On the enumeration of some inequivalent monotone Boolean functions
This paper considers inequivalent monotone Boolean functions of an arbitrary number of variables, two monotone Boolean functions are equivalent if one can be obtained from the other by permuting the variables. It focuses on some inequivalent monotone Boolean functions with three and four types of e...
Uložené v:
| Vydané v: | Optimization Ročník 73; číslo 4; s. 1253 - 1266 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Philadelphia
Taylor & Francis
02.04.2024
Taylor & Francis LLC |
| Predmet: | |
| ISSN: | 0233-1934, 1029-4945 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper considers inequivalent monotone Boolean functions of an arbitrary number of variables, two monotone Boolean functions are equivalent if one can be obtained from the other by permuting the variables. It focuses on some inequivalent monotone Boolean functions with three and four types of equivalent variables, where the variables are either dominant or dominated. The paper provides closed formulas for their enumeration as a function of the number of variables. The problem we deal with is very versatile since inequivalent monotone Boolean functions are monotonic simple games, structures that are used in many fields such as game theory, neural networks, artificial intelligence, reliability or multiple-criteria decision-making. |
|---|---|
| AbstractList | This paper considers inequivalent monotone Boolean functions of an arbitrary number of variables, two monotone Boolean functions are equivalent if one can be obtained from the other by permuting the variables. It focuses on some inequivalent monotone Boolean functions with three and four types of equivalent variables, where the variables are either dominant or dominated. The paper provides closed formulas for their enumeration as a function of the number of variables. The problem we deal with is very versatile since inequivalent monotone Boolean functions are monotonic simple games, structures that are used in many fields such as game theory, neural networks, artificial intelligence, reliability or multiple-criteria decision-making. This paper considers inequivalent monotone Boolean functions of an arbitrary number of variables, two monotone Boolean functions are equivalent if one can be obtained from the other by permuting the variables. It focuses on some inequivalent monotone Boolean functions with three and four types of equivalent variables, where the variables are either dominant or dominated. The paper provides closed formulas for their enumeration as a function of the number of variables. The problem we deal with is very versatile since inequivalent monotone Boolean functions are monotonic simple games, structures that are used in many fields such as game theory, neural networks, artificial intelligence, reliability or multiple-criteria decision-making. |
| Author | Freixas, Josep |
| Author_xml | – sequence: 1 givenname: Josep surname: Freixas fullname: Freixas, Josep email: josep.freixas@upc.edu organization: Universitat Politècnica de Catalunya |
| BookMark | eNqFkM1LwzAYh4NMcFP_BCHguTMfTZviRTf8gsEueg5pmmBGm2xJquy_t3Xz4kFP7-V5fi88MzBx3mkArjCaY8TRDSKU4ormc4IImRPMckyKEzDFiFRZXuVsAqYjk43QGZjFuEGI4ILkU7BYO5jeNdSu73SQyXoHvYHRdxpap3e9_ZCtdgl23vk0_IUL71stHTS9UyMeL8CpkW3Ul8d7Dt4eH16Xz9lq_fSyvF9linKWMlUWWJVGFbxShlWMVqqQlKKSK8VrQ3hdUoWakpakMbhmNdOl0rxoJOYF0Yaeg-vD7jb4Xa9jEhvfBze8FKRijOECIzpQ7ECp4GMM2ohtsJ0Me4GRGHOJn1xizCWOuQbv9penbPrukYK07b_23cG2zvjQyU8f2kYkuW99MEE6ZaOgf098AfH6hR4 |
| CitedBy_id | crossref_primary_10_1109_TIT_2024_3379594 |
| Cites_doi | 10.1016/j.ejor.2008.09.016 10.1007/s10479-013-1348-x 10.1007/s00355-009-0408-2 10.1007/BF01770068 10.1007/s11238-008-9108-0 10.1016/j.dam.2011.01.023 10.1016/0165-4896(85)90032-0 10.1007/s00182-012-0327-9 10.1016/0165-4896(96)00815-3 10.1016/S0020-0190(00)00230-1 10.1016/j.dam.2013.11.015 10.4337/9781840647761 10.1007/BF00385808 10.1016/j.mathsocsci.2011.11.004 10.1007/s00182-009-0179-0 10.1007/BF01268159 10.2140/pjm.1966.18.289 10.1007/s11238-017-9606-z 10.1006/game.1993.1009 10.1080/02331934.2012.756878 10.1023/A:1024158301610 10.1016/j.ejor.2011.07.028 10.1016/S0377-2217(02)00903-7 10.1016/j.dam.2008.09.009 10.1093/qmath/7.1.183 10.1007/s11238-006-9003-5 10.1080/02331934.2011.587008 10.1007/s10479-011-0863-x 10.1007/978-0-387-77645-3 10.1017/S0008423900028560 10.1215/S0012-7094-40-00655-X 10.1023/A:1016324824094 10.1016/j.dam.2021.03.011 10.1023/A:1004914608055 10.1016/j.ejor.2012.10.017 10.1007/s00500-020-05422-5 10.1049/ip-ifs:20060081 |
| ContentType | Journal Article |
| Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 2022 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
| DOI | 10.1080/02331934.2022.2154126 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1029-4945 |
| EndPage | 1266 |
| ExternalDocumentID | 10_1080_02331934_2022_2154126 2154126 |
| Genre | Research Article |
| GrantInformation_xml | – fundername: Spanish Ministry of Science and Innovation |
| GroupedDBID | .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DKSSO DU5 EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c385t-c761c7fc689cf59539c6a33078cc8bf28b73c0d7372df1b5b5e7ce86da1862ef3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000898241300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0233-1934 |
| IngestDate | Mon Nov 10 03:03:23 EST 2025 Sat Nov 29 06:01:42 EST 2025 Tue Nov 18 20:52:10 EST 2025 Mon Oct 20 23:44:10 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c385t-c761c7fc689cf59539c6a33078cc8bf28b73c0d7372df1b5b5e7ce86da1862ef3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | http://hdl.handle.net/2117/382121 |
| PQID | 2955516103 |
| PQPubID | 27961 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1080_02331934_2022_2154126 crossref_citationtrail_10_1080_02331934_2022_2154126 proquest_journals_2955516103 informaworld_taylorfrancis_310_1080_02331934_2022_2154126 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-02 |
| PublicationDateYYYYMMDD | 2024-04-02 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Philadelphia |
| PublicationPlace_xml | – name: Philadelphia |
| PublicationTitle | Optimization |
| PublicationYear | 2024 |
| Publisher | Taylor & Francis Taylor & Francis LLC |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis LLC |
| References | Ward M. (e_1_3_2_4_1) 1946; 52 e_1_3_2_27_1 e_1_3_2_28_1 e_1_3_2_29_1 Berman J (e_1_3_2_6_1) 1976; 121 e_1_3_2_42_1 e_1_3_2_20_1 e_1_3_2_41_1 e_1_3_2_21_1 e_1_3_2_44_1 e_1_3_2_22_1 e_1_3_2_43_1 e_1_3_2_23_1 e_1_3_2_24_1 e_1_3_2_45_1 e_1_3_2_25_1 Taylor AD (e_1_3_2_33_1) 1999 e_1_3_2_26_1 e_1_3_2_40_1 Church R. (e_1_3_2_5_1) 1965; 11 e_1_3_2_16_1 e_1_3_2_39_1 e_1_3_2_9_1 e_1_3_2_17_1 e_1_3_2_38_1 e_1_3_2_8_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_31_1 e_1_3_2_30_1 e_1_3_2_10_1 e_1_3_2_11_1 e_1_3_2_32_1 e_1_3_2_12_1 e_1_3_2_35_1 e_1_3_2_13_1 e_1_3_2_34_1 e_1_3_2_14_1 e_1_3_2_37_1 e_1_3_2_3_1 e_1_3_2_15_1 e_1_3_2_36_1 |
| References_xml | – volume: 52 start-page: 423 year: 1946 ident: e_1_3_2_4_1 article-title: Note on the order of free distributive lattices publication-title: Bull New Ser Am Math Soc – ident: e_1_3_2_12_1 doi: 10.1016/j.ejor.2008.09.016 – ident: e_1_3_2_36_1 doi: 10.1007/s10479-013-1348-x – ident: e_1_3_2_29_1 doi: 10.1007/s00355-009-0408-2 – ident: e_1_3_2_40_1 doi: 10.1007/BF01770068 – ident: e_1_3_2_25_1 doi: 10.1007/s11238-008-9108-0 – ident: e_1_3_2_38_1 doi: 10.1016/j.dam.2011.01.023 – ident: e_1_3_2_22_1 doi: 10.1016/0165-4896(85)90032-0 – volume: 121 start-page: 103 year: 1976 ident: e_1_3_2_6_1 article-title: Cardinalities of finite distributive lattices publication-title: Mitt Math Sem Giessen – ident: e_1_3_2_32_1 doi: 10.1007/s00182-012-0327-9 – ident: e_1_3_2_30_1 doi: 10.1016/0165-4896(96)00815-3 – ident: e_1_3_2_8_1 doi: 10.1016/S0020-0190(00)00230-1 – ident: e_1_3_2_9_1 doi: 10.1016/j.dam.2013.11.015 – ident: e_1_3_2_10_1 – ident: e_1_3_2_13_1 doi: 10.4337/9781840647761 – ident: e_1_3_2_7_1 doi: 10.1007/BF00385808 – ident: e_1_3_2_16_1 doi: 10.1016/j.mathsocsci.2011.11.004 – ident: e_1_3_2_23_1 doi: 10.1007/s00182-009-0179-0 – ident: e_1_3_2_31_1 doi: 10.1007/BF01268159 – ident: e_1_3_2_2_1 – ident: e_1_3_2_20_1 doi: 10.2140/pjm.1966.18.289 – ident: e_1_3_2_42_1 doi: 10.1007/s11238-017-9606-z – volume: 11 start-page: 724 year: 1965 ident: e_1_3_2_5_1 article-title: Enumeration by rank of the free distributive lattice with 7 generators publication-title: Not Am Math Soc – ident: e_1_3_2_45_1 doi: 10.1006/game.1993.1009 – ident: e_1_3_2_21_1 doi: 10.1080/02331934.2012.756878 – ident: e_1_3_2_28_1 doi: 10.1023/A:1024158301610 – ident: e_1_3_2_24_1 doi: 10.1016/j.ejor.2011.07.028 – ident: e_1_3_2_14_1 doi: 10.1016/S0377-2217(02)00903-7 – volume-title: Simple games: desirability relations, trading, and pseudoweightings year: 1999 ident: e_1_3_2_33_1 – ident: e_1_3_2_43_1 doi: 10.1016/j.dam.2008.09.009 – ident: e_1_3_2_19_1 doi: 10.1093/qmath/7.1.183 – ident: e_1_3_2_26_1 doi: 10.1007/s11238-006-9003-5 – ident: e_1_3_2_27_1 doi: 10.1080/02331934.2011.587008 – ident: e_1_3_2_37_1 doi: 10.1007/s10479-011-0863-x – ident: e_1_3_2_18_1 doi: 10.1007/978-0-387-77645-3 – ident: e_1_3_2_15_1 doi: 10.1017/S0008423900028560 – ident: e_1_3_2_11_1 – ident: e_1_3_2_3_1 doi: 10.1215/S0012-7094-40-00655-X – ident: e_1_3_2_17_1 doi: 10.1023/A:1016324824094 – ident: e_1_3_2_34_1 doi: 10.1016/j.dam.2021.03.011 – ident: e_1_3_2_35_1 doi: 10.1023/A:1004914608055 – ident: e_1_3_2_39_1 doi: 10.1016/j.ejor.2012.10.017 – ident: e_1_3_2_41_1 doi: 10.1007/s00500-020-05422-5 – ident: e_1_3_2_44_1 doi: 10.1049/ip-ifs:20060081 |
| SSID | ssj0021624 |
| Score | 2.3383143 |
| Snippet | This paper considers inequivalent monotone Boolean functions of an arbitrary number of variables, two monotone Boolean functions are equivalent if one can be... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1253 |
| SubjectTerms | Artificial intelligence Boolean functions Decision theory Dedekind numbers Enumeration enumeration of Boolean functions enumeration of tripartite and quadripartite simple games Equivalence Game theory inequivalent monotone Boolean functions Mathematical analysis Multiple criterion Network reliability Neural networks simple games |
| Title | On the enumeration of some inequivalent monotone Boolean functions |
| URI | https://www.tandfonline.com/doi/abs/10.1080/02331934.2022.2154126 https://www.proquest.com/docview/2955516103 |
| Volume | 73 |
| WOSCitedRecordID | wos000898241300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1029-4945 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021624 issn: 0233-1934 databaseCode: TFW dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQADb0ShIA-sLrXzskeKqBhQYSiiWxRfzlKlkkCT8vux86ioEOoAWyLlnOjuO3-xc_mOkGvX5cgudpBFqFLmYyiYBmUYStSA4A9SU6nrP0bjsZxO1XNTTVg0ZZVuDW1qoYhqrnbJneiirYi7sTRjgeO5HREh-pazfC6c6Lalfpeak9HrasnFw6qtrbNgzqT9h-e3UdbYaU279MdcXRHQaP8fHv2A7DVvn_S2hssh2cLsiOx-0yQ8JsOnjNqXQupK5LGGB80NLfI3pPaqj-XMYtMyFbX4zZ2SNx3m-RyTjDqKrFB8Ql5G95O7B9Y0WmDgyaBkEIUcIgOhVGACFXgKwsSz2S8BpDZC6siDQeo62qSG60AHGAHKME1sqAUa75R0MnvDM0JVov1AmDQVHH0jZWIPFQrgaKMuOHSJ3zo4hkaF3DXDmMe8FSttXBQ7F8WNi7qkvzJ7r2U4Nhmo79GLy2r_w9TNSmJvg22vDXXcZHQRCxW4b4p84J3_YegLsmNP69If0SOdcrHES7INn-WsWFxV2P0Chw_qBA |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagIAEDb0ShgAfWQO287JEiqiJKWYroZiWXs1SpNNCm_H7sPKpWCHWALVJyTnT32Z_tnL8j5NpWOTKLHXRClInjYcCdGKR2UGAMCF4z0bm6fjfs9cRgIBfPwti0SruG1oVQRD5W285tN6OrlLhbwzMGOa7dEuH8xpCWx3iwTjZ8w7VWP7_ffpsvuliQF7a1Jo61qU7x_NbMEj8tqZf-GK1zCmrv_cfH75PdcgJK7wrEHJA1HB-SnQVZwiPSehlTMy-kNkseC4TQVNNp-o7UPPU5Gxp4GrKiBsKpFfOmrTQdYTSmliVzIB-T1_ZD_77jlLUWHHCFnzkQBgxCDYGQoH3puxKCyDUDgAAQseYiDl1oJraoTaJZ7Mc-hoAiSCITbY7aPSG1sXnhKaEyij2f6yThDD0tRGQuJXJgaALPGdSJV3lYQSlEbuthjBSr9EpLFynrIlW6qE5u5mYfhRLHKgO5GD6V5VsguqhXotwVto0q1qrs1FPFpW9_K7Kme_aHpq_IVqf_3FXdx97TOdk2t4pMIN4gtWwywwuyCV_ZcDq5zIH8DWk_7i4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gIAQH3ojBgBy4dizpKzkyYAIxjR2G2C1qXUeaNNaxB7-fpI9pE0Ic4FapdVrZn2MncT8Tcm27HJnFDjohysTxMOBODFI7KDAGBK-R6Ixdvx12OqLfl92imnBalFXaNbTOiSKyudo69zjRZUXcjQkzBjiu3RHhvG5ilsd4sE42TOocWJD3Wm-LNRcLsr62VsSxMuVPPD8NsxKeVshLv03WWQRq7f3Dt--T3SL9pLc5Xg7IGo4Oyc4SKeERab6MqMkKqa2RxxwfNNV0mr4jNU99zAcGnCZUUQPg1FJ502aaDjEaURsjMxgfk9fWQ-_u0Sk6LTjgCn_mQBgwCDUEQoL2pe9KCCLXuL8AELHmIg5daCS2pU2iWezHPoaAIkgiY2uO2j0hlZF54SmhMoo9n-sk4Qw9LURkLiVyYGjMzhlUiVcqWEFBQ267YQwVK9lKCxUpqyJVqKhK6guxcc7D8ZuAXLaemmUbIDrvVqLcX2RrpalV4dJTxaVvDxVZwz37w9BXZKt731Ltp87zOdk2d_IyIF4jldlkjhdkEz5ng-nkMoPxF6FQ7OA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+enumeration+of+some+inequivalent+monotone+Boolean+functions&rft.jtitle=Optimization&rft.au=Freixas%2C+Josep&rft.date=2024-04-02&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=73&rft.issue=4&rft.spage=1253&rft.epage=1266&rft_id=info:doi/10.1080%2F02331934.2022.2154126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_02331934_2022_2154126 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon |