On the enumeration of some inequivalent monotone Boolean functions

This paper considers inequivalent monotone Boolean functions of an arbitrary number of variables, two monotone Boolean functions are equivalent if one can be obtained from the other by permuting the variables. It focuses on some inequivalent  monotone Boolean functions with three and four types of e...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optimization Ročník 73; číslo 4; s. 1253 - 1266
Hlavný autor: Freixas, Josep
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia Taylor & Francis 02.04.2024
Taylor & Francis LLC
Predmet:
ISSN:0233-1934, 1029-4945
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper considers inequivalent monotone Boolean functions of an arbitrary number of variables, two monotone Boolean functions are equivalent if one can be obtained from the other by permuting the variables. It focuses on some inequivalent  monotone Boolean functions with three and four types of equivalent variables, where the variables are either dominant or dominated. The paper provides closed formulas for their enumeration as a function of the number of variables. The problem we deal with is very versatile since inequivalent monotone Boolean functions are monotonic simple games, structures that are used in many fields such as game theory, neural networks, artificial intelligence, reliability or multiple-criteria decision-making.
AbstractList This paper considers inequivalent monotone Boolean functions of an arbitrary number of variables, two monotone Boolean functions are equivalent if one can be obtained from the other by permuting the variables. It focuses on some inequivalent  monotone Boolean functions with three and four types of equivalent variables, where the variables are either dominant or dominated. The paper provides closed formulas for their enumeration as a function of the number of variables. The problem we deal with is very versatile since inequivalent monotone Boolean functions are monotonic simple games, structures that are used in many fields such as game theory, neural networks, artificial intelligence, reliability or multiple-criteria decision-making.
This paper considers inequivalent monotone Boolean functions of an arbitrary number of variables, two monotone Boolean functions are equivalent if one can be obtained from the other by permuting the variables. It focuses on some inequivalent monotone Boolean functions with three and four types of equivalent variables, where the variables are either dominant or dominated. The paper provides closed formulas for their enumeration as a function of the number of variables. The problem we deal with is very versatile since inequivalent monotone Boolean functions are monotonic simple games, structures that are used in many fields such as game theory, neural networks, artificial intelligence, reliability or multiple-criteria decision-making.
Author Freixas, Josep
Author_xml – sequence: 1
  givenname: Josep
  surname: Freixas
  fullname: Freixas, Josep
  email: josep.freixas@upc.edu
  organization: Universitat Politècnica de Catalunya
BookMark eNqFkM1LwzAYh4NMcFP_BCHguTMfTZviRTf8gsEueg5pmmBGm2xJquy_t3Xz4kFP7-V5fi88MzBx3mkArjCaY8TRDSKU4ormc4IImRPMckyKEzDFiFRZXuVsAqYjk43QGZjFuEGI4ILkU7BYO5jeNdSu73SQyXoHvYHRdxpap3e9_ZCtdgl23vk0_IUL71stHTS9UyMeL8CpkW3Ul8d7Dt4eH16Xz9lq_fSyvF9linKWMlUWWJVGFbxShlWMVqqQlKKSK8VrQ3hdUoWakpakMbhmNdOl0rxoJOYF0Yaeg-vD7jb4Xa9jEhvfBze8FKRijOECIzpQ7ECp4GMM2ohtsJ0Me4GRGHOJn1xizCWOuQbv9penbPrukYK07b_23cG2zvjQyU8f2kYkuW99MEE6ZaOgf098AfH6hR4
CitedBy_id crossref_primary_10_1109_TIT_2024_3379594
Cites_doi 10.1016/j.ejor.2008.09.016
10.1007/s10479-013-1348-x
10.1007/s00355-009-0408-2
10.1007/BF01770068
10.1007/s11238-008-9108-0
10.1016/j.dam.2011.01.023
10.1016/0165-4896(85)90032-0
10.1007/s00182-012-0327-9
10.1016/0165-4896(96)00815-3
10.1016/S0020-0190(00)00230-1
10.1016/j.dam.2013.11.015
10.4337/9781840647761
10.1007/BF00385808
10.1016/j.mathsocsci.2011.11.004
10.1007/s00182-009-0179-0
10.1007/BF01268159
10.2140/pjm.1966.18.289
10.1007/s11238-017-9606-z
10.1006/game.1993.1009
10.1080/02331934.2012.756878
10.1023/A:1024158301610
10.1016/j.ejor.2011.07.028
10.1016/S0377-2217(02)00903-7
10.1016/j.dam.2008.09.009
10.1093/qmath/7.1.183
10.1007/s11238-006-9003-5
10.1080/02331934.2011.587008
10.1007/s10479-011-0863-x
10.1007/978-0-387-77645-3
10.1017/S0008423900028560
10.1215/S0012-7094-40-00655-X
10.1023/A:1016324824094
10.1016/j.dam.2021.03.011
10.1023/A:1004914608055
10.1016/j.ejor.2012.10.017
10.1007/s00500-020-05422-5
10.1049/ip-ifs:20060081
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
2022 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
– notice: 2022 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/02331934.2022.2154126
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4945
EndPage 1266
ExternalDocumentID 10_1080_02331934_2022_2154126
2154126
Genre Research Article
GrantInformation_xml – fundername: Spanish Ministry of Science and Innovation
GroupedDBID .7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c385t-c761c7fc689cf59539c6a33078cc8bf28b73c0d7372df1b5b5e7ce86da1862ef3
IEDL.DBID TFW
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000898241300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0233-1934
IngestDate Mon Nov 10 03:03:23 EST 2025
Sat Nov 29 06:01:42 EST 2025
Tue Nov 18 20:52:10 EST 2025
Mon Oct 20 23:44:10 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-c761c7fc689cf59539c6a33078cc8bf28b73c0d7372df1b5b5e7ce86da1862ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://hdl.handle.net/2117/382121
PQID 2955516103
PQPubID 27961
PageCount 14
ParticipantIDs crossref_primary_10_1080_02331934_2022_2154126
crossref_citationtrail_10_1080_02331934_2022_2154126
proquest_journals_2955516103
informaworld_taylorfrancis_310_1080_02331934_2022_2154126
PublicationCentury 2000
PublicationDate 2024-04-02
PublicationDateYYYYMMDD 2024-04-02
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-02
  day: 02
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Optimization
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References Ward M. (e_1_3_2_4_1) 1946; 52
e_1_3_2_27_1
e_1_3_2_28_1
e_1_3_2_29_1
Berman J (e_1_3_2_6_1) 1976; 121
e_1_3_2_42_1
e_1_3_2_20_1
e_1_3_2_41_1
e_1_3_2_21_1
e_1_3_2_44_1
e_1_3_2_22_1
e_1_3_2_43_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_45_1
e_1_3_2_25_1
Taylor AD (e_1_3_2_33_1) 1999
e_1_3_2_26_1
e_1_3_2_40_1
Church R. (e_1_3_2_5_1) 1965; 11
e_1_3_2_16_1
e_1_3_2_39_1
e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_31_1
e_1_3_2_30_1
e_1_3_2_10_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_13_1
e_1_3_2_34_1
e_1_3_2_14_1
e_1_3_2_37_1
e_1_3_2_3_1
e_1_3_2_15_1
e_1_3_2_36_1
References_xml – volume: 52
  start-page: 423
  year: 1946
  ident: e_1_3_2_4_1
  article-title: Note on the order of free distributive lattices
  publication-title: Bull New Ser Am Math Soc
– ident: e_1_3_2_12_1
  doi: 10.1016/j.ejor.2008.09.016
– ident: e_1_3_2_36_1
  doi: 10.1007/s10479-013-1348-x
– ident: e_1_3_2_29_1
  doi: 10.1007/s00355-009-0408-2
– ident: e_1_3_2_40_1
  doi: 10.1007/BF01770068
– ident: e_1_3_2_25_1
  doi: 10.1007/s11238-008-9108-0
– ident: e_1_3_2_38_1
  doi: 10.1016/j.dam.2011.01.023
– ident: e_1_3_2_22_1
  doi: 10.1016/0165-4896(85)90032-0
– volume: 121
  start-page: 103
  year: 1976
  ident: e_1_3_2_6_1
  article-title: Cardinalities of finite distributive lattices
  publication-title: Mitt Math Sem Giessen
– ident: e_1_3_2_32_1
  doi: 10.1007/s00182-012-0327-9
– ident: e_1_3_2_30_1
  doi: 10.1016/0165-4896(96)00815-3
– ident: e_1_3_2_8_1
  doi: 10.1016/S0020-0190(00)00230-1
– ident: e_1_3_2_9_1
  doi: 10.1016/j.dam.2013.11.015
– ident: e_1_3_2_10_1
– ident: e_1_3_2_13_1
  doi: 10.4337/9781840647761
– ident: e_1_3_2_7_1
  doi: 10.1007/BF00385808
– ident: e_1_3_2_16_1
  doi: 10.1016/j.mathsocsci.2011.11.004
– ident: e_1_3_2_23_1
  doi: 10.1007/s00182-009-0179-0
– ident: e_1_3_2_31_1
  doi: 10.1007/BF01268159
– ident: e_1_3_2_2_1
– ident: e_1_3_2_20_1
  doi: 10.2140/pjm.1966.18.289
– ident: e_1_3_2_42_1
  doi: 10.1007/s11238-017-9606-z
– volume: 11
  start-page: 724
  year: 1965
  ident: e_1_3_2_5_1
  article-title: Enumeration by rank of the free distributive lattice with 7 generators
  publication-title: Not Am Math Soc
– ident: e_1_3_2_45_1
  doi: 10.1006/game.1993.1009
– ident: e_1_3_2_21_1
  doi: 10.1080/02331934.2012.756878
– ident: e_1_3_2_28_1
  doi: 10.1023/A:1024158301610
– ident: e_1_3_2_24_1
  doi: 10.1016/j.ejor.2011.07.028
– ident: e_1_3_2_14_1
  doi: 10.1016/S0377-2217(02)00903-7
– volume-title: Simple games: desirability relations, trading, and pseudoweightings
  year: 1999
  ident: e_1_3_2_33_1
– ident: e_1_3_2_43_1
  doi: 10.1016/j.dam.2008.09.009
– ident: e_1_3_2_19_1
  doi: 10.1093/qmath/7.1.183
– ident: e_1_3_2_26_1
  doi: 10.1007/s11238-006-9003-5
– ident: e_1_3_2_27_1
  doi: 10.1080/02331934.2011.587008
– ident: e_1_3_2_37_1
  doi: 10.1007/s10479-011-0863-x
– ident: e_1_3_2_18_1
  doi: 10.1007/978-0-387-77645-3
– ident: e_1_3_2_15_1
  doi: 10.1017/S0008423900028560
– ident: e_1_3_2_11_1
– ident: e_1_3_2_3_1
  doi: 10.1215/S0012-7094-40-00655-X
– ident: e_1_3_2_17_1
  doi: 10.1023/A:1016324824094
– ident: e_1_3_2_34_1
  doi: 10.1016/j.dam.2021.03.011
– ident: e_1_3_2_35_1
  doi: 10.1023/A:1004914608055
– ident: e_1_3_2_39_1
  doi: 10.1016/j.ejor.2012.10.017
– ident: e_1_3_2_41_1
  doi: 10.1007/s00500-020-05422-5
– ident: e_1_3_2_44_1
  doi: 10.1049/ip-ifs:20060081
SSID ssj0021624
Score 2.3383143
Snippet This paper considers inequivalent monotone Boolean functions of an arbitrary number of variables, two monotone Boolean functions are equivalent if one can be...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1253
SubjectTerms Artificial intelligence
Boolean functions
Decision theory
Dedekind numbers
Enumeration
enumeration of Boolean functions
enumeration of tripartite and quadripartite simple games
Equivalence
Game theory
inequivalent monotone Boolean functions
Mathematical analysis
Multiple criterion
Network reliability
Neural networks
simple games
Title On the enumeration of some inequivalent monotone Boolean functions
URI https://www.tandfonline.com/doi/abs/10.1080/02331934.2022.2154126
https://www.proquest.com/docview/2955516103
Volume 73
WOSCitedRecordID wos000898241300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1029-4945
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021624
  issn: 0233-1934
  databaseCode: TFW
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQADb0ShIA-sLrXzskeKqBhQYSiiWxRfzlKlkkCT8vux86ioEOoAWyLlnOjuO3-xc_mOkGvX5cgudpBFqFLmYyiYBmUYStSA4A9SU6nrP0bjsZxO1XNTTVg0ZZVuDW1qoYhqrnbJneiirYi7sTRjgeO5HREh-pazfC6c6Lalfpeak9HrasnFw6qtrbNgzqT9h-e3UdbYaU279MdcXRHQaP8fHv2A7DVvn_S2hssh2cLsiOx-0yQ8JsOnjNqXQupK5LGGB80NLfI3pPaqj-XMYtMyFbX4zZ2SNx3m-RyTjDqKrFB8Ql5G95O7B9Y0WmDgyaBkEIUcIgOhVGACFXgKwsSz2S8BpDZC6siDQeo62qSG60AHGAHKME1sqAUa75R0MnvDM0JVov1AmDQVHH0jZWIPFQrgaKMuOHSJ3zo4hkaF3DXDmMe8FSttXBQ7F8WNi7qkvzJ7r2U4Nhmo79GLy2r_w9TNSmJvg22vDXXcZHQRCxW4b4p84J3_YegLsmNP69If0SOdcrHES7INn-WsWFxV2P0Chw_qBA
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagIAEDb0ShgAfWQO287JEiqiJKWYroZiWXs1SpNNCm_H7sPKpWCHWALVJyTnT32Z_tnL8j5NpWOTKLHXRClInjYcCdGKR2UGAMCF4z0bm6fjfs9cRgIBfPwti0SruG1oVQRD5W285tN6OrlLhbwzMGOa7dEuH8xpCWx3iwTjZ8w7VWP7_ffpsvuliQF7a1Jo61qU7x_NbMEj8tqZf-GK1zCmrv_cfH75PdcgJK7wrEHJA1HB-SnQVZwiPSehlTMy-kNkseC4TQVNNp-o7UPPU5Gxp4GrKiBsKpFfOmrTQdYTSmliVzIB-T1_ZD_77jlLUWHHCFnzkQBgxCDYGQoH3puxKCyDUDgAAQseYiDl1oJraoTaJZ7Mc-hoAiSCITbY7aPSG1sXnhKaEyij2f6yThDD0tRGQuJXJgaALPGdSJV3lYQSlEbuthjBSr9EpLFynrIlW6qE5u5mYfhRLHKgO5GD6V5VsguqhXotwVto0q1qrs1FPFpW9_K7Kme_aHpq_IVqf_3FXdx97TOdk2t4pMIN4gtWwywwuyCV_ZcDq5zIH8DWk_7i4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gIAQH3ojBgBy4dizpKzkyYAIxjR2G2C1qXUeaNNaxB7-fpI9pE0Ic4FapdVrZn2MncT8Tcm27HJnFDjohysTxMOBODFI7KDAGBK-R6Ixdvx12OqLfl92imnBalFXaNbTOiSKyudo69zjRZUXcjQkzBjiu3RHhvG5ilsd4sE42TOocWJD3Wm-LNRcLsr62VsSxMuVPPD8NsxKeVshLv03WWQRq7f3Dt--T3SL9pLc5Xg7IGo4Oyc4SKeERab6MqMkKqa2RxxwfNNV0mr4jNU99zAcGnCZUUQPg1FJ502aaDjEaURsjMxgfk9fWQ-_u0Sk6LTjgCn_mQBgwCDUEQoL2pe9KCCLXuL8AELHmIg5daCS2pU2iWezHPoaAIkgiY2uO2j0hlZF54SmhMoo9n-sk4Qw9LURkLiVyYGjMzhlUiVcqWEFBQ267YQwVK9lKCxUpqyJVqKhK6guxcc7D8ZuAXLaemmUbIDrvVqLcX2RrpalV4dJTxaVvDxVZwz37w9BXZKt731Ltp87zOdk2d_IyIF4jldlkjhdkEz5ng-nkMoPxF6FQ7OA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+enumeration+of+some+inequivalent+monotone+Boolean+functions&rft.jtitle=Optimization&rft.au=Freixas%2C+Josep&rft.date=2024-04-02&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=73&rft.issue=4&rft.spage=1253&rft.epage=1266&rft_id=info:doi/10.1080%2F02331934.2022.2154126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_02331934_2022_2154126
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon