model’s accuracy and its interpretability. In addition, utilizing over 46 million records, the F-EBA model significantly enhanced the performance of weak learners through a weight maximization strategy, achieving an impressive accuracy rate of 95%. Moreover, the integration of an adversarial layer that employs defense mechanisms against synonymous text and sarcastic phrases within the datasets has further boosted the F-EBA model’s accuracy to approximately 97%, surpassing the results reported in prior studies. Moreover, the optimized feature sets derived from the F-EBA model make a substantial contribution to boosting the performance of baseline classifiers, marking a novel advancement in the field.
AbstractList Depression is a rapidly increasing mental disorder that can interfere with a person’s ability and negatively affect functions in various aspects of life. Fortunately, machine learning and deep learning techniques have demonstrated excellent results in the early detection of depression using social media data. Most recently, researchers have utilized boosting algorithms including pre-defined boosting algorithms or built their own boosting algorithm for the detection of depression. However, both types of boosting algorithms struggle with the analysis of complex feature sets, the enhancement of weak learners, and the handling of larger datasets. Thus, this study has developed a novel feature-based enhanced boosting algorithm (F-EBA). The proposed model covers two pipelines, the feature engineering pipeline which improves the quality of features by picking up the most relevant features while the classification pipeline uses an ensemble approach designed to boost/elevate the model’s performances. The experimental results highlighted that various parameter including WordVec and BERT embeddings, attention mechanisms, and feature elimination techniques, significantly contributed to the selection of the most relevant features. This approach resulted in generating an optimized feature set that augmented both the model’s accuracy and its interpretability. In addition, utilizing over 46 million records, the F-EBA model significantly enhanced the performance of weak learners through a weight maximization strategy, achieving an impressive accuracy rate of 95%. Moreover, the integration of an adversarial layer that employs defense mechanisms against synonymous text and sarcastic phrases within the datasets has further boosted the F-EBA model’s accuracy to approximately 97%, surpassing the results reported in prior studies. Moreover, the optimized feature sets derived from the F-EBA model make a substantial contribution to boosting the performance of baseline classifiers, marking a novel advancement in the field.
Depression is a rapidly increasing mental disorder that can interfere with a person's ability and negatively affect functions in various aspects of life. Fortunately, machine learning and deep learning techniques have demonstrated excellent results in the early detection of depression using social media data. Most recently, researchers have utilized boosting algorithms including pre-defined boosting algorithms or built their own boosting algorithm for the detection of depression. However, both types of boosting algorithms struggle with the analysis of complex feature sets, the enhancement of weak learners, and the handling of larger datasets. Thus, this study has developed a novel feature-based enhanced boosting algorithm (F-EBA). The proposed model covers two pipelines, the feature engineering pipeline which improves the quality of features by picking up the most relevant features while the classification pipeline uses an ensemble approach designed to boost/elevate the model's performances. The experimental results highlighted that various parameter including WordVec and BERT embeddings, attention mechanisms, and feature elimination techniques, significantly contributed to the selection of the most relevant features. This approach resulted in generating an optimized feature set that augmented both the model's accuracy and its interpretability. In addition, utilizing over 46million records, the F-EBA model significantly enhanced the performance of weak learners through a weight maximization strategy, achieving an impressive accuracy rate of 95%. Moreover, the integration of an adversarial layer that employs defense mechanisms against synonymous text and sarcastic phrases within the datasets has further boosted the F-EBA model's accuracy to approximately 97%, surpassing the results reported in prior studies. Moreover, the optimized feature sets derived from the F-EBA model make a substantial contribution to boosting the performance of baseline classifiers, marking a novel advancement in the field.
Depression is a rapidly increasing mental disorder that can interfere with a person's ability and negatively affect functions in various aspects of life. Fortunately, machine learning and deep learning techniques have demonstrated excellent results in the early detection of depression using social media data. Most recently, researchers have utilized boosting algorithms including pre-defined boosting algorithms or built their own boosting algorithm for the detection of depression. However, both types of boosting algorithms struggle with the analysis of complex feature sets, the enhancement of weak learners, and the handling of larger datasets. Thus, this study has developed a novel feature-based enhanced boosting algorithm (F-EBA). The proposed model covers two pipelines, the feature engineering pipeline which improves the quality of features by picking up the most relevant features while the classification pipeline uses an ensemble approach designed to boost/elevate the model's performances. The experimental results highlighted that various parameter including WordVec and BERT embeddings, attention mechanisms, and feature elimination techniques, significantly contributed to the selection of the most relevant features. This approach resulted in generating an optimized feature set that augmented both the model's accuracy and its interpretability. In addition, utilizing over 46 million records, the F-EBA model significantly enhanced the performance of weak learners through a weight maximization strategy, achieving an impressive accuracy rate of 95%. Moreover, the integration of an adversarial layer that employs defense mechanisms against synonymous text and sarcastic phrases within the datasets has further boosted the F-EBA model's accuracy to approximately 97%, surpassing the results reported in prior studies. Moreover, the optimized feature sets derived from the F-EBA model make a substantial contribution to boosting the performance of baseline classifiers, marking a novel advancement in the field.Depression is a rapidly increasing mental disorder that can interfere with a person's ability and negatively affect functions in various aspects of life. Fortunately, machine learning and deep learning techniques have demonstrated excellent results in the early detection of depression using social media data. Most recently, researchers have utilized boosting algorithms including pre-defined boosting algorithms or built their own boosting algorithm for the detection of depression. However, both types of boosting algorithms struggle with the analysis of complex feature sets, the enhancement of weak learners, and the handling of larger datasets. Thus, this study has developed a novel feature-based enhanced boosting algorithm (F-EBA). The proposed model covers two pipelines, the feature engineering pipeline which improves the quality of features by picking up the most relevant features while the classification pipeline uses an ensemble approach designed to boost/elevate the model's performances. The experimental results highlighted that various parameter including WordVec and BERT embeddings, attention mechanisms, and feature elimination techniques, significantly contributed to the selection of the most relevant features. This approach resulted in generating an optimized feature set that augmented both the model's accuracy and its interpretability. In addition, utilizing over 46 million records, the F-EBA model significantly enhanced the performance of weak learners through a weight maximization strategy, achieving an impressive accuracy rate of 95%. Moreover, the integration of an adversarial layer that employs defense mechanisms against synonymous text and sarcastic phrases within the datasets has further boosted the F-EBA model's accuracy to approximately 97%, surpassing the results reported in prior studies. Moreover, the optimized feature sets derived from the F-EBA model make a substantial contribution to boosting the performance of baseline classifiers, marking a novel advancement in the field.
ArticleNumber e2981
Audience Academic
Author Varathan, Kasturi Dewi
Anuar, Nor Badrul
Rohei, Muhammad Sadiq
Palaiahnakote, Shivakumara
Author_xml – sequence: 1
  givenname: Muhammad Sadiq
  surname: Rohei
  fullname: Rohei, Muhammad Sadiq
  organization: Department of Information Systems, Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur, Malaysia
– sequence: 2
  givenname: Kasturi Dewi
  orcidid: 0000-0003-3421-4501
  surname: Varathan
  fullname: Varathan, Kasturi Dewi
  organization: Department of Information Systems, Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur, Malaysia
– sequence: 3
  givenname: Shivakumara
  surname: Palaiahnakote
  fullname: Palaiahnakote, Shivakumara
  organization: School of Science, Engineering & Environment, University of Salford, Salford, Manchester, United Kingdom
– sequence: 4
  givenname: Nor Badrul
  orcidid: 0000-0003-4380-5303
  surname: Anuar
  fullname: Anuar, Nor Badrul
  organization: Department of Computer Systems & Technology, Faculty of Computer Science & Information Technology, Universiti Malaya, Kuala Lumpur, Malaysia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40989434$$D View this record in MEDLINE/PubMed
BookMark eNptkt9rFDEQx4NUbK199FUOfLEPe-bH_sg81tLqQUHQvockO9nm2N2cSRbqf2-uV4sHJoH5Mnzmm4SZt-RkDjMS8p7Rddex7vMOMW4rm9YcJHtFzrjo2qoB4Cf_6FNykdKWUsoaVha8Iac1BQm1qM_Il1vUeYlYGZ2wX-H8oGdbhAkhZT8PKz0OIfr8MK1ciKsedxFT8mEuMqPNRb0jr50eE148x3Nyf3tzf_2tuvv-dXN9dVdZIZtcWTCNtBIp1boVstO2x1b0EnsGnCG1HAztHJc9ciaMs0aImjeuRUCwIM7J5mDbB71Vu-gnHX-roL16SoQ4KB2ztyMqA5ZhV8uW0bqWjhrsrGuEA1sOpbJ4fTp47WL4tWDKavLJ4jjqGcOSlOCNkC0Fsb_24wEddHH2sws5arvH1ZWsoeUAQAu1_g9Vdo-Tt6Vpzpf8UcHlUUFhMj7mQS8pqc3PH8fsh-fXLmbC_uXvf7tYgOoA2BhSiuheEEbVflDU06Aom9R-UMQfXfOvRw
Cites_doi 10.1109/BigData52589.2021.9671482
10.48550/arXiv.2406.15362
10.1016/j.eswa.2022.119134
10.1016/j.procs.2016.06.095
10.1016/j.ins.2022.07.109
10.1145/3442536.3442553
10.1109/GCAT52182.2021.9587695
10.1016/j.jisa.2022.103227
10.1214/aos/1013203451
10.1109/ICAIS50930.2021.9395943
10.1109/TAFFC.2022.3145634
10.21817/indjcse/2022/v13i2/221302088
10.1109/ACCESS.2020.3029154
10.1023/A:1018054314350
10.1108/OIR-04-2021-0211
10.1016/j.compbiomed.2021.104499
10.48550/arXiv.2301.02317
10.1016/j.eswa.2021.115265
10.48550/arXiv.2205.14100
10.1109/TCSS.2022.3154442
10.1016/j.health.2023.100173
10.24963/ijcai.2018/223
10.1109/EDOCW52865.2021.00033
10.21203/rs.3.rs-322564/v1
10.3390/electronics12061302
10.25139/inform.v9i1.7559
10.1016/j.ipm.2022.103168
10.1016/j.procs.2023.01.141
10.48550/arXiv.2105.10878
10.1109/TKDE.2021.3126456
10.1609/icwsm.v8i1.14526
10.1109/ADICS58448.2024.10533462
10.1145/2939672.2939785
10.1007/s11227-021-04040-8
10.1006/jcss.1997.1504
10.1109/MMUL.2018.011921236
10.1016/j.procs.2019.12.107
10.3389/fpsyt.2018.00064
10.1166/jmihi.2020.3169
10.1037/e517532013-004
10.1140/epjds/s13688-021-00309-3
10.1109/MIS.2021.3093660
10.1007/s11042-022-12648-y
10.18653/v1/E17-1015
10.1016/j.bspc.2023.105647
10.3390/app12125872
10.1016/j.inffus.2023.102161
10.1109/access.2021.3135283
10.1038/s41746-020-0233-7
10.2196/50738
10.1007/s44196-022-00175-5
10.1186/s12916-020-1495-2
ContentType Journal Article
Copyright 2025 Rohei et al.
COPYRIGHT 2025 PeerJ. Ltd.
Copyright_xml – notice: 2025 Rohei et al.
– notice: COPYRIGHT 2025 PeerJ. Ltd.
DBID AAYXX
CITATION
NPM
ISR
7X8
DOA
DOI 10.7717/peerj-cs.2981
DatabaseName CrossRef
PubMed
Gale In Context: Science
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_b9c1e748610448f0be7cf53f9cf9c008
A849629990
40989434
10_7717_peerj_cs_2981
Genre Journal Article
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
H13
NPM
PUEGO
7X8
ID FETCH-LOGICAL-c385t-c9b58c8e00aa6387acde63d8ed1921e0c29b07f28de213bfcb33425f6e9e9c93
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001556502000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2376-5992
IngestDate Mon Nov 10 04:34:30 EST 2025
Thu Sep 25 00:20:15 EDT 2025
Tue Nov 11 10:46:22 EST 2025
Tue Nov 04 18:10:45 EST 2025
Thu Nov 13 15:56:25 EST 2025
Sat Sep 27 02:50:27 EDT 2025
Sat Nov 29 07:41:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Depression detection
Enhanced boosting algorithm
Feature-based enhanced boosting algorithm
Feature engineering
Language English
License https://creativecommons.org/licenses/by/4.0
2025 Rohei et al.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-c9b58c8e00aa6387acde63d8ed1921e0c29b07f28de213bfcb33425f6e9e9c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4380-5303
0000-0003-3421-4501
OpenAccessLink https://doaj.org/article/b9c1e748610448f0be7cf53f9cf9c008
PMID 40989434
PQID 3253860939
PQPubID 23479
PageCount e2981
ParticipantIDs doaj_primary_oai_doaj_org_article_b9c1e748610448f0be7cf53f9cf9c008
proquest_miscellaneous_3253860939
gale_infotracmisc_A849629990
gale_infotracacademiconefile_A849629990
gale_incontextgauss_ISR_A849629990
pubmed_primary_40989434
crossref_primary_10_7717_peerj_cs_2981
PublicationCentury 2000
PublicationDate 2025-07-29
PublicationDateYYYYMMDD 2025-07-29
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-29
  day: 29
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2025
Publisher PeerJ. Ltd
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ Inc
References Ding (10.7717/peerj-cs.2981/ref-25) 2022; 12
Horwitz (10.7717/peerj-cs.2981/ref-34) 2020
Ke (10.7717/peerj-cs.2981/ref-36) 2017
Zogan (10.7717/peerj-cs.2981/ref-71) 2021
Brauwers (10.7717/peerj-cs.2981/ref-16) 2021; 35
Guillen (10.7717/peerj-cs.2981/ref-33) 2023; 214
De Choudhury (10.7717/peerj-cs.2981/ref-24) 2014; 8
Benacek (10.7717/peerj-cs.2981/ref-14) 2024; 11
Abdullah (10.7717/peerj-cs.2981/ref-2) 2018; 25
Chiong (10.7717/peerj-cs.2981/ref-22) 2021; 135
Xia (10.7717/peerj-cs.2981/ref-67) 2022
Zhu (10.7717/peerj-cs.2981/ref-70) 2023; 47
Ahmad (10.7717/peerj-cs.2981/ref-5) 2020; 10
Semwal (10.7717/peerj-cs.2981/ref-53) 2023
Nandy (10.7717/peerj-cs.2981/ref-47) 2021
Marcus (10.7717/peerj-cs.2981/ref-44) 2012
Apruzzese (10.7717/peerj-cs.2981/ref-10) 2019; 900
Abd Rahman (10.7717/peerj-cs.2981/ref-1) 2020; 8
Kour (10.7717/peerj-cs.2981/ref-38) 2022; 81
Wang (10.7717/peerj-cs.2981/ref-63) 2022c; 68
de Jesús Titla-Tlatelpa (10.7717/peerj-cs.2981/ref-26) 2021; 10
Shen (10.7717/peerj-cs.2981/ref-55) 2018
Wang (10.7717/peerj-cs.2981/ref-64) 2022a; 609
Telles-Correia (10.7717/peerj-cs.2981/ref-61) 2018; 9
Chiong (10.7717/peerj-cs.2981/ref-21) 2021; 36
Kiran (10.7717/peerj-cs.2981/ref-37) 2023; 3
Singh (10.7717/peerj-cs.2981/ref-57) 2016; 89
Yandex (10.7717/peerj-cs.2981/ref-68) 2017
Ghosal (10.7717/peerj-cs.2981/ref-32) 2022; 218
Skaik (10.7717/peerj-cs.2981/ref-58) 2020
Peng (10.7717/peerj-cs.2981/ref-49) 2019
Ansari (10.7717/peerj-cs.2981/ref-8) 2022; 10
Nandanwar (10.7717/peerj-cs.2981/ref-46) 2021
Remya (10.7717/peerj-cs.2981/ref-50) 2024
Tong (10.7717/peerj-cs.2981/ref-62) 2023; 14
Shen (10.7717/peerj-cs.2981/ref-54) 2017
Reseena Mol (10.7717/peerj-cs.2981/ref-51) 2022; 10
Stein (10.7717/peerj-cs.2981/ref-59) 2020; 18
Babayomi (10.7717/peerj-cs.2981/ref-13) 2023
Chen (10.7717/peerj-cs.2981/ref-20) 2023; 16
Afzoon (10.7717/peerj-cs.2981/ref-4) 2021
Arya (10.7717/peerj-cs.2981/ref-12) 2021; 4
Antony (10.7717/peerj-cs.2981/ref-9) 2020
Breiman (10.7717/peerj-cs.2981/ref-17) 1996; 24
Chancellor (10.7717/peerj-cs.2981/ref-18) 2020; 3
Dheeraj (10.7717/peerj-cs.2981/ref-27) 2021; 182
Malviya (10.7717/peerj-cs.2981/ref-42) 2021
Zhang (10.7717/peerj-cs.2981/ref-69) 2021; 9
Coppersmith (10.7717/peerj-cs.2981/ref-23) 2015
Mali (10.7717/peerj-cs.2981/ref-41) 2021
Benton (10.7717/peerj-cs.2981/ref-15) 2017
Manning (10.7717/peerj-cs.2981/ref-43) 2014
Tai (10.7717/peerj-cs.2981/ref-60) 2024; 88
Laxmi Lydia (10.7717/peerj-cs.2981/ref-39) 2022
Safa (10.7717/peerj-cs.2981/ref-52) 2022; 78
Ali (10.7717/peerj-cs.2981/ref-6) 2024
Singh (10.7717/peerj-cs.2981/ref-56) 2021
Wang (10.7717/peerj-cs.2981/ref-65) 2022b
Madni (10.7717/peerj-cs.2981/ref-40) 2023; 12
Nugraha (10.7717/peerj-cs.2981/ref-48) 2024; 9
Mohammed (10.7717/peerj-cs.2981/ref-45) 2021
Almouzini (10.7717/peerj-cs.2981/ref-7) 2019; 163
Freund (10.7717/peerj-cs.2981/ref-30) 1997; 55.1
Friedman (10.7717/peerj-cs.2981/ref-31) 2001; 29
Junge (10.7717/peerj-cs.2981/ref-35) 2023
WHO (10.7717/peerj-cs.2981/ref-66) 2023
Adarsh (10.7717/peerj-cs.2981/ref-3) 2023; 60
Arun (10.7717/peerj-cs.2981/ref-11) 2018
Chen (10.7717/peerj-cs.2981/ref-19) 2016
Fan (10.7717/peerj-cs.2981/ref-28) 2024; 104
Freund (10.7717/peerj-cs.2981/ref-29) 1996; 96
References_xml – year: 2021
  ident: 10.7717/peerj-cs.2981/ref-47
  article-title: My mind is a prison: a boosted deep learning approach to detect the rise in depression since COVID-19 using a stacked bi-LSTM CatBoost model
  doi: 10.1109/BigData52589.2021.9671482
– year: 2024
  ident: 10.7717/peerj-cs.2981/ref-6
  article-title: Diverse perspectives, divergent models: cross-cultural evaluation of depression detection on Twitter
  doi: 10.48550/arXiv.2406.15362
– volume: 214
  start-page: 119134
  year: 2023
  ident: 10.7717/peerj-cs.2981/ref-33
  article-title: Gradient tree boosting and the estimation of production frontiers
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.119134
– start-page: 1
  year: 2021
  ident: 10.7717/peerj-cs.2981/ref-45
  article-title: Depression analysis from social media data in Bangla language: an ensemble approach
– volume: 89
  start-page: 549
  year: 2016
  ident: 10.7717/peerj-cs.2981/ref-57
  article-title: Role of text pre-processing in twitter sentiment analysis
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2016.06.095
– volume: 609
  start-page: 727
  issue: 3
  year: 2022a
  ident: 10.7717/peerj-cs.2981/ref-64
  article-title: Online social network individual depression detection using a multitask heterogenous modality fusion approach
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2022.07.109
– year: 2023
  ident: 10.7717/peerj-cs.2981/ref-66
  article-title: Mental disorder- depression. Retrieved March 2023
– volume-title: Handbook of assessment and treatment planning for psychological disorders
  year: 2020
  ident: 10.7717/peerj-cs.2981/ref-9
– year: 2020
  ident: 10.7717/peerj-cs.2981/ref-58
  article-title: Using twitter social media for depression detection in the Canadian population
  doi: 10.1145/3442536.3442553
– year: 2021
  ident: 10.7717/peerj-cs.2981/ref-46
  article-title: Depression prediction on twitter using machine learning algorithms
  doi: 10.1109/GCAT52182.2021.9587695
– volume: 68
  start-page: 103227
  year: 2022c
  ident: 10.7717/peerj-cs.2981/ref-63
  article-title: AB-FGSM: AdaBelief optimizer and FGSM-based approach to generate adversarial examples
  publication-title: Journal of Information Security and Applications
  doi: 10.1016/j.jisa.2022.103227
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  ident: 10.7717/peerj-cs.2981/ref-31
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Annals of Statistics
  doi: 10.1214/aos/1013203451
– year: 2017
  ident: 10.7717/peerj-cs.2981/ref-36
  article-title: Lightgbm: a highly efficient gradient boosting decision tree
– year: 2021
  ident: 10.7717/peerj-cs.2981/ref-42
  article-title: A transformers approach to detect depression in social media
  doi: 10.1109/ICAIS50930.2021.9395943
– start-page: 61
  year: 2019
  ident: 10.7717/peerj-cs.2981/ref-49
  article-title: Evaluating deep learning based network intrusion detection system in adversarial environment
– volume: 14
  start-page: 1898
  issue: 3
  year: 2023
  ident: 10.7717/peerj-cs.2981/ref-62
  article-title: Cost-sensitive boosting pruning trees for depression detection on Twitter
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/TAFFC.2022.3145634
– volume: 10
  start-page: 586
  year: 2022
  ident: 10.7717/peerj-cs.2981/ref-51
  article-title: A stacked ensemble technique with glove embedding model for depression detection from tweets
  publication-title: Indian Journal of Computer Science and Engineering
  doi: 10.21817/indjcse/2022/v13i2/221302088
– volume: 8
  start-page: 183952–183964
  year: 2020
  ident: 10.7717/peerj-cs.2981/ref-1
  article-title: Application of machine learning methods in mental health detection: a systematic review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3029154
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.7717/peerj-cs.2981/ref-17
  article-title: Bagging predictors
  publication-title: Machine Learning
  doi: 10.1023/A:1018054314350
– start-page: 392
  year: 2022
  ident: 10.7717/peerj-cs.2981/ref-67
  article-title: Analysis of depression based on improved deep forest
– volume-title: Creating mental illness
  year: 2020
  ident: 10.7717/peerj-cs.2981/ref-34
– volume: 47
  start-page: 1009
  issue: 6
  year: 2023
  ident: 10.7717/peerj-cs.2981/ref-70
  article-title: Understanding the relationship between social media use and depression: a review of the literature
  publication-title: Online Information Review
  doi: 10.1108/OIR-04-2021-0211
– volume: 135
  start-page: 104499
  issue: 8
  year: 2021
  ident: 10.7717/peerj-cs.2981/ref-22
  article-title: A textual-based featuring approach for depression detection using machine learning classifiers and social media texts
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2021.104499
– year: 2023
  ident: 10.7717/peerj-cs.2981/ref-35
  article-title: Understanding the self-attention mechanism
– year: 2023
  ident: 10.7717/peerj-cs.2981/ref-13
  article-title: Convolutional xgboost (c-xgboost) model for brain tumor detection
  doi: 10.48550/arXiv.2301.02317
– volume: 182
  start-page: 115265
  year: 2021
  ident: 10.7717/peerj-cs.2981/ref-27
  article-title: Negative emotions detection on online mental-health related patients texts using the deep learning with MHA-BCNN model
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115265
– year: 2022b
  ident: 10.7717/peerj-cs.2981/ref-65
  article-title: GIT: a generative image-to-text transformer for vision and language
  doi: 10.48550/arXiv.2205.14100
– volume: 10
  start-page: 211
  issue: 1
  year: 2022
  ident: 10.7717/peerj-cs.2981/ref-8
  article-title: Ensemble hybrid learning methods for automated depression detection
  publication-title: IEEE Transactions on Computational Social Systems
  doi: 10.1109/TCSS.2022.3154442
– volume: 96
  start-page: 148
  year: 1996
  ident: 10.7717/peerj-cs.2981/ref-29
  article-title: Experiments with a new boosting algorithm
– volume: 3
  start-page: 100173
  issue: 4
  year: 2023
  ident: 10.7717/peerj-cs.2981/ref-37
  article-title: A gradient boosted decision tree with binary spotted hyena optimizer for cardiovascular disease detection and classification
  publication-title: Healthcare Analytics
  doi: 10.1016/j.health.2023.100173
– start-page: 1
  year: 2023
  ident: 10.7717/peerj-cs.2981/ref-53
  article-title: Multimodal analysis and modality fusion for detection of depression from twitter Data
  publication-title: Association for the Advancement of Artificial Intelligence
– year: 2018
  ident: 10.7717/peerj-cs.2981/ref-55
  article-title: Cross-domain depression detection via harvesting social media
  doi: 10.24963/ijcai.2018/223
– year: 2021
  ident: 10.7717/peerj-cs.2981/ref-4
  article-title: Enabling the analysis of mental health patterns using an efficient machine learning approach
  doi: 10.1109/EDOCW52865.2021.00033
– year: 2021
  ident: 10.7717/peerj-cs.2981/ref-41
  article-title: A machine learning technique to analyze depressive disorders
  doi: 10.21203/rs.3.rs-322564/v1
– start-page: 1
  year: 2022
  ident: 10.7717/peerj-cs.2981/ref-39
  article-title: Optimal boosting label weighting extreme learning machine for mental disorder prediction and classification
– volume: 12
  start-page: 1302
  issue: 6
  year: 2023
  ident: 10.7717/peerj-cs.2981/ref-40
  article-title: Improving sentiment prediction of textual tweets using feature fusion and deep machine ensemble model
  publication-title: Electronics
  doi: 10.3390/electronics12061302
– volume: 9
  start-page: 67
  issue: 1
  year: 2024
  ident: 10.7717/peerj-cs.2981/ref-48
  article-title: Classification of depression expressions on Twitter using ensemble learning with Word2Vec
  publication-title: Inform: Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi
  doi: 10.25139/inform.v9i1.7559
– volume: 60
  start-page: 103168
  issue: 1
  year: 2023
  ident: 10.7717/peerj-cs.2981/ref-3
  article-title: Fair and explainable depression detection in social media
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2022.103168
– volume: 218
  start-page: 1631
  issue: 1
  year: 2022
  ident: 10.7717/peerj-cs.2981/ref-32
  article-title: Depression and suicide risk detection on social media using fastText embedding and XGBoost classifier
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2023.01.141
– year: 2021
  ident: 10.7717/peerj-cs.2981/ref-71
  article-title: Depressionnet: a novel summarization boosted deep framework for depression detection on social media
  doi: 10.48550/arXiv.2105.10878
– volume: 35
  start-page: 3279
  issue: 4
  year: 2021
  ident: 10.7717/peerj-cs.2981/ref-16
  article-title: A general survey on attention mechanisms in deep learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2021.3126456
– volume: 4
  start-page: 55
  issue: 2
  year: 2021
  ident: 10.7717/peerj-cs.2981/ref-12
  article-title: Machine learning approaches to mental stress detection: a review
  publication-title: Annals of Optimization Theory and Practice
– volume: 900
  start-page: 1
  year: 2019
  ident: 10.7717/peerj-cs.2981/ref-10
  article-title: Addressing adversarial attacks against security systems based on machine learning
– volume: 8
  start-page: 71
  issue: 1
  year: 2014
  ident: 10.7717/peerj-cs.2981/ref-24
  article-title: Mental health discourse on reddit: self-disclosure, social support, and anonymity
  publication-title: Proceedings of the International AAAI Conference on Web and Social Media
  doi: 10.1609/icwsm.v8i1.14526
– year: 2024
  ident: 10.7717/peerj-cs.2981/ref-50
  article-title: A meta-learning framework with model stacking for depression detection through sentiment classification
  doi: 10.1109/ADICS58448.2024.10533462
– year: 2016
  ident: 10.7717/peerj-cs.2981/ref-19
  article-title: Xgboost: a scalable tree boosting system
  doi: 10.1145/2939672.2939785
– volume: 78
  start-page: 4709
  issue: 4
  year: 2022
  ident: 10.7717/peerj-cs.2981/ref-52
  article-title: Automatic detection of depression symptoms in twitter using multimodal analysis
  publication-title: The Journal of Supercomputing
  doi: 10.1007/s11227-021-04040-8
– volume: 55.1
  start-page: 119
  year: 1997
  ident: 10.7717/peerj-cs.2981/ref-30
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: Journal of Computer and System Sciences
  doi: 10.1006/jcss.1997.1504
– volume: 25
  start-page: 1
  year: 2018
  ident: 10.7717/peerj-cs.2981/ref-2
  article-title: Sensing technologies for monitoring serious mental illnesses
  publication-title: IEEE MultiMedia
  doi: 10.1109/MMUL.2018.011921236
– volume: 163
  start-page: 257
  year: 2019
  ident: 10.7717/peerj-cs.2981/ref-7
  article-title: Detecting Arabic depressed users from Twitter data
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2019.12.107
– volume: 9
  start-page: 64
  year: 2018
  ident: 10.7717/peerj-cs.2981/ref-61
  article-title: Mental disorder—the need for an accurate definition
  publication-title: Frontiers in Psychiatry
  doi: 10.3389/fpsyt.2018.00064
– volume: 10
  start-page: 2446
  issue: 10
  year: 2020
  ident: 10.7717/peerj-cs.2981/ref-5
  article-title: Applying deep learning technique for depression classification in social media text
  publication-title: Journal of Medical Imaging and Health Informatics
  doi: 10.1166/jmihi.2020.3169
– year: 2012
  ident: 10.7717/peerj-cs.2981/ref-44
  article-title: Depression: a global public health concern
  doi: 10.1037/e517532013-004
– volume: 10
  start-page: 54
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.2981/ref-26
  article-title: A profile-based sentiment-aware approach for depression detection in social media
  publication-title: EPJ Data Science
  doi: 10.1140/epjds/s13688-021-00309-3
– start-page: 55
  year: 2014
  ident: 10.7717/peerj-cs.2981/ref-43
  article-title: The Stanford CoreNLP natural language processing toolkit
– volume: 36
  start-page: 99
  issue: 6
  year: 2021
  ident: 10.7717/peerj-cs.2981/ref-21
  article-title: Combining sentiment lexicons and content-based features for depression detection
  publication-title: IEEE Intelligent Systems
  doi: 10.1109/MIS.2021.3093660
– volume: 81
  start-page: 23649
  issue: 17
  year: 2022
  ident: 10.7717/peerj-cs.2981/ref-38
  article-title: An hybrid deep learning approach for depression prediction from user tweets using feature-rich CNN and bi-directional LSTM
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-022-12648-y
– year: 2017
  ident: 10.7717/peerj-cs.2981/ref-15
  article-title: Multitask learning for mental health conditions with limited social media data
  doi: 10.18653/v1/E17-1015
– volume: 88
  start-page: 105647
  issue: 9
  year: 2024
  ident: 10.7717/peerj-cs.2981/ref-60
  article-title: Sleep stage classification using Light Gradient Boost Machine: exploring feature impact in depressive and healthy participants
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2023.105647
– start-page: 41
  year: 2018
  ident: 10.7717/peerj-cs.2981/ref-11
  article-title: A boosted machine learning approach for detection of depression
– volume: 12
  start-page: 5872
  issue: 12
  year: 2022
  ident: 10.7717/peerj-cs.2981/ref-25
  article-title: An efficient AdaBoost algorithm with the multiple thresholds classification
  publication-title: Applied Sciences
  doi: 10.3390/app12125872
– volume-title: Mental health and mental disorders
  year: 2021
  ident: 10.7717/peerj-cs.2981/ref-56
– volume: 104
  start-page: 102161
  issue: 7
  year: 2024
  ident: 10.7717/peerj-cs.2981/ref-28
  article-title: Transformer-based multimodal feature enhancement networks for multimodal depression detection integrating video, audio and remote photoplethysmograph signals
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2023.102161
– year: 2017
  ident: 10.7717/peerj-cs.2981/ref-68
  article-title: CatBoost
– volume: 9
  start-page: 168767–168782
  year: 2021
  ident: 10.7717/peerj-cs.2981/ref-69
  article-title: Fault diagnosis of oil-immersed power transformer based on difference-mutation brain storm optimized catboost model
  publication-title: IEEE Access
  doi: 10.1109/access.2021.3135283
– volume: 3
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.7717/peerj-cs.2981/ref-18
  article-title: Methods in predictive techniques for mental health status on social media: a critical review
  publication-title: NPJ Digital Medicine
  doi: 10.1038/s41746-020-0233-7
– start-page: 31
  year: 2015
  ident: 10.7717/peerj-cs.2981/ref-23
  article-title: CLPsych 2015 shared task: depression and PTSD on Twitter
– volume: 11
  start-page: e50738
  year: 2024
  ident: 10.7717/peerj-cs.2981/ref-14
  article-title: Identification of predictors of mood disorder misdiagnosis and subsequent help-seeking behavior in individuals with depressive symptoms: gradient-boosted tree machine learning approach
  publication-title: JMIR Mental Health
  doi: 10.2196/50738
– volume: 16
  issue: 1
  year: 2023
  ident: 10.7717/peerj-cs.2981/ref-20
  article-title: The CTCN-LightGBM joint model for c
  publication-title: International Journal of Computational Intelligence Systems
  doi: 10.1007/s44196-022-00175-5
– start-page: 3838
  year: 2017
  ident: 10.7717/peerj-cs.2981/ref-54
  article-title: Depression detection via harvesting social media: a multimodal dictionary learning solution
– volume: 18
  start-page: 1
  year: 2020
  ident: 10.7717/peerj-cs.2981/ref-59
  article-title: Mental, behavioral and neurodevelopmental disorders in the ICD-11: an international perspective on key changes and controversies
  publication-title: BMC Medicine
  doi: 10.1186/s12916-020-1495-2
SSID ssj0001511119
Score 2.2983766
Snippet Depression is a rapidly increasing mental disorder that can interfere with a person’s ability and negatively affect functions in various aspects of life....
Depression is a rapidly increasing mental disorder that can interfere with a person's ability and negatively affect functions in various aspects of life....
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage e2981
SubjectTerms Algorithms
Analysis
Depression detection
Depression, Mental
Enhanced boosting algorithm
Feature engineering
Feature-based enhanced boosting algorithm
Machine learning
Social media
Title Feature-based enhanced boosting algorithm for depression detection
URI https://www.ncbi.nlm.nih.gov/pubmed/40989434
https://www.proquest.com/docview/3253860939
https://doaj.org/article/b9c1e748610448f0be7cf53f9cf9c008
Volume 11
WOSCitedRecordID wos001556502000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: K7-
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: P5Z
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: BENPR
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: PIMPY
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcOAC5b3QrgJCcDL1xnFsH7vVVlSoq6j0sHCxnLHdFkG2SrIc-e2Mk-yqSw9ckCIrikdRZsbjmVHG3xDyLsutCEoCFdZKmkmb01LzEgM5geGIZHlqoWs2IedztVjo4karr1gT1sMD94I7KDVMvMwUunnMJAIrvYQgeNCA13DMl0l9I5nqzwfHrUD3oJoSU5aDa-_r7xSaj6lWky0n1GH1396R_4ozO39zvEseDoFicth_4GNyx1dPyKN1E4ZksMmnZBqDuFXtafRHLvHVZfdPP8HouYklzYn9cbGsr9rLnwnGp8mm8rXC27arw6qekfPj2fnRJzo0RqDAlWgp6FIoUJ4xa9F-pAXnc-6UdxHdzDNIdclkSJXz6YSXAUrO0TZD7rXXoPlzslMtK_-SJE5IH_AtXErARNlpmzmRBcdDYOCsHpH3a0GZ6x7-wmDaECVqOokaaEyU6IhMoxg3RBG1unuAujSDLs2_dDkib6MSTMSlqGLhy4VdNY05-XJmDlWmc3Sdmo3Ih4EoLNvagh3OESBDEcpqi3JvixINB7am36x1beJUrDar_HLVGJ6iG8iZ5sj_i34RbBjDfDhC1mev_gfDr8mDNPYTZpKmeo_stPXK75P78Ku9auoxuSsXakzuTWfz4mzcLXAcP0uK4-nvGY6F-Ibzxclp8fUPUTIEGA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature-based+enhanced+boosting+algorithm+for+depression+detection&rft.jtitle=PeerJ.+Computer+science&rft.au=Rohei%2C+Muhammad+Sadiq&rft.au=Varathan%2C+Kasturi+Dewi&rft.au=Palaiahnakote%2C+Shivakumara&rft.au=Anuar%2C+Nor+Badrul&rft.date=2025-07-29&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=11&rft.spage=e2981&rft_id=info:doi/10.7717%2Fpeerj-cs.2981&rft.externalDBID=ISR&rft.externalDocID=A849629990
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon