On the enumeration of some inequivalent monotone Boolean functions
This paper considers inequivalent monotone Boolean functions of an arbitrary number of variables, two monotone Boolean functions are equivalent if one can be obtained from the other by permuting the variables. It focuses on some inequivalent monotone Boolean functions with three and four types of e...
Uloženo v:
| Vydáno v: | Optimization Ročník 73; číslo 4; s. 1253 - 1266 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia
Taylor & Francis
02.04.2024
Taylor & Francis LLC |
| Témata: | |
| ISSN: | 0233-1934, 1029-4945 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper considers inequivalent monotone Boolean functions of an arbitrary number of variables, two monotone Boolean functions are equivalent if one can be obtained from the other by permuting the variables. It focuses on some inequivalent monotone Boolean functions with three and four types of equivalent variables, where the variables are either dominant or dominated. The paper provides closed formulas for their enumeration as a function of the number of variables. The problem we deal with is very versatile since inequivalent monotone Boolean functions are monotonic simple games, structures that are used in many fields such as game theory, neural networks, artificial intelligence, reliability or multiple-criteria decision-making. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0233-1934 1029-4945 |
| DOI: | 10.1080/02331934.2022.2154126 |